1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
/* ***************************************************************************
*
* KisSplice
* de-novo calling alternative splicing events from RNA-seq data.
*
* ***************************************************************************
*
* Copyright INRIA
* contributors : Vincent Lacroix
* Pierre Peterlongo
* Gustavo Sacomoto
* Vincent Miele
* Alice Julien-Laferriere
* David Parsons
*
* pierre.peterlongo@inria.fr
* vincent.lacroix@univ-lyon1.fr
*
* This software is a computer program whose purpose is to detect alternative
* splicing events from RNA-seq data.
*
* This software is governed by the CeCILL license under French law and
* abiding by the rules of distribution of free software. You can use,
* modify and/ or redistribute the software under the terms of the CeCILL
* license as circulated by CEA, CNRS and INRIA at the following URL
* "http://www.cecill.info".
* As a counterpart to the access to the source code and rights to copy,
* modify and redistribute granted by the license, users are provided only
* with a limited warranty and the software's author, the holder of the
* economic rights, and the successive licensors have only limited
* liability.
* In this respect, the user's attention is drawn to the risks associated
* with loading, using, modifying and/or developing or reproducing the
* software by the user in light of its specific status of free software,
* that may mean that it is complicated to manipulate, and that also
* therefore means that it is reserved for developers and experienced
* professionals having in-depth computer knowledge. Users are therefore
* encouraged to load and test the software's suitability as regards their
* requirements in conditions enabling the security of their systems and/or
* data to be ensured and, more generally, to use and operate it in the
* same conditions as regards security.
*
* The fact that you are presently reading this means that you have had
* knowledge of the CeCILL license and that you accept its terms.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <unistd.h>
#include <climits>
#include "LabelledCEdge.h"
#include "WeightedDigraph.h"
#include "CGraph.h"
#include "BubbleEnumeration.h"
#include "Utils.h"
#include <sys/resource.h>
#define MAX_DIST 10000000
#define MAX 1024
using namespace std;
int nbBubbles = 0;
//these 3 variables represent beta, a1 and a2. We have a1Global and a2Global so that it does not confuse with some locals a1 and a2
int beta = 0;
int a1Global = 0;
int a2Global = 0;
int MAX_BUBBLES;
int UL_MAX;
int LL_MAX;
int LL_MIN;
int MIN_DIST;
int BUBBLE_COUNT_OFFSET;
int MAX_BRANCHES;
int MAX_MEMORY;
int OUTPUT_SNPS;
bool OUTPUT_CONTEXT;
bool OUTPUT_PATH;
bool OUTPUT_BRANCH;
bool EXPERIMENTAL_ALG;
// OUTPUT FILE, One for SNPs, One for other type of Bubble
FILE *seq_output_file_type0;
FILE *seq_output_file_type1234;
FILE *path_output_file;
string comment = "";
vector<char*> seqs;
int k_value;
int nb_nodes;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/* Returns the sequence for node "i", stored in the seqs vector. There
is a catch, the vector does not store the sequence of the
complementary node. The function has to convert it. */
string getSeq(int i)
{
return (i < (int)seqs.size()) ? string(seqs[i]) : reverse_complement(string(seqs[i % (int)seqs.size()]));
}
/*!
