File: verstable.h

package info (click to toggle)
kitty 0.42.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 28,564 kB
  • sloc: ansic: 82,787; python: 55,191; objc: 5,122; sh: 1,295; xml: 364; makefile: 143; javascript: 78
file content (1946 lines) | stat: -rw-r--r-- 80,930 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
/*------------------------------------------------- VERSTABLE v2.1.1 ---------------------------------------------------

Verstable is a C99-compatible, open-addressing hash table using quadratic probing and the following additions:

* All keys that hash (i.e. "belong") to the same bucket (their "home bucket") are linked together by an 11-bit integer
  specifying the quadratic displacement, relative to that bucket, of the next key in the chain.

* If a chain of keys exists for a given bucket, then it always begins at that bucket. To maintain this policy, a 1-bit
  flag is used to mark whether the key occupying a bucket belongs there. When inserting a new key, if the bucket it
  belongs to is occupied by a key that does not belong there, then the occupying key is evicted and the new key takes
  the bucket.

* A 4-bit fragment of each key's hash code is also stored.

* The aforementioned metadata associated with each bucket (the 4-bit hash fragment, the 1-bit flag, and the 11-bit link
  to the next key in the chain) are stored together in a uint16_t array rather than in the bucket alongside the key and
  (optionally) the value.

One way to conceptualize this scheme is as a chained hash table in which overflowing keys are stored not in separate
memory allocations but in otherwise unused buckets. In this regard, it shares similarities with Malte Skarupke's Bytell
hash table (https://www.youtube.com/watch?v=M2fKMP47slQ) and traditional "coalesced hashing".

Advantages of this scheme include:

* Fast lookups impervious to load factor: If the table contains any key belonging to the lookup key's home bucket, then
  that bucket contains the first in a traversable chain of all keys belonging to it. Hence, only the home bucket and
  other buckets containing keys belonging to it are ever probed. Moreover, the stored hash fragments allow skipping most
  non-matching keys in the chain without accessing the actual buckets array or calling the (potentially expensive) key
  comparison function.

* Fast insertions: Insertions are faster than they are in other schemes that move keys around (e.g. Robin Hood) because
  they only move, at most, one existing key.

* Fast, tombstone-free deletions: Deletions, which usually require tombstones in quadratic-probing hash tables, are
  tombstone-free and only move, at most, one existing key.

* Fast iteration: The separate metadata array allows keys in sparsely populated tables to be found without incurring the
  frequent cache misses that would result from traversing the buckets array.

Usage example:

