File: macaddr.h

package info (click to toggle)
kismet 2008-05-R1-4.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 3,236 kB
  • ctags: 3,998
  • sloc: cpp: 33,568; sh: 5,544; ansic: 459; makefile: 457; perl: 62; sql: 41
file content (561 lines) | stat: -rw-r--r-- 17,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
    This file is part of Kismet

    Kismet is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    Kismet is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Kismet; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/

#ifndef __MACADDR_H__
#define __MACADDR_H__

#include "config.h"

#include <stdio.h>
#include <ctype.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <string.h>
#include <signal.h>
#include <unistd.h>
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
#include <algorithm>
#include <string>
#include <vector>
#include <map>

#define MAC_LEN 6
#define MAC_STR_LEN ((MAC_LEN * 2) + 6)

// A packet MAC address
typedef struct mac_addr {
    uint64_t longmac;
    uint64_t longmask;
    int error;

    // Convert a string mac address to the long-int storage format, with 
	// mask conversion if present.
    void string2long(const char *in) {
        short unsigned int *bs_in = new short unsigned int[MAC_LEN];

        error = 0;
        longmac = 0;
        longmask = (uint64_t) -1;

        // Get the MAC
        if (sscanf(in, "%hX:%hX:%hX:%hX:%hX:%hX",
                   &bs_in[0], &bs_in[1], &bs_in[2], 
                   &bs_in[3], &bs_in[4], &bs_in[5]) == 6) {

			longmac |= (uint64_t) bs_in[0] << ((MAC_LEN - 0 - 1) * 8);
			longmac |= (uint64_t) bs_in[1] << ((MAC_LEN - 1 - 1) * 8);
			longmac |= (uint64_t) bs_in[2] << ((MAC_LEN - 2 - 1) * 8);
			longmac |= (uint64_t) bs_in[3] << ((MAC_LEN - 3 - 1) * 8);
			longmac |= (uint64_t) bs_in[4] << ((MAC_LEN - 4 - 1) * 8);
			longmac |= (uint64_t) bs_in[5] << ((MAC_LEN - 5 - 1) * 8);

            // If it has a mask component, get that
            const char *in_mask = strchr(in, '/');
            if (in_mask != NULL) {
                longmask = 0;

                // See if it's numerical or expanded
                if (strchr(in_mask + 1, ':') != NULL) {
                    // expanded, sscanf hex octets
                    if (sscanf(in_mask + 1, "%hX:%hX:%hX:%hX:%hX:%hX",
                               &bs_in[0], &bs_in[1], &bs_in[2],
                               &bs_in[3], &bs_in[4], &bs_in[5]) == 6) {

						longmask |= (uint64_t) bs_in[0] << ((MAC_LEN - 0 - 1) * 8);
						longmask |= (uint64_t) bs_in[1] << ((MAC_LEN - 1 - 1) * 8);
						longmask |= (uint64_t) bs_in[2] << ((MAC_LEN - 2 - 1) * 8);
						longmask |= (uint64_t) bs_in[3] << ((MAC_LEN - 3 - 1) * 8);
						longmask |= (uint64_t) bs_in[4] << ((MAC_LEN - 4 - 1) * 8);
						longmask |= (uint64_t) bs_in[5] << ((MAC_LEN - 5 - 1) * 8);

                    } else {
                        error = 1;
                    }
                } else {
                    // numerical, scan and shift
                    int nummask;
                    if (sscanf(in_mask + 1, "%d", &nummask) == 1) {
                        if (nummask == 48)
                            nummask = 0;

                        longmask = ((uint64_t) -1 << (48 - nummask));

                    } else {
                        error = 1;
                    }
                }
            }

        } else {
            error = 1;
        }

        delete[] bs_in;
    }

    inline mac_addr() {
        longmac = 0;
        longmask = (uint64_t) -1;
        error = 0;
    }

    inline mac_addr(const uint8_t *in) {
        longmac = 0;
        longmask = (uint64_t) -1;
        error = 0;

		longmac |= (uint64_t) in[0] << ((MAC_LEN - 0 - 1) * 8);
		longmac |= (uint64_t) in[1] << ((MAC_LEN - 1 - 1) * 8);
		longmac |= (uint64_t) in[2] << ((MAC_LEN - 2 - 1) * 8);
		longmac |= (uint64_t) in[3] << ((MAC_LEN - 3 - 1) * 8);
		longmac |= (uint64_t) in[4] << ((MAC_LEN - 4 - 1) * 8);
		longmac |= (uint64_t) in[5] << ((MAC_LEN - 5 - 1) * 8);
    }

