1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#pragma once
/*
* ringbuf.h - C ring buffer (FIFO) interface.
*
* Written in 2011 by Drew Hess <dhess-src@bothan.net>.
*
* To the extent possible under law, the author(s) have dedicated all
* copyright and related and neighboring rights to this software to
* the public domain worldwide. This software is distributed without
* any warranty.
*
* You should have received a copy of the CC0 Public Domain Dedication
* along with this software. If not, see
* <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
/*
* A byte-addressable ring buffer FIFO implementation.
*
* The ring buffer's head pointer points to the starting location
* where data should be written when copying data *into* the buffer
* (e.g., with ringbuf_read). The ring buffer's tail pointer points to
* the starting location where data should be read when copying data
* *from* the buffer (e.g., with ringbuf_write).
*/
#include <stddef.h>
#include <sys/types.h>
typedef struct ringbuf_t *ringbuf_t;
/*
* Create a new ring buffer with the given capacity (usable
* bytes). Note that the actual internal buffer size may be one or
* more bytes larger than the usable capacity, for bookkeeping.
*
* Returns the new ring buffer object, or 0 if there's not enough
* memory to fulfill the request for the given capacity.
*/
ringbuf_t
ringbuf_new(size_t capacity);
/*
* The size of the internal buffer, in bytes. One or more bytes may be
* unusable in order to distinguish the "buffer full" state from the
* "buffer empty" state.
*
* For the usable capacity of the ring buffer, use the
* ringbuf_capacity function.
*/
size_t
ringbuf_buffer_size(const struct ringbuf_t *rb);
/*
* Deallocate a ring buffer, and, as a side effect, set the pointer to
* 0.
*/
void
ringbuf_free(ringbuf_t *rb);
/*
* Reset a ring buffer to its initial state (empty).
*/
void
ringbuf_reset(ringbuf_t rb);
/*
* The usable capacity of the ring buffer, in bytes. Note that this
* value may be less than the ring buffer's internal buffer size, as
* returned by ringbuf_buffer_size.
*/
size_t
ringbuf_capacity(const struct ringbuf_t *rb);
/*
* The number of free/available bytes in the ring buffer. This value
* is never larger than the ring buffer's usable capacity.
*/
size_t
ringbuf_bytes_free(const struct ringbuf_t *rb);
/*
* The number of bytes currently being used in the ring buffer. This
* value is never larger than the ring buffer's usable capacity.
*/
size_t
ringbuf_bytes_used(const struct ringbuf_t *rb);
int
ringbuf_is_full(const struct ringbuf_t *rb);
int
ringbuf_is_empty(const struct ringbuf_t *rb);
/*
* Const access to the head and tail pointers of the ring buffer.
*/
const void *
ringbuf_tail(const struct ringbuf_t *rb);
const void *
ringbuf_head(const struct ringbuf_t *rb);
/*
* Locate the first occurrence of character c (converted to an
* unsigned char) in ring buffer rb, beginning the search at offset
* bytes from the ring buffer's tail pointer. The function returns the
* offset of the character from the ring buffer's tail pointer, if
* found. If c does not occur in the ring buffer, the function returns
* the number of bytes used in the ring buffer.
*
* Note that the offset parameter and the returned offset are logical
* offsets from the tail pointer, not necessarily linear offsets.
*/
size_t
ringbuf_findchr(const struct ringbuf_t *rb, int c, size_t offset);
/*
* Beginning at ring buffer dst's head pointer, fill the ring buffer
* with a repeating sequence of len bytes, each of value c (converted
* to an unsigned char). len can be as large as you like, but the
* function will never write more than ringbuf_buffer_size(dst) bytes
* in a single invocation, since that size will cause all bytes in the
* ring buffer to be written exactly once each.
*
* Note that if len is greater than the number of free bytes in dst,
* the ring buffer will overflow. When an overflow occurs, the state
* of the ring buffer is guaranteed to be consistent, including the
* head and tail pointers; old data will simply be overwritten in FIFO
* fashion, as needed. However, note that, if calling the function
* results in an overflow, the value of the ring buffer's tail pointer
* may be different than it was before the function was called.
*
* Returns the actual number of bytes written to dst: len, if
* len < ringbuf_buffer_size(dst), else ringbuf_buffer_size(dst).