* \brief Return the path sequence ( with or without context)
* \param path: nodes ids path
* \param all_nodes : output_context boolean
* \param output: if seq gotten for output, then there is one nt more on each side of the path
* to detect various switching nodes
*/
string path2seq(vector<int>& path, bool all_nodes, bool output)
{
string pseq = getSeq( path[0] );
for (int i = 1; i < (int)path.size(); i++)
{
pseq += getSeq(path[i]).substr(k_value-1);
}
if (!all_nodes)
{
int len_first;
int len_last ;
if ( output )
{
len_first = getSeq( path[0] ).size() - (k_value );
len_last = getSeq( path[(int)path.size()-1] ).size() - (k_value );
}
else
{
len_first = getSeq( path[0] ).size() - (k_value );
len_last = getSeq( path[(int)path.size()-1] ).size() - (k_value );
}
return pseq.substr(len_first, (int) pseq.size() - (len_first + len_last) );
}
return pseq;
}
void print_path(FILE* stream, vector<int>& path)
{
for (int i = 0; i < (int)path.size(); i++)
{
fprintf(stream, " %d", path[i]);
}
fprintf(stream, "\n");
}
void print_formated_path(FILE* stream, string& bcc, int cycle_num, string& type, string path_name, int len, string& bcount, string& seq)
{
fprintf(stream, ">%s|Cycle_%d|Type_%s|%s_length_%d%s\n", bcc.c_str(), cycle_num, type.c_str(), path_name.c_str(), len, bcount.c_str());
fprintf(stream, "%s\n", seq.c_str());
}
void output_bubble(FILE* stream, string& upper, int upper_b, string& lower, int lower_b, string type, int num, int contextFirst, int contextLast)
{
// passing in lower case context
if(contextFirst != 0 || contextLast != 0)
{
upper = toLowerContext( upper, contextFirst, contextLast);
lower = toLowerContext( lower, contextFirst, contextLast);
}
string upper_bcount = "", lower_bcount = "";
if (OUTPUT_BRANCH)
{
upper_bcount = "_branches_" + to_string(upper_b);
lower_bcount = "_branches_" + to_string(lower_b);
}
print_formated_path(stream, comment, num, type, "upper_path", (int)upper.size() - (contextFirst + contextLast), upper_bcount, upper);
print_formated_path(stream, comment, num, type, "lower_path", (int)lower.size() - (contextFirst + contextLast), lower_bcount, lower);
}
/*
* for output node-ids option
*/
void output_bubble(FILE* stream, vector<int>& upper, int upper_b, vector<int>& lower, int lower_b, string type, int num)
{
fprintf(stream, ">%s|Cycle_%d|Type_%s|upper_path_length_%d\n", comment.c_str(), num, type.c_str(), (int)upper.size());
print_path(stream, upper);
fprintf(stream, ">%s|Cycle_%d|Type_%s|lower_path_length_%d\n", comment.c_str(), num, type.c_str(), (int)lower.size());
print_path(stream, lower);
}
string classify_bubble(vector<int>& p1_nodes, vector<int>& p2_nodes) {
string upper_seq = path2seq(p1_nodes, false, false);
string lower_seq = path2seq(p2_nodes, false, false);
/* truncated -1 nt left and -1nt right, they only serve to distinguish Swithcing Nodes,
it has nothing to do with quantification
*/
upper_seq = upper_seq.substr(1, upper_seq.size() - 2);
lower_seq = lower_seq.substr(1, lower_seq.size() - 2);
if (upper_seq.size() < lower_seq.size())
swap(upper_seq, lower_seq);
string type;
int u_len = (int) upper_seq.size(), l_len = (int) lower_seq.size();
if (l_len <= (2 * k_value - 2)) // lower path of at most 2k-2: splicing, repeats, and indels
{
int d1, d2;
if ((u_len - l_len) > 0 && (((u_len - l_len) <= 2) || ((u_len - l_len) == 4) || ((u_len - l_len) == 5))) //indel
type = "3";
else if (
(d1 = edit_distance(upper_seq.c_str(), l_len, lower_seq.c_str(), l_len, sizeof (char), comp)) <= MIN_DIST ||
(d2 = edit_distance(upper_seq.c_str() + u_len - l_len, l_len, lower_seq.c_str(), l_len, sizeof (char), comp)) <= MIN_DIST) // tandem repeat
type = "2";
else //splicing
type = "1";
} else if (u_len == l_len && // SNP
//specific condition for Type_0a
((u_len == 2 * k_value - 1) ||
//specific condition for Type_0b, at most 10% differences in the variable region. Arbitrary TODO: check this
(hamming_distance(upper_seq.c_str()+(k_value-1), l_len-(2*k_value)+2,
lower_seq.c_str()+(k_value-1), l_len-(2*k_value)+2,
sizeof (char), comp) <= (0.1 * (l_len-(2*k_value)+2))))) {