    inline mac_addr(const uint8_t *in, const uint8_t *maskin) {
        longmac = 0;
        longmask = 0;
        error = 0;

		longmac |= (uint64_t) in[0] << ((MAC_LEN - 0 - 1) * 8);
		longmac |= (uint64_t) in[1] << ((MAC_LEN - 1 - 1) * 8);
		longmac |= (uint64_t) in[2] << ((MAC_LEN - 2 - 1) * 8);
		longmac |= (uint64_t) in[3] << ((MAC_LEN - 3 - 1) * 8);
		longmac |= (uint64_t) in[4] << ((MAC_LEN - 4 - 1) * 8);
		longmac |= (uint64_t) in[5] << ((MAC_LEN - 5 - 1) * 8);

		longmask |= (uint64_t) maskin[0] << ((MAC_LEN - 0 - 1) * 8);
		longmask |= (uint64_t) maskin[1] << ((MAC_LEN - 1 - 1) * 8);
		longmask |= (uint64_t) maskin[2] << ((MAC_LEN - 2 - 1) * 8);
		longmask |= (uint64_t) maskin[3] << ((MAC_LEN - 3 - 1) * 8);
		longmask |= (uint64_t) maskin[4] << ((MAC_LEN - 4 - 1) * 8);
		longmask |= (uint64_t) maskin[5] << ((MAC_LEN - 5 - 1) * 8);
    }

    inline mac_addr(const unsigned short int *in) {
        longmac = 0;
        longmask = (uint64_t) -1;
        error = 0;

		longmac |= (uint64_t) in[0] << ((MAC_LEN - 0 - 1) * 8);
		longmac |= (uint64_t) in[1] << ((MAC_LEN - 1 - 1) * 8);
		longmac |= (uint64_t) in[2] << ((MAC_LEN - 2 - 1) * 8);
		longmac |= (uint64_t) in[3] << ((MAC_LEN - 3 - 1) * 8);
		longmac |= (uint64_t) in[4] << ((MAC_LEN - 4 - 1) * 8);
		longmac |= (uint64_t) in[5] << ((MAC_LEN - 5 - 1) * 8);
    }

    inline mac_addr(const char *in) {
        string2long(in);
    }

    inline mac_addr(int in) {
        longmac = 0;
        longmask = 0;
        error = 0;
    } 

    // Masked MAC compare
    inline bool operator== (const mac_addr& op) const {
        if (longmask < op.longmask)
            return ((longmac & longmask) == (op.longmac & longmask));

        return ((longmac & op.longmask) == (op.longmac & op.longmask));
    }

    // MAC compare
    inline bool operator!= (const mac_addr& op) const {
        if (longmask < op.longmask)
            return ((longmac & longmask) != (op.longmac & longmask));

        return ((longmac & op.longmask) != (op.longmac & op.longmask));
    }

    // mac less-than-eq
    inline bool operator<=(const mac_addr& op) const {
        return (longmac & op.longmask) == (op.longmac & op.longmask);
    }

    // MAC less-than for STL sorts...
    inline bool operator< (const mac_addr& op) const {
        return ((longmac & longmask) < (op.longmac & longmask));
    }

    mac_addr& operator= (const mac_addr& op) {
        longmac = op.longmac;
        longmask = op.longmask;
        error = op.error;
        return *this;
    }

    mac_addr& operator= (const char *in) {
        string2long(in);

        return *this;
    }

    mac_addr& operator++() {
        longmac++;
        return *this;
    }

    mac_addr operator++(int) {
        mac_addr tmp = *this;
        ++*this;
        return tmp;
    }

    inline uint8_t index64(uint64_t val, int index) const {
        // Bitshift kung-foo
        return (uint8_t) (val >> ((MAC_LEN - index - 1) * 8));
    }

    inline const uint8_t operator[] (const int& index) const {
        int mdex = index;
        if (index < 0 || index >= MAC_LEN)
            mdex = 0;

        return index64(longmac, mdex);
    }

    inline string Mac2String() const {
        char tempstr[MAC_STR_LEN];

        snprintf(tempstr, MAC_STR_LEN, "%02X:%02X:%02X:%02X:%02X:%02X",
				 index64(longmac, 0), index64(longmac, 1), index64(longmac, 2),
				 index64(longmac, 3), index64(longmac, 4), index64(longmac, 5));
        return string(tempstr);
    }