  +---------------------------------------------------------+----------------------------------------------------------+
  | Using the generic macro API (C11 and later):            | Using the prefixed functions API (C99 and later):        |
  |---------------------------------------------------------+----------------------------------------------------------+
  | #include <stdio.h>                                      | #include <stdio.h>                                       |
  |                                                         |                                                          |
  | // Instantiating a set template.                        | // Instantiating a set template.                         |
  | #define NAME int_set                                    | #define NAME int_set                                     |
  | #define KEY_TY int                                      | #define KEY_TY int                                       |
  | #include "verstable.h"                                  | #define HASH_FN vt_hash_integer                          |
  |                                                         | #define CMPR_FN vt_cmpr_integer                          |
  | // Instantiating a map template.                        | #include "verstable.h"                                   |
  | #define NAME int_int_map                                |                                                          |
  | #define KEY_TY int                                      | // Instantiating a map template.                         |
  | #define VAL_TY int                                      | #define NAME int_int_map                                 |
  | #include "verstable.h"                                  | #define KEY_TY int                                       |
  |                                                         | #define VAL_TY int                                       |
  | int main( void )                                        | #define HASH_FN vt_hash_integer                          |
  | {                                                       | #define CMPR_FN vt_cmpr_integer                          |
  |   // Set.                                               | #include "verstable.h"                                   |
  |                                                         |                                                          |
  |   int_set our_set;                                      | int main( void )                                         |
  |   vt_init( &our_set );                                  | {                                                        |
  |                                                         |   // Set.                                                |
  |   // Inserting keys.                                    |                                                          |
  |   for( int i = 0; i < 10; ++i )                         |   int_set our_set;                                       |
  |   {                                                     |   int_set_init( &our_set );                              |
  |     int_set_itr itr = vt_insert( &our_set, i );         |                                                          |
  |     if( vt_is_end( itr ) )                              |   // Inserting keys.                                     |
  |     {                                                   |   for( int i = 0; i < 10; ++i )                          |
  |       // Out of memory, so abort.                       |   {                                                      |
  |       vt_cleanup( &our_set );                           |     int_set_itr itr =                                    |
  |       return 1;                                         |       int_set_insert( &our_set, i );                     |
  |     }                                                   |     if( int_set_is_end( itr ) )                          |
  |   }                                                     |     {                                                    |
  |                                                         |       // Out of memory, so abort.                        |
  |   // Erasing keys.                                      |       int_set_cleanup( &our_set );                       |
  |   for( int i = 0; i < 10; i += 3 )                      |       return 1;                                          |
  |     vt_erase( &our_set, i );                            |     }                                                    |
  |                                                         |   }                                                      |
  |   // Retrieving keys.                                   |                                                          |
  |   for( int i = 0; i < 10; ++i )                         |   // Erasing keys.                                       |
  |   {                                                     |   for( int i = 0; i < 10; i += 3 )                       |
  |     int_set_itr itr = vt_get( &our_set, i );            |     int_set_erase( &our_set, i );                        |
  |     if( !vt_is_end( itr ) )                             |                                                          |
  |       printf( "%d ", itr.data->key );                   |   // Retrieving keys.                                    |
  |   }                                                     |   for( int i = 0; i < 10; ++i )                          |
  |   // Printed: 1 2 4 5 7 8                               |   {                                                      |
  |                                                         |     int_set_itr itr = int_set_get( &our_set, i );        |
  |   // Iteration.                                         |     if( !int_set_is_end( itr ) )                         |
  |   for(                                                  |       printf( "%d ", itr.data->key );                    |
  |     int_set_itr itr = vt_first( &our_set );             |   }                                                      |
  |     !vt_is_end( itr );                                  |   // Printed: 1 2 4 5 7 8                                |
  |     itr = vt_next( itr )                                |                                                          |
  |   )                                                     |   // Iteration.                                          |
  |     printf( "%d ", itr.data->key );                     |   for(                                                   |
  |   // Printed: 2 4 7 1 5 8                               |     int_set_itr itr =                                    |
  |                                                         |       int_set_first( &our_set );                         |
  |   vt_cleanup( &our_set );                               |     !int_set_is_end( itr );                              |
  |                                                         |     itr = int_set_next( itr )                            |
  |   // Map.                                               |   )                                                      |