*/
size_t
ringbuf_memset(ringbuf_t dst, int c, size_t len);
/*
* Copy n bytes from a contiguous memory area src into the ring buffer
* dst. Returns the ring buffer's new head pointer.
*
* It is possible to copy more data from src than is available in the
* buffer; i.e., it's possible to overflow the ring buffer using this
* function. When an overflow occurs, the state of the ring buffer is
* guaranteed to be consistent, including the head and tail pointers;
* old data will simply be overwritten in FIFO fashion, as
* needed. However, note that, if calling the function results in an
* overflow, the value of the ring buffer's tail pointer may be
* different than it was before the function was called.
*/
void *
ringbuf_memcpy_into(ringbuf_t dst, const void *src, size_t count);
/*
* This convenience function calls read(2) on the file descriptor fd,
* using the ring buffer rb as the destination buffer for the read,
* and returns the value returned by read(2). It will only call
* read(2) once, and may return a short count.
*
* It is possible to read more data from the file descriptor than is
* available in the buffer; i.e., it's possible to overflow the ring
* buffer using this function. When an overflow occurs, the state of
* the ring buffer is guaranteed to be consistent, including the head
* and tail pointers: old data will simply be overwritten in FIFO
* fashion, as needed. However, note that, if calling the function
* results in an overflow, the value of the ring buffer's tail pointer
* may be different than it was before the function was called.
*/
ssize_t
ringbuf_read(int fd, ringbuf_t rb, size_t count);
/*
* Copy n bytes from the ring buffer src, starting from its tail
* pointer, into a contiguous memory area dst. Returns the value of
* src's tail pointer after the copy is finished.
*
* Note that this copy is destructive with respect to the ring buffer:
* the n bytes copied from the ring buffer are no longer available in
* the ring buffer after the copy is complete, and the ring buffer
* will have n more free bytes than it did before the function was
* called.
*
* This function will *not* allow the ring buffer to underflow. If
* count is greater than the number of bytes used in the ring buffer,
* no bytes are copied, and the function will return 0.
*/
void *
ringbuf_memmove_from(void *dst, ringbuf_t src, size_t count);
/* ringbuf_memmove_from() optimized for a single character.
* Must only be called if the ringbuf is not empty */
unsigned char
ringbuf_move_char(ringbuf_t src);
/*
* Same as ringbuf_memmove_from() except that it does not change the ringbuffer
* and returns the actual number of bytes copied, which is the minimum of ringbuf_bytes_used
* and count.
*/
size_t
ringbuf_memcpy_from(void *dst, const ringbuf_t src, size_t count);
/*
* This convenience function calls write(2) on the file descriptor fd,
* using the ring buffer rb as the source buffer for writing (starting
* at the ring buffer's tail pointer), and returns the value returned
* by write(2). It will only call write(2) once, and may return a
* short count.
*
* Note that this copy is destructive with respect to the ring buffer:
* any bytes written from the ring buffer to the file descriptor are
* no longer available in the ring buffer after the copy is complete,
* and the ring buffer will have N more free bytes than it did before
* the function was called, where N is the value returned by the
* function (unless N is < 0, in which case an error occurred and no
* bytes were written).
*
* This function will *not* allow the ring buffer to underflow. If
* count is greater than the number of bytes used in the ring buffer,
* no bytes are written to the file descriptor, and the function will
* return 0.
*/
ssize_t
ringbuf_write(int fd, ringbuf_t rb, size_t count);
/*
* Copy count bytes from ring buffer src, starting from its tail
* pointer, into ring buffer dst. Returns dst's new head pointer after
* the copy is finished.
*
* Note that this copy is destructive with respect to the ring buffer
* src: any bytes copied from src into dst are no longer available in
* src after the copy is complete, and src will have 'count' more free
* bytes than it did before the function was called.
*
* It is possible to copy more data from src than is available in dst;
* i.e., it's possible to overflow dst using this function. When an
* overflow occurs, the state of dst is guaranteed to be consistent,
* including the head and tail pointers; old data will simply be
* overwritten in FIFO fashion, as needed. However, note that, if
* calling the function results in an overflow, the value dst's tail
* pointer may be different than it was before the function was
* called.
*
* It is *not* possible to underflow src; if count is greater than the
* number of bytes used in src, no bytes are copied, and the function
* returns 0.
*/
void *
ringbuf_copy(ringbuf_t dst, ringbuf_t src, size_t count);
|