if (u_len > 2 * k_value - 1) // multiple SNPs
type = "0b";
else
type = "0a";
} else if (l_len <= LL_MAX) // others with lower path of length bigger than 2k-2 and smaller or equal to LL_MAX
type = "4";
else //here we have bubbles such that the lower path is bigger than LL_MAX and is not a Type0b. This can only happen by default if we were searching for Type0bs and a bubble is not a Type0b
type = "undefined";
return type;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////
set<int> in_sub;
bool contains(set<int> &s, int elem)
{
return s.find(elem) != s.end();
}
/* Used by the heap, as the pair <priority, key>. */
typedef pair<int, int> ii;
/* Dijsktra's algorithm. Returns the distance (shortest path) from
source to every node. The results are in dist. */
void dijkstra(int max_dist, int source, map<int,int>& dist, WeightedDigraph& G)
{
priority_queue<ii,vector<ii>, greater<ii> > Q;
dist[source] = 0;
Q.push(ii(0, source));
while (!Q.empty())
{
ii top = Q.top();
Q.pop();
int v = top.second;
for (int i = 0; i < (int)G.adj_list[v].size(); i++)
if (!G.adj_list[v][i].removed)
{
int w = G.adj_list[v][i].node, cost = G.adj_list[v][i].cost;
if (!G.removed[w] && contains(in_sub, w))
{
if (dist.find(w) == dist.end())
dist[w] = MAX_DIST;
if (dist[w] > dist[v] + cost)
{
dist[w] = dist[v] + cost;
Q.push(ii(dist[w], w));
}
}
}
}
}
/* Checks if the distance from s to t is smaller than max_dist */
bool dist_st(int max_dist, int s, int t, WeightedDigraph& G)
{
map<int,int> dist;
dist[t] = MAX_DIST;
dijkstra(max_dist, s, dist, G);
return dist[t] <= max_dist + G.node_cost[t];
}
/* Check if there exist a pair compatible paths from s1, s2 respecting
a1, a2. Check the paper for a precise definition of pair of
compatible paths. */
bool testPairCompatible(int s1, int a1, int s2, int a2, WeightedDigraph& G)
{
map<int,int> dist1, dist2;
dijkstra(a1, s1, dist1, G);
dijkstra(a2, s2, dist2, G);
map<int,int>::iterator it;
for (it = dist1.begin(); it != dist1.end(); it++)
if (dist2.find(it->first) != dist2.end())
{
int i = it->first;
if (dist1[i] <= (a1 + G.node_cost[i]) && dist2[i] <= (a2 + G.node_cost[i]))
return true;
}
return false;
}
/* In-degree is equal to out-degree of the completary node, because
it's a de Bruijn graph.*/
int inDegree(int node, WeightedDigraph& G)
{
if (node < nb_nodes)
return G.outDegree(node + nb_nodes);
else
return G.outDegree(node - nb_nodes);
}
int nbBranchingNodes(vector<int>& p_nodes, WeightedDigraph& G)
{
int nb = 0;
// Disregard the initial and final nodes.
for (int i = 1; i < (int)p_nodes.size()-1; i++)
if (G.outDegree(p_nodes[i]) != 1 || inDegree(p_nodes[i],G) != 1)
nb++;
return nb;
}
void processBubbleFound(vector<int> &p1_nodes, vector<int> &p2_nodes, WeightedDigraph &G) {
string type = classify_bubble(p1_nodes, p2_nodes);
if (type != "undefined" && (type[0] != '0' || OUTPUT_SNPS)) {
string upper_seq = path2seq(p1_nodes, OUTPUT_CONTEXT, true);
string lower_seq = path2seq(p2_nodes, OUTPUT_CONTEXT, true);
int upper_b = nbBranchingNodes(p1_nodes, G), lower_b = nbBranchingNodes(p2_nodes, G);
bool swp = false;
if (upper_seq.size() < lower_seq.size()) {
swap(upper_seq, lower_seq);
swap(upper_b, lower_b);
swp = true;
}
FILE *selection = (type[0] == '0') ? seq_output_file_type0 : seq_output_file_type1234; // Writting in different files if type 0 or else
if (OUTPUT_CONTEXT) {
// getting the context: size of the first (or last ) node - (k-1) right
int contextLeft = getSeq(p1_nodes[0]).size() - (k_value);
int contextRight = getSeq(p1_nodes[(int) p1_nodes.size() - 1]).size() - (k_value);
output_bubble(selection, upper_seq, upper_b, lower_seq, lower_b, type, BUBBLE_COUNT_OFFSET + nbBubbles, contextLeft, contextRight);
} else {
output_bubble(selection, upper_seq, upper_b, lower_seq, lower_b, type, BUBBLE_COUNT_OFFSET + nbBubbles, 0, 0); // size of the context if null
}
if (OUTPUT_PATH) {
output_bubble(path_output_file, swp ? p2_nodes : p1_nodes, upper_b, swp ? p1_nodes : p2_nodes, lower_b, type, BUBBLE_COUNT_OFFSET + nbBubbles);
}
}
nbBubbles++;
if (nbBubbles > MAX_BUBBLES)
exit(15);
}
/*!