  |                                                         |     printf( "%d ", itr.data->key );                      |
  |   int_int_map our_map;                                  |   // Printed: 2 4 7 1 5 8                                |
  |   vt_init( &our_map );                                  |                                                          |
  |                                                         |   int_set_cleanup( &our_set );                           |
  |   // Inserting keys and values.                         |                                                          |
  |   for( int i = 0; i < 10; ++i )                         |   // Map.                                                |
  |   {                                                     |                                                          |
  |     int_int_map_itr itr =                               |   int_int_map our_map;                                   |
  |       vt_insert( &our_map, i, i + 1 );                  |   int_int_map_init( &our_map );                          |
  |     if( vt_is_end( itr ) )                              |                                                          |
  |     {                                                   |   // Inserting keys and values.                          |
  |       // Out of memory, so abort.                       |   for( int i = 0; i < 10; ++i )                          |
  |       vt_cleanup( &our_map );                           |   {                                                      |
  |       return 1;                                         |     int_int_map_itr itr =                                |
  |     }                                                   |       int_int_map_insert( &our_map, i, i + 1 );          |
  |   }                                                     |     if( int_int_map_is_end( itr ) )                      |
  |                                                         |     {                                                    |
  |   // Erasing keys and values.                           |       // Out of memory, so abort.                        |
  |   for( int i = 0; i < 10; i += 3 )                      |       int_int_map_cleanup( &our_map );                   |
  |     vt_erase( &our_map, i );                            |       return 1;                                          |
  |                                                         |     }                                                    |
  |   // Retrieving keys and values.                        |   }                                                      |
  |   for( int i = 0; i < 10; ++i )                         |                                                          |
  |   {                                                     |   // Erasing keys and values.                            |
  |     int_int_map_itr itr = vt_get( &our_map, i );        |   for( int i = 0; i < 10; i += 3 )                       |
  |     if( !vt_is_end( itr ) )                             |     int_int_map_erase( &our_map, i );                    |
  |       printf(                                           |                                                          |
  |         "%d:%d ",                                       |   // Retrieving keys and values.                         |
  |         itr.data->key,                                  |   for( int i = 0; i < 10; ++i )                          |
  |         itr.data->val                                   |   {                                                      |
  |       );                                                |     int_int_map_itr itr =                                |
  |   }                                                     |       int_int_map_get( &our_map, i );                    |
  |   // Printed: 1:2 2:3 4:5 5:6 7:8 8:9                   |     if( !int_int_map_is_end( itr ) )                     |
  |                                                         |       printf(                                            |
  |   // Iteration.                                         |         "%d:%d ",                                        |
  |   for(                                                  |         itr.data->key,                                   |
  |     int_int_map_itr itr = vt_first( &our_map );         |         itr.data->val                                    |
  |     !vt_is_end( itr );                                  |     );                                                   |
  |     itr = vt_next( itr )                                |   }                                                      |
  |   )                                                     |   // Printed: 1:2 2:3 4:5 5:6 7:8 8:9                    |
  |     printf(                                             |                                                          |
  |       "%d:%d ",                                         |   // Iteration.                                          |
  |       itr.data->key,                                    |   for(                                                   |
  |       itr.data->val                                     |     int_int_map_itr itr =                                |
  |     );                                                  |       int_int_map_first( &our_map );                     |
  |   // Printed: 2:3 4:5 7:8 1:2 5:6 8:9                   |     !int_int_map_is_end( itr );                          |
  |                                                         |     itr = int_int_map_next( itr )                        |
  |   vt_cleanup( &our_map );                               |   )                                                      |
  | }                                                       |     printf(                                              |
  |                                                         |       "%d:%d ",                                          |
  |                                                         |       itr.data->key,                                     |
  |                                                         |       itr.data->val                                      |
  |                                                         |     );                                                   |
  |                                                         |   // Printed: 2:3 4:5 7:8 1:2 5:6 8:9                    |
  |                                                         |                                                          |
  |                                                         |   int_int_map_cleanup( &our_map );                       |
  |                                                         | }                                                        |
  |                                                         |                                                          |
  +---------------------------------------------------------+----------------------------------------------------------+

