1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "kiss_fftnd.h"
#include "_kiss_fft_guts.h"
struct kiss_fftnd_state{
int dimprod; /* dimsum would be mighty tasty right now */
int ndims;
int *dims;
kiss_fft_cfg *states; /* cfg states for each dimension */
kiss_fft_cpx * tmpbuf; /*buffer capable of hold the entire input */
};
kiss_fftnd_cfg kiss_fftnd_alloc(const int *dims,int ndims,int inverse_fft,void*mem,size_t*lenmem)
{
KISS_FFT_ALIGN_CHECK(mem)
kiss_fftnd_cfg st = NULL;
int i;
int dimprod=1;
size_t memneeded = KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fftnd_state));
char * ptr = NULL;
for (i=0;i<ndims;++i) {
size_t sublen=0;
kiss_fft_alloc (dims[i], inverse_fft, NULL, &sublen);
memneeded += sublen; /* st->states[i] */
dimprod *= dims[i];
}
memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(int) * ndims);/* st->dims */
memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(void*) * ndims);/* st->states */
memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(kiss_fft_cpx) * dimprod); /* st->tmpbuf */
if (lenmem == NULL) {/* allocate for the caller*/
ptr = (char *) malloc (memneeded);
} else { /* initialize supplied buffer if big enough */
if (*lenmem >= memneeded)
ptr = (char *) mem;
*lenmem = memneeded; /*tell caller how big struct is (or would be) */
}
if (!ptr)
return NULL; /*malloc failed or buffer too small */
st = (kiss_fftnd_cfg) ptr;
st->dimprod = dimprod;
st->ndims = ndims;
ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fftnd_state));
st->states = (kiss_fft_cfg *)ptr;
ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(void*) * ndims);
st->dims = (int*)ptr;
ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(int) * ndims);
st->tmpbuf = (kiss_fft_cpx*)ptr;
ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(kiss_fft_cpx) * dimprod);
for (i=0;i<ndims;++i) {
size_t len;
st->dims[i] = dims[i];
kiss_fft_alloc (st->dims[i], inverse_fft, NULL, &len);
st->states[i] = kiss_fft_alloc (st->dims[i], inverse_fft, ptr,&len);
ptr += len;
}
/*
Hi there!
If you're looking at this particular code, it probably means you've got a brain-dead bounds checker
that thinks the above code overwrites the end of the array.
It doesn't.
-- Mark
P.S.
The below code might give you some warm fuzzies and help convince you.
*/
if ( ptr - (char*)st != (int)memneeded ) {
fprintf(stderr,
"################################################################################\n"
"Internal error! Memory allocation miscalculation\n"
"################################################################################\n"
);
}
return st;
}
/*
This works by tackling one dimension at a time.
In effect,
Each stage starts out by reshaping the matrix into a DixSi 2d matrix.
A Di-sized fft is taken of each column, transposing the matrix as it goes.
Here's a 3-d example:
Take a 2x3x4 matrix, laid out in memory as a contiguous buffer
[ [ [ a b c d ] [ e f g h ] [ i j k l ] ]
[ [ m n o p ] [ q r s t ] [ u v w x ] ] ]
Stage 0 ( D=2): treat the buffer as a 2x12 matrix
[ [a b ... k l]
[m n ... w x] ]
FFT each column with size 2.
Transpose the matrix at the same time using kiss_fft_stride.
[ [ a+m a-m ]
[ b+n b-n]
...
[ k+w k-w ]
[ l+x l-x ] ]
Note fft([x y]) == [x+y x-y]
Stage 1 ( D=3) treats the buffer (the output of stage D=2) as an 3x8 matrix,
[ [ a+m a-m b+n b-n c+o c-o d+p d-p ]
[ e+q e-q f+r f-r g+s g-s h+t h-t ]
[ i+u i-u j+v j-v k+w k-w l+x l-x ] ]
And perform FFTs (size=3) on each of the columns as above, transposing
the matrix as it goes. The output of stage 1 is
(Legend: ap = [ a+m e+q i+u ]
am = [ a-m e-q i-u ] )
[ [ sum(ap) fft(ap)[0] fft(ap)[1] ]
[ sum(am) fft(am)[0] fft(am)[1] ]
[ sum(bp) fft(bp)[0] fft(bp)[1] ]
[ sum(bm) fft(bm)[0] fft(bm)[1] ]
[ sum(cp) fft(cp)[0] fft(cp)[1] ]
[ sum(cm) fft(cm)[0] fft(cm)[1] ]
[ sum(dp) fft(dp)[0] fft(dp)[1] ]
[ sum(dm) fft(dm)[0] fft(dm)[1] ] ]
Stage 2 ( D=4) treats this buffer as a 4*6 matrix,
[ [ sum(ap) fft(ap)[0] fft(ap)[1] sum(am) fft(am)[0] fft(am)[1] ]
[ sum(bp) fft(bp)[0] fft(bp)[1] sum(bm) fft(bm)[0] fft(bm)[1] ]
[ sum(cp) fft(cp)[0] fft(cp)[1] sum(cm) fft(cm)[0] fft(cm)[1] ]
[ sum(dp) fft(dp)[0] fft(dp)[1] sum(dm) fft(dm)[0] fft(dm)[1] ] ]
Then FFTs each column, transposing as it goes.
The resulting matrix is the 3d FFT of the 2x3x4 input matrix.
Note as a sanity check that the first element of the final
stage's output (DC term) is
sum( [ sum(ap) sum(bp) sum(cp) sum(dp) ] )
, i.e. the summation of all 24 input elements.
*/
void kiss_fftnd(kiss_fftnd_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
int i,k;
const kiss_fft_cpx * bufin=fin;
kiss_fft_cpx * bufout;
/*arrange it so the last bufout == fout*/
if ( st->ndims & 1 ) {
bufout = fout;
if (fin==fout) {
memcpy( st->tmpbuf, fin, sizeof(kiss_fft_cpx) * st->dimprod );
bufin = st->tmpbuf;
}
}else
bufout = st->tmpbuf;
for ( k=0; k < st->ndims; ++k) {
int curdim = st->dims[k];
int stride = st->dimprod / curdim;
for ( i=0 ; i<stride ; ++i )
kiss_fft_stride( st->states[k], bufin+i , bufout+i*curdim, stride );
/*toggle back and forth between the two buffers*/
if (bufout == st->tmpbuf){
bufout = fout;
bufin = st->tmpbuf;
}else{
bufout = st->tmpbuf;
bufin = fout;
}
}
}
|