* \brief list all pair of compatible paths (see paper), classify the events found
* and output them
* \param s1
* \param a1
* \param p1
* \param p1_nodes
* \param s2
* \param a2
* \param p2
* \param p2_nodes
* \param G
*
*
* List all pair of compatible paths from s1,s2 respecting a1,a2. It's
a recursive algorithm based on the bipartition method. Check the
paper for a full description. */
void listPairCompatible(int s1, int a1, int p1, vector<int>& p1_nodes, int s2, int a2, int p2, vector<int>& p2_nodes, WeightedDigraph& G)
{
if (nbBranchingNodes(p1_nodes, G) > MAX_BRANCHES || nbBranchingNodes(p2_nodes, G) > MAX_BRANCHES)
return;
if (s1 == s2 && (p1_nodes.size() != 1 || p2_nodes.size() != 1))
{
if ( p1 >= (beta + G.node_cost[s1]) && p2 >= (beta + G.node_cost[s2]) )
{
processBubbleFound(p1_nodes, p2_nodes, G);
}
return;
}
if (G.adjListSz(s1) == 0 && G.adjListSz(s2) == 0)
return;
int u = (G.adjListSz(s1) != 0) ? s1 : s2;
G.removed[u] = true;
for (int i = 0; i < (int)G.adj_list[u].size(); i++)
{
int v = G.adj_list[u][i].node, cost = G.adj_list[u][i].cost;
if (!G.removed[v] && !G.adj_list[u][i].removed && contains(in_sub, v))
{
if (u == s1 && testPairCompatible(v, a1 - cost, s2, a2, G))
{
p1_nodes.push_back(v);
listPairCompatible(v, a1 - cost, p1 + cost, p1_nodes, s2, a2, p2, p2_nodes, G);
p1_nodes.pop_back();
}
else if (u == s2 && testPairCompatible(s1, a1, v, a2 - cost, G))
{
p2_nodes.push_back(v);
listPairCompatible(s1, a1, p1, p1_nodes, v, a2 - cost, p2 + cost, p2_nodes, G);
p2_nodes.pop_back();
}
}
}
G.removed[u] = false;
if ((u == s1 && p1 >= (beta + G.node_cost[s1])) || (u == s2 && p2 >= (beta + G.node_cost[s2])))
{
vector<WeightedEdge> adj_u;
adj_u.swap(G.adj_list[u]);
if ((u == s1 && dist_st(a2, s2, s1, G)) || (u == s2 && dist_st(a1, s1, s2, G)))
listPairCompatible(s1, a1, p1, p1_nodes, s2, a2, p2, p2_nodes, G);
G.adj_list[u].swap(adj_u);
}
}
void bfs(WeightedDigraph &G, int source, set<int> &in_sub)
{
queue<int> Q;
map<int, int> dist;
Q.push(source);
dist[source] = 0;
while (!Q.empty())
{
int u = Q.front();
Q.pop();
in_sub.insert(u);
int d = dist[u];
for (int i = 0; i < (int)G.adj_list[u].size(); i++)
{
int v = G.adj_list[u][i].node;
if (!contains(in_sub, v))
{
Q.push(v);
dist[v] = d + 1;
}
}
// We don't compress non-branching paths to an edge, but to a
// vertex, this means that each non-branching vertex maybe
// followed by a branching vertex. Implying that a path with
// MAX_BRANCHES contains at most 2*MAX_BRANCHES+1
// vertices. However, we don't count the first and last vertices
// (that are always branching), so the length is 2 *
// (MAX_BRANCHES+1).