API:

  Instantiating a hash table template:

    Create a new hash table type in the following manner:

      #define NAME   <your chosen type name>
      #define KEY_TY <type>
      #include "verstable.h"

    The NAME macro specifies the name of hash table type that the library will declare, the prefix for the functions
    associated with it, and the prefix for the associated iterator type.

    The KEY_TY macro specifies the key type.

    In C99, it is also always necessary to define HASH_FN and CMPR_FN (see below) before including the header.

    The following macros may also be defined before including the header:

      #define VAL_TY <type>

        The type of the value associated with each key.
        If this macro is defined, the hash table acts as a map associating keys with values.
        Otherwise, it acts as a set containing only keys.

      #define HASH_FN <function name>

        The name of the existing function used to hash each key.
        The function should have the signature uint64_t ( KEY_TY key ) and return a 64-bit hash code.
        For best performance, the hash function should provide a high level of entropy across all bits.
        There are two default hash functions: vt_hash_integer for all integer types up to 64 bits in size, and
        vt_hash_string for NULL-terminated strings (i.e. char *).
        When KEY_TY is one of such types and the compiler is in C11 mode or later, HASH_FN may be left undefined, in
        which case the appropriate default function is inferred from KEY_TY.
        Otherwise, HASH_FN must be defined.

      #define CMPR_FN <function name>

        The name of the existing function used to compare two keys.
        The function should have the signature bool ( KEY_TY key_1, KEY_TY key_2 ) and return true if the two keys are
        equal.
        There are two default comparison functions: vt_cmpr_integer for all integer types up to 64 bits in size, and
        vt_cmpr_string for NULL-terminated strings (i.e. char *).
        As with the default hash functions, in C11 or later the appropriate default comparison function is inferred if
        KEY_TY is one of such types and CMPR_FN is left undefined.
        Otherwise, CMPR_FN must be defined.

      #define MAX_LOAD <floating point value>

        The floating-point load factor at which the hash table automatically doubles the size of its internal buckets
        array.
        The default is 0.9, i.e. 90%.

      #define KEY_DTOR_FN <function name>

        The name of the existing destructor function, with the signature void ( KEY_TY key ), called on a key when it is
        erased from the table or replaced by a newly inserted key.
        The API functions that may call the key destructor are NAME_insert, NAME_erase, NAME_erase_itr, NAME_clear,
        and NAME_cleanup.

      #define VAL_DTOR_FN <function name>

        The name of the existing destructor function, with the signature void ( VAL_TY val ), called on a value when it
        is erased from the table or replaced by a newly inserted value.
        The API functions that may call the value destructor are NAME_insert, NAME_erase, NAME_erase_itr, NAME_clear,
        and NAME_cleanup.

      #define CTX_TY <type>

        The type of the hash table type's ctx (context) member.
        This member only exists if CTX_TY was defined.
        It is intended to be used in conjunction with MALLOC_FN and FREE_FN (see below).

      #define MALLOC_FN <function name>

        The name of the existing function used to allocate memory.
        If CTX_TY was defined, the signature should be void *( size_t size, CTX_TY *ctx ), where size is the number of
        bytes to allocate and ctx points to the table's ctx member.
        Otherwise, the signature should be void *( size_t size ).
        The default wraps stdlib.h's malloc.

      #define FREE_FN <function name>

        The name of the existing function used to free memory.
        If CTX_TY was defined, the signature should be void ( void *ptr, size_t size, CTX_TY *ctx ), where ptr points to
        the memory to free, size is the number of bytes that were allocated, and ctx points to the table's ctx member.
        Otherwise, the signature should be void ( void *ptr, size_t size ).
        The default wraps stdlib.h's free.

      #define HEADER_MODE
      #define IMPLEMENTATION_MODE

        By default, all hash table functions are defined as static inline functions, the intent being that a given hash
        table template should be instantiated once per translation unit; for best performance, this is the recommended
        way to use the library.
        However, it is also possible separate the struct definitions and function declarations from the function
        definitions such that one implementation can be shared across all translation units (as in a traditional header
        and source file pair).
        In that case, instantiate a template wherever it is needed by defining HEADER_MODE, along with only NAME,
        KEY_TY, and (optionally) VAL_TY, CTX_TY, and header guards, and including the library, e.g.:

          #ifndef INT_INT_MAP_H
          #define INT_INT_MAP_H
          #define NAME   int_int_map
          #define KEY_TY int
          #define VAL_TY int
          #define HEADER_MODE
          #include "verstable.h"
          #endif

        In one source file, define IMPLEMENTATION_MODE, along with NAME, KEY_TY, and any of the aforementioned optional
        macros, and include the library, e.g.:

          #define NAME     int_int_map
          #define KEY_TY   int
          #define VAL_TY   int
          #define HASH_FN  vt_hash_integer // C99.
          #define CMPR_FN  vt_cmpr_integer // C99.
          #define MAX_LOAD 0.8
          #define IMPLEMENTATION_MODE
          #include "verstable.h"

    Including the library automatically undefines all the aforementioned macros after they have been used to instantiate
    the template.

  Functions:

    The functions associated with a hash table type are all prefixed with the name the user supplied via the NAME macro.
    In C11 and later, the generic "vt_"-prefixed macros may be used to automatically select the correct version of the
    specified function based on the arguments.

    void NAME_init( NAME *table )
    void NAME_init( NAME *table, CTX_TY ctx )
    // C11 generic macro: vt_init.