    inline string MacMask2String() const {
        uint64_t maskedmac = longmac & longmask;

        char tempstr[(MAC_STR_LEN * 2) + 1];

        snprintf(tempstr, (MAC_STR_LEN * 2) + 1, 
				 "%02X:%02X:%02X:%02X:%02X:%02X/%02X:%02X:%02X:%02X:%02X:%02X",
                 index64(maskedmac, 0), index64(maskedmac, 1), index64(maskedmac, 2),
                 index64(maskedmac, 3), index64(maskedmac, 4), index64(maskedmac, 5),
                 index64(longmask, 0), index64(longmask, 1), index64(longmask, 2),
                 index64(longmask, 3), index64(longmask, 4), index64(longmask, 5));
        return tempstr;
    }

};


// A templated container for storing groups of masked mac addresses.  A stl-map 
// will work for single macs, but we need this for smart mask matching on 
// more complex sets.  Iterators in this class only work as incremental, 
// because thats all I need right now.  This whole thing is really an ugly, 
// ugly kluge, and if I really had any need for it to be more extendible I'd 
// rewrite it to use std::iterator and other good stuff.  But, I don't,
// it works, and I need to move on to other areas.
template<class T>
class macmap {
protected:
    typedef struct mask_vec_content {
        mac_addr mac;
        T value;
    };

    typedef struct mask_vec_offsets {
        unsigned int first;
        unsigned int last;
    };

    class SortMaskVec {
    public:
        inline bool operator() (const macmap::mask_vec_content x, 
								const macmap::mask_vec_content y) const {
            return (x.mac < y.mac);
        }
    };

public:
    // This isn't quite like STL iterators, because I'm too damned lazy to deal 
	// with all the nasty STL hoop-jumping.  This does provide a somewhat-stl-ish 
	// interface to iterating through the singleton and masked maps
    class iterator {
        friend class macmap;

    public:
        inline iterator(macmap<T> *in_owner) {
            owner = in_owner;

            if (owner->singleton_map.size() > 0) {
                singleton_itr = owner->singleton_map.begin();
                vector_itr = -1;
                first = singleton_itr->first;
                second = &(singleton_itr->second);
            } else if (owner->mask_vec.size() > 0) {
                singleton_itr = owner->singleton_map.end();
                vector_itr = 0;
                first = owner->mask_vec[0].mac;
                second = &(owner->mask_vec[0].value);
            } else {
                singleton_itr = owner->singleton_map.end();
                vector_itr = owner->mask_vec.size();
				second = NULL;
            }
        }

        // Prefix
        inline iterator& operator++() {
            if (singleton_itr == owner->singleton_map.end()) {
                if ((++vector_itr) < (int) owner->mask_vec.size()) {
                    first = owner->mask_vec[vector_itr].mac;
                    second = &(owner->mask_vec[vector_itr].value);
                }
            } else if (++singleton_itr == owner->singleton_map.end()) {
                if ((++vector_itr) < (int) owner->mask_vec.size()) {
                    first = owner->mask_vec[vector_itr].mac;
                    second = &(owner->mask_vec[vector_itr].value);
                }
            } else {
                first = singleton_itr->first;
                second = &(singleton_itr->second);
            }

            return *this;
        }

        // Postfix
        inline iterator operator++(int) {
            iterator tmp = *this;
            ++*this;
            return tmp;
        }

        // equal
        inline bool operator==(const iterator& op) {
            return (singleton_itr == op.singleton_itr) && 
				(vector_itr == op.vector_itr);
        }

        // not
        inline bool operator!=(const iterator& op) {
            return (singleton_itr != op.singleton_itr) || 
				(vector_itr != op.vector_itr);
        }

        // pointer fake
        inline iterator *operator->() {
            return this;
        }

        mac_addr first;
        T *second;

    protected:
        inline void assign(typename map<mac_addr, T>::iterator in_itr) {
            singleton_itr = in_itr;
            vector_itr = -1;

            if (in_itr != owner->singleton_map.end()) {
                first = singleton_itr->first;
                second = &(singleton_itr->second);
            }
        }

        inline void assign(int in_itr) {
            singleton_itr = owner->singleton_map.end();
            vector_itr = in_itr;

            if (in_itr < (int) owner->mask_vec.size()) {
                first = owner->mask_vec[vector_itr].mac;
                second = &(owner->mask_vec[vector_itr].value);
            }
        }

        typename map<mac_addr, T>::iterator singleton_itr;
        int vector_itr;
        macmap<T> *owner;
    };

    friend class macmap<T>::iterator;

    inline iterator begin() {
        iterator ret(this);

        return ret;
    }

    inline iterator end() {
        iterator ret(this);
        ret.singleton_itr = singleton_map.end();
        ret.vector_itr = mask_vec.size();

        return ret;
    }

    // The caller will rebuild the index before using us...
    inline void fast_insert(mac_addr in_mac, T in_data) {
        // Single macs go into the singleton map
        if (in_mac.longmask == (uint64_t) -1) {
            singleton_map[in_mac] = in_data;
            return;
        }