if (d > 2*(MAX_BRANCHES+1))
return;
}
dist.clear();
}
/* List all bubbles satisfying the path constraints. It does so using
listPairCompatible function. */
void listAllBubbles(WeightedDigraph& G, int k_value, int UL_MAX, int LL_MAX, int LL_MIN)
{
//local a1 and a2
int a1 = LL_MAX - (k_value - 1),
a2 = UL_MAX - (k_value - 1);
beta = LL_MIN - (k_value - 1);
for (int v = 0; v < (int)G.adj_list.size(); v++)
{
in_sub.clear();
bfs(G, v, in_sub);
vector<int> p1_nodes, p2_nodes;
p1_nodes.push_back(v); p2_nodes.push_back(v);
//checks if the user wants to output type0b or not
if (OUTPUT_SNPS!=2) {
//no, call normally
listPairCompatible(v, a1, 0, p1_nodes, v, a2, 0, p2_nodes, G);
}else {
//yes. With this algorithm, maybe the only way to do this is to reexecute it passing a2 as LL_MIN and filtering the bubbles found s.t. lower path length > a1
listPairCompatible(v, a2, 0, p1_nodes, v, a2, 0, p2_nodes, G);
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
void printSummary( FILE* stream, int num_bubbles )
{
fprintf( stream, "============================================================================\n" );
fprintf( stream, "Summary of results\n" );
fprintf( stream, "============================================================================\n" );
fprintf( stream, "No of bubbles: %d\n", num_bubbles );
fprintf( stream, "============================================================================\n" );
}
void printUsageAndExit( char * name )
{
fprintf( stderr, "Usage: %s infofile contents_file_edges contents_file_nodes basename_edges basename_nodes number_to_read k_value output_prefix edit_distance_threshold comment numbering_offset [-u UL_MAX] [-L LL_MAX] [-l LL_MIN] [-M MAX_BUBBLES] [-s] [-p] [-c] [-b] [-e MAX_MEMORY]\n", name );
fprintf( stderr, "\t [-u UL_MAX] Maximal length of the upper path of each bubble. Default: 1000000\n" );
fprintf( stderr, "\t [-L LL_MAX] Maximal length of the lower path of each bubble. Default: 2k-1\n" );
fprintf( stderr, "\t [-l LL_MIN] Minimal length of the lower path of each bubble. Default: 2k-8\n" );
fprintf( stderr, "\t [-M MAX_BUBBLES] Stop the process after this number of bubbles. Default: 10000\n" );
fprintf( stderr, "\t [-b MAX_BRANCHES] Maximum number of branches for each bubble. Default: 5\n");
fprintf( stderr, "\t [-v] Outputs the number of branching nodes in each path\n");
fprintf( stderr, "\t [-e MAX_MEMORY] Use an experimental algorithm that find bubbles by listing paths. You must provide the maximum size of the process's virtual memory (address space) in megabytes.\n");
exit( EXIT_FAILURE );
}
//Path-enumeration algorithm to list bubbles - forward declaration
void listAllBubblesUsingPath(WeightedDigraph& G);
int main( int argc, char** argv )
{
if ( argc < 12 )
printUsageAndExit( argv[0] );
vector<int> label;
vector<LabelledCEdge> allEdges;
string output_prefix = argv[8];
k_value = atoi(argv[7]);
seq_output_file_type0 = fopen( string(output_prefix + "_type0.fa").c_str(), "w" );
seq_output_file_type1234 = fopen( string(output_prefix + "_type1234.fa").c_str(), "w" );
MIN_DIST = atoi(argv[9]);
comment = argv[10];
BUBBLE_COUNT_OFFSET = atoi(argv[11]);
LL_MAX = 2 * k_value - 1;
LL_MIN = 2 * k_value - 10;
UL_MAX = 1000000;
MAX_BUBBLES = 10000;
MAX_BRANCHES = 5;
OUTPUT_CONTEXT = false;
OUTPUT_SNPS = 0;
OUTPUT_PATH = false;
OUTPUT_BRANCH = false;
EXPERIMENTAL_ALG = false;
MAX_MEMORY = 0;
int required_sequence = atoi( argv[6] );
int temoin;
while ( (temoin = getopt ( argc-11, &argv[11], "u:L:l:M:b:e:s:cpv" )) != -1 )
{
switch ( temoin )
{
case 'u' :
{
UL_MAX = atoi( optarg );
break;
}
case 'L' :
{
LL_MAX = atoi( optarg );
break;
}
case 'l' :
{
LL_MIN = atoi( optarg );
break;
}
case 'M':
{
MAX_BUBBLES = atoi( optarg );
