1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/* ***************************************************************************
*
* KisSplice
* de-novo calling alternative splicing events from RNA-seq data.
*
* ***************************************************************************
*
* Copyright INRIA
* contributors : Vincent Lacroix
* Pierre Peterlongo
* Gustavo Sacomoto
* Vincent Miele
* Alice Julien-Laferriere
* David Parsons
*
* pierre.peterlongo@inria.fr
* vincent.lacroix@univ-lyon1.fr
*
* This software is a computer program whose purpose is to detect alternative
* splicing events from RNA-seq data.
*
* This software is governed by the CeCILL license under French law and
* abiding by the rules of distribution of free software. You can use,
* modify and/ or redistribute the software under the terms of the CeCILL
* license as circulated by CEA, CNRS and INRIA at the following URL
* "http://www.cecill.info".
* As a counterpart to the access to the source code and rights to copy,
* modify and redistribute granted by the license, users are provided only
* with a limited warranty and the software's author, the holder of the
* economic rights, and the successive licensors have only limited
* liability.
* In this respect, the user's attention is drawn to the risks associated
* with loading, using, modifying and/or developing or reproducing the
* software by the user in light of its specific status of free software,
* that may mean that it is complicated to manipulate, and that also
* therefore means that it is reserved for developers and experienced
* professionals having in-depth computer knowledge. Users are therefore
* encouraged to load and test the software's suitability as regards their
* requirements in conditions enabling the security of their systems and/or
* data to be ensured and, more generally, to use and operate it in the
* same conditions as regards security.
*
* The fact that you are presently reading this means that you have had
* knowledge of the CeCILL license and that you accept its terms.
*/
// ===========================================================================
// Include Libraries
// ===========================================================================
#include <stdio.h>
#include <list>
#include <vector>
#include <stack>
// ===========================================================================
// Include Project Files
// ===========================================================================
#include "CGraph.h"
#include "CEdge.h"
#include "SplitBcc.h"
// ===========================================================================
// Declare Used Namespaces
// ===========================================================================
using namespace std;
//================================ Methods for finding all the BCCs of the graph
/*!
\brief Extract the new bcc founded.
\param g the graph we are working on
\param edge: the edge where to stop the bcc extraction
\param backtrace_lifo: the stack of the already visited edges(last-in first-out)
\param g_bcc: a vector of the current bccs founded in the object
At the end of output_component, g_bcc will have a new bcc.
edge is the reference edge, as it was encounter twice, it defines the bcc.
output_component will extract all the edges of the stack backtrace_lifo:
from the top to the edge edge.
*/
void output_component( CGraph &g, CEdge edge, stack<CEdge>& backtrace_lifo,
vector< vector<CEdge> >& g_bcc )
{
// Components with only 2 nodes cannot contain a bubble,
// nothing to do for those
if ( edge == backtrace_lifo.top() || edge.swap_ends() == backtrace_lifo.top() )
{
backtrace_lifo.pop();
return;
}
vector<CEdge> new_bcc;
CEdge top;
// extract the whole bcc: all the edges from top to edge
do
{
top = backtrace_lifo.top();
int u = top.getFirst();
int v = top.getSecond();
new_bcc.push_back( CEdge( u ,v ) );
backtrace_lifo.pop();
}
while ( edge != top && edge.swap_ends() != top );
g_bcc.push_back( new_bcc );
}
/*!
\brief Depth first search algorithm (dfs) on the cgraph object from a node: node_id
\param g The graph (compressed) we are working on
\param node_id The index of the node we are visiting
\param backtrace_lifo: the already visited edges
\param g_bcc: a vector of the current bcc founded in the object
\param visited: a vector of boolean, defines if a node was already visited in the
depth_first search algorithm (default FALSE)
\param parent: a vector, the node from where the dfs algorithm arrived to the
current node, default -1.
\param dfs_tree_node_id: the order in which the nodes are reached during the
dfs (depth of the node)
\param low_point: a vector, the low point value for each node
\param node_id_counter: the number of nodes visited during the dfs algorithm.
The depth-first search algorithm visits all nodes accessible from
node_id (i.e: all its successors) recursively.
The nodes are numbered in the order they are reached during the search
with dfs_tree_node_id (depth).
The low_point value is the lowest depth of the neighbors of all descendants of the node
in the depth-first-search tree.
*/
void dfs_visit(CGraph &g, int node_id, stack<CEdge>& backtrace_lifo, vector<vector<CEdge> >& g_bcc, bool* &visited, int* &parent, int* &dfs_tree_node_id, int* &low_point, int node_id_counter)
{
// update the visited state of the node, its depth and low-point
visited[node_id] = true;
low_point[node_id] = dfs_tree_node_id[node_id] = ++node_id_counter;
int *p = g.get_adj_list(node_id);
for ( int i = 0; i < g.get_adj_list_sz(node_id) ; i++, p++ )
{
int v = *p;
if ( !visited[v] )
{
backtrace_lifo.push( CEdge( node_id, v ) );
parent[v] = node_id;
dfs_visit( g, v, backtrace_lifo, g_bcc, visited, parent, dfs_tree_node_id, low_point, node_id_counter);
if (low_point[v] >= dfs_tree_node_id[node_id])
{
//if ... then node_id is an articulation point.
// the bcc founded is extract with output_component
output_component(g, CEdge( node_id, v ), backtrace_lifo, g_bcc );
}
low_point[node_id] = min(low_point[node_id],low_point[v]);
}
else if ( parent[node_id] != v && dfs_tree_node_id[v] < dfs_tree_node_id[node_id])
// TODO: Can the second condition not be satisfied ?
{
// update low_point if v was already visited
backtrace_lifo.push( CEdge( node_id, v ) );
low_point[node_id] = min(low_point[node_id],dfs_tree_node_id[v]);
}
// else do nothing (we would be following the previous edge backwards)
}
}
/*!
\brief Extracts the bi-connected components of the CGraph object.
Calls the dfs method on all the unvisited nodes of the CGraph object.
\param g the graph we are working on
*/
vector<vector<CEdge> > find_bcc(CGraph &g)
{
int nb_nodes = g.get_n_nodes();
// Used by the recursive algorithm: dfs_visit
stack<CEdge> backtrace_lifo;
vector<vector<CEdge> > g_bcc;
bool *visited = new bool[nb_nodes];
int *parent = new int[nb_nodes];
int *dfs_tree_node_id = new int[nb_nodes];
int *low_point = new int[nb_nodes];
int node_id_counter = 0;
for ( int i = 0 ; i < nb_nodes ; i++ )
{
visited[i] = false;
parent[i] = -1;
}
for ( int i = 0; i < nb_nodes ; i++ )
{
if (!visited[i])
{
dfs_visit(g, i, backtrace_lifo, g_bcc, visited, parent, dfs_tree_node_id, low_point, node_id_counter);
}
}
delete[] visited;
delete[] parent;
delete[] dfs_tree_node_id;
delete[] low_point;
return g_bcc;
}
|