        // Put them into the vector
        mask_vec_content content;
        content.mac = in_mac;
        content.value = in_data;
        mask_vec.push_back(content);
    }
    
    // This is a very expensive insert but it builds a system that allows
    // for fast searching, which is where we REALLY need the speed.
    inline void insert(mac_addr in_mac, T in_data) {
        // Single macs go into the singleton map
        if (in_mac.longmask == (uint64_t) -1) {
            singleton_map[in_mac] = in_data;
            return;
        }

        // Put them into the vector
        mask_vec_content content;
        content.mac = in_mac;
        content.value = in_data;
        mask_vec.push_back(content);

        reindex();
    }

    // Do a relatively fast find...
    inline iterator find(mac_addr in_mac) {
        iterator ret(this);

        if (in_mac.longmask == (uint64_t) -1) {
            // Look in the singleton map... This is very fast.
            typename map<mac_addr, T>::iterator sitr = singleton_map.find(in_mac);
            if (sitr != singleton_map.end()) {
                ret.assign(sitr);
                return ret;
            }
        }

        if (vec_offset_map.find(in_mac) != vec_offset_map.end()) {
            // We matched a large key in the vector map.  The vector is sorted
            // in decreasing granularity, so the first one we match we can count
            // as good and get out of here
            mask_vec_offsets oft = vec_offset_map[in_mac];
            for (unsigned int x = oft.last; x >= oft.first; x--) {
                if (in_mac <= mask_vec[x].mac) {
                    ret.assign(x);
                    return ret;
                }
            }
        }

        return end();
    }

    inline void erase(mac_addr in_mac) {
        iterator itr = find(in_mac);

        if (itr == end())
            return;

        if (itr.singleton_itr != singleton_map.end()) {
            singleton_map.erase(itr.singleton_itr);
            reindex();
            return;
        }

        if (itr.vector_itr >= 0 && itr.vector_itr < (int) mask_vec.size()) {
            mask_vec.erase(mask_vec.begin() + itr.vector_itr);
            reindex();
            return;
        }

    }

    inline T& operator[](mac_addr& index) {
        iterator foo = find(index);

        // This isn't very clean but its better than heap corruption 
        // and other horrible stuff
        if (foo == end()) {
            fprintf(stderr, "Something tried to use macmap[] to reference an "
                    "element that doesn't exist.  Fix me.\n");
            exit(1);
        }

        return *(foo->second);
    }

    int size() {
        return singleton_map.size() + mask_vec.size();
    }

	void clear() {
		singleton_map.erase (singleton_map.begin(), singleton_map.end());
		vec_offset_map.erase(vec_offset_map.begin(), vec_offset_map.end());
		mask_vec.erase (mask_vec.begin(), mask_vec.end());
		return;
	} 

    inline void reindex(void) {
        // Order it
        if (mask_vec.size() == 0)
            return;

        stable_sort(mask_vec.begin(), mask_vec.end(), SortMaskVec());

        // Clear our old map of content
        vec_offset_map.clear();

        // Split it into offset groups
        mask_vec_offsets ofst;
        ofst.last = mask_vec.size() - 1;
        ofst.first = mask_vec.size() - 1;
        mac_addr owner = mask_vec[ofst.last].mac;
        for (unsigned int x = 0; x < mask_vec.size(); x++) {
            // Masked compare... is it still a subset of us?
            if (owner != mask_vec[x].mac) {
                vec_offset_map[owner] = ofst;
                ofst.first = x;
                ofst.last = x;
                owner = mask_vec[x].mac;
            } else {
                ofst.last = x;
            }
        }
        // Clean up the last stuff
        vec_offset_map[owner] = ofst;
        vec_offset_map[owner] = ofst;
    }

protected:
    map<mac_addr, T> singleton_map;
    vector<mask_vec_content> mask_vec;
    map<mac_addr, mask_vec_offsets> vec_offset_map;
};


#endif