break;
}
case 'b':
{
MAX_BRANCHES = atoi( optarg );
break;
}
case 's':
{
OUTPUT_SNPS = atoi( optarg );
switch (OUTPUT_SNPS) {
case 0:
fprintf(stderr, "Will not output SNPs and sequencing errors\n" );
break;
case 1:
fprintf(stderr, "Will output Type0a-SNPs\n" );
break;
case 2:
fprintf(stderr, "Will output Type0a and Type0b SNPs\n" );
break;
}
break;
}
case 'c':
{
OUTPUT_CONTEXT = true;
fprintf(stderr, "Will output bubble contexts!\n");
break;
}
case 'p':
{
OUTPUT_PATH = true;
path_output_file = fopen( string(output_prefix + ".path").c_str(), "w" );
break;
}
case 'v':
{
OUTPUT_BRANCH = true;
break;
}
case 'e':
{
EXPERIMENTAL_ALG = true;
if (strcmp(optarg, "unlimited") == 0)
MAX_MEMORY = -1;
else
MAX_MEMORY = atoi( optarg );
break;
}
default:
{
printUsageAndExit( argv[0] );
}
}
}
fprintf(stdout, "\t Enumerating bubbles with at most %d branching nodes in each path!\n", MAX_BRANCHES);
if (EXPERIMENTAL_ALG) {
fprintf(stdout, "\t Using the experimental algorithm with maximum memory = ");
if (MAX_MEMORY==-1) printf("unlimited.\n"); else printf("%d MB.\n", MAX_MEMORY);
struct rlimit vmLimit;
vmLimit.rlim_cur = vmLimit.rlim_max = (MAX_MEMORY==-1 ? RLIM_INFINITY : MAX_MEMORY * 1024 * 1024);
setrlimit(RLIMIT_AS, &vmLimit);
}
EdgeLoader edgeloader(allEdges);
NodeLoader nodeloader(seqs, label);
bool atleast4nodes = read_edges_and_nodes_withoptimIO<EdgeLoader,NodeLoader>
(argv[1],argv[2],argv[3],argv[4],argv[5],&required_sequence, edgeloader, nodeloader);
if (atleast4nodes){
nb_nodes = (int)label.size();
map<int, int> label_to_node;
// Set the label mapping, necessary only to read the edges
for (int i = 0; i < nb_nodes; i++)
label_to_node[label[i]] = i;
// This is a edge-weighted directed graph. The forward and reverse
// node in the bidirected de Bruijn graph are split in two nodes.
WeightedDigraph G(2 * nb_nodes);
for (int i = 0; i < (int)allEdges.size(); i++)
{
int u = label_to_node[allEdges[i].getFirst()] + (allEdges[i].label[0] == 'F' ? 0 : nb_nodes);
int v = label_to_node[allEdges[i].getSecond()] + (allEdges[i].label[1] == 'F' ? 0 : nb_nodes);
int cost = strlen(seqs[ label_to_node[allEdges[i].getSecond()] ]) - (k_value - 1);
G.adj_list[u].push_back(WeightedEdge(v, cost));
}
// We add weights for the nodes only for convenience. All algorithms
// work under the assumption of a edge-weighted directed graph.
for (int i = 0; i < (int)G.adj_list.size(); i++)
G.node_cost[i] = strlen(seqs[i % nb_nodes]) - (k_value - 1);
a1Global = LL_MAX - (k_value - 1);
a2Global = UL_MAX - (k_value - 1);
beta = LL_MIN - (k_value - 1);
if (!EXPERIMENTAL_ALG) {
listAllBubbles(G, k_value, UL_MAX, LL_MAX, LL_MIN);
}
else {
listAllBubblesUsingPath(G);
}
}
printSummary(stdout, nbBubbles);
for (unsigned int i=0; i<seqs.size(); i++) delete[] seqs[i]; // cleaning
if (OUTPUT_PATH)
fclose(path_output_file);
fclose(seq_output_file_type0);
fclose(seq_output_file_type1234);
return 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////
//Warning:
//The following are functions related to a new experimental path-enumeration algorithm to list bubbles
//They may not be in a final state yet
//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////
//declare some global variable just for the sake of simplicity
vector<Path> allPaths; //will contain all paths from s to any t with bounded length == a2 with at most b branching vertices
vector<bool> explored; //will keep track of the nodes that were already explored on currentPath
Path currentPath;
//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////
//helper functions
//check if a node is branching or not
int isBranching (int node, WeightedDigraph& G)
{
return (G.outDegree(node) != 1 || inDegree(node, G) != 1) ? 1 : 0;
}
//check if both paths are vertex-disjoint
bool vertexDisjoint (const vector<int> &p1, const vector<int> &p2) {
for (int i=1;i<(int)p1.size()-1;i++) {
if (find(p2.begin(), p2.end(), p1[i]) != p2.end())
return false;
}
return true;
}
//get the number of branching nodes if a new vertex is added to this path
int getNbBranchingNodesIfAddAVertex(const Path &path, WeightedDigraph& G) {
if (path.nodes.size() <= 1)
return 0;
return path.branchingNodes + isBranching(path.nodes.back(), G);
}
//////////////////////////////////////////////////////////////////////////////////////////////
//Recursive function that finds all simple paths from a source s such that the path respects MAX_BRANCHES, beta and a2
void DFSEnum(WeightedDigraph& G, int s) {
//add s to the path
explored[s]=true; //s is in the current Path
//add this path to allPaths
if (currentPath.distance >= beta)
allPaths.push_back(currentPath);
for (int e = 0; e < (int)G.adj_list[s].size(); e++) { //iterates over all edges of s
int v = G.adj_list[s][e].node;
//check if v should be explored
int cost = G.node_cost[s];
int newNbBranchingNodes = getNbBranchingNodesIfAddAVertex(currentPath, G);
int newCost = (currentPath.nodes.size() > 1 ? currentPath.distance + cost : 0);
if (!explored[v] && //if v is not already in the path
newNbBranchingNodes <= MAX_BRANCHES && newCost <= a2Global) {
//yes, v should be explored
//Configure the currentPath accordingly
int oldDistance = currentPath.distance;
currentPath.distance = newCost;
int oldBranchingNodes = currentPath.branchingNodes;
currentPath.branchingNodes = newNbBranchingNodes;
currentPath.nodes.push_back(v);
//call DFS
DFSEnum(G, v);
//DesConfigure the currentPath accordingly
currentPath.distance = oldDistance;
currentPath.branchingNodes = oldBranchingNodes;
currentPath.nodes.pop_back();
}
}
//already explored all paths with this prefix
explored[s]=false; //s is not in the currentPath
}
//list all bubbles by listing all simple paths
void findAllBubblesUsingSimpleQueueDFS(WeightedDigraph& G, int source) {
//initialize the global variables
allPaths.clear();
fill(explored.begin(), explored.end(), false);
currentPath.branchingNodes=0;
currentPath.distance=0;
currentPath.nodes.clear();
//find all paths
currentPath.nodes.push_back(source);
DFSEnum(G, source);
//now list all bubbles
map<int, vector<Path*> > targetToDistPath;
for (vector<Path>::iterator it = allPaths.begin(); it != allPaths.end(); ++it)
targetToDistPath[it->nodes.back()].push_back(&(*it));
for (map<int, vector<Path*> >::iterator targetToDistPathIt = targetToDistPath.begin();
targetToDistPathIt != targetToDistPath.end();
++targetToDistPathIt) {
vector<Path*> allSTPaths = targetToDistPathIt->second;
for (vector<Path*>::iterator i = allSTPaths.begin(); i != allSTPaths.end(); ++i) {
vector<Path*>::iterator j = i;
for (++j; j != allSTPaths.end(); ++j) {
Path* lowerPath;
Path* upperPath;
if ( (*i)->distance < (*j)->distance) {
lowerPath = *i;
upperPath = *j;
} else {
lowerPath = *j;
upperPath = *i;
}
if ( (lowerPath->distance <= a1Global || (OUTPUT_SNPS==2 && lowerPath->distance==upperPath->distance) ) && //if we respect LL_MAX (this is for type 0a, 1, 2 and 3) OR we should output all Type0b and both paths have the same length (this is only for type0b)
(upperPath->nodes.size() >= 3 || lowerPath->nodes.size() >= 3) &&
vertexDisjoint(lowerPath->nodes, upperPath->nodes)) {
processBubbleFound(upperPath->nodes, lowerPath->nodes, G);
}
}
}
}
}
void listAllBubblesUsingPath(WeightedDigraph& G) {
explored = vector<bool>(G.adj_list.size(), false);
//list all bubbles starting with each node v
for (int v = 0; v < (int) G.adj_list.size(); v++) {
if (G.outDegree(v) >= 2) //pruning
findAllBubblesUsingSimpleQueueDFS(G, v);
}
}
|