      Initializes the table for use.
      If CTX_TY was defined, ctx sets the table's ctx member.

    bool NAME_init_clone( NAME *table, NAME *source )
    bool NAME_init_clone( NAME *table, NAME *source, CTX_TY ctx )
    // C11 generic macro: vt_init_clone.

      Initializes the table as a shallow copy of the specified source table.
      If CTX_TY was defined, ctx sets the table's ctx member.
      Returns false in the case of memory allocation failure.

    size_t NAME_size( NAME *table ) // C11 generic macro: vt_size.

      Returns the number of keys currently in the table.

    size_t NAME_bucket_count( NAME *table ) // C11 generic macro: vt_bucket_count.

      Returns the table's current bucket count.

    NAME_itr NAME_insert( NAME *table, KEY_TY key )
    NAME_itr NAME_insert( NAME *table, KEY_TY key, VAL_TY val )
    // C11 generic macro: vt_insert.

      Inserts the specified key (and value, if VAL_TY was defined) into the hash table.
      If the same key already exists, then the new key (and value) replaces the existing key (and value).
      Returns an iterator to the new key, or an end iterator in the case of memory allocation failure.

    NAME_itr NAME_get_or_insert( NAME *table, KEY_TY key )
    NAME_itr NAME_get_or_insert( NAME *table, KEY_TY key, VAL_TY val )
    // C11 generic macro: vt_get_or_insert.

      Inserts the specified key (and value, if VAL_TY was defined) if it does not already exist in the table.
      Returns an iterator to the new key if it was inserted, or an iterator to the existing key, or an end iterator if
      the key did not exist but the new key could not be inserted because of memory allocation failure.
      Determine whether the key was inserted by comparing the table's size before and after the call.

    NAME_itr NAME_get( NAME *table, KEY_TY key ) // C11 generic macro: vt_get.

      Returns a iterator to the specified key, or an end iterator if no such key exists.

    bool NAME_erase( NAME *table, KEY_TY key ) // C11 generic macro: vt_erase.

      Erases the specified key (and associated value, if VAL_TY was defined), if it exists.
      Returns true if a key was erased.

    NAME_itr NAME_erase_itr( NAME *table, NAME_itr itr ) // C11 generic macro: vt_erase_itr.

      Erases the key (and associated value, if VAL_TY was defined) pointed to by the specified iterator.
      Returns an iterator to the next key in the table, or an end iterator if the erased key was the last one.

    bool NAME_reserve( NAME *table, size_t size ) // C11 generic macro: vt_reserve.

      Ensures that the bucket count is large enough to support the specified key count (i.e. size) without rehashing.
      Returns false if unsuccessful due to memory allocation failure.

    bool NAME_shrink( NAME *table ) // C11 generic macro: vt_shrink.

      Shrinks the bucket count to best accommodate the current size.
      Returns false if unsuccessful due to memory allocation failure.

    NAME_itr NAME_first( NAME *table ) // C11 generic macro: vt_first.

      Returns an iterator to the first key in the table, or an end iterator if the table is empty.

    bool NAME_is_end( NAME *table, NAME_itr itr ) // C11 generic macro: vt_is_end.

      Returns true if the iterator is an end iterator.

    NAME_itr NAME_next( NAME_itr itr ) // C11 generic macro: vt_next.

      Returns an iterator to the key after the one pointed to by the specified iterator, or an end iterator if the
      specified iterator points to the last key in the table.

    void NAME_clear( NAME *table ) // C11 generic macro: vt_clear.

      Erases all keys (and values, if VAL_TY was defined) in the table.

    void NAME_cleanup( NAME *table ) // C11 generic macro: vt_cleanup.

      Erases all keys (and values, if VAL_TY was defined) in the table, frees all memory associated with it, and
      initializes it for reuse.

  Iterators:

    Access the key (and value, if VAL_TY was defined) that an iterator points to using the NAME_itr struct's data
    member:

      itr.data->key
      itr.data->val

    Functions that may insert new keys (NAME_insert and NAME_get_or_insert), erase keys (NAME_erase and NAME_erase_itr),
    or reallocate the internal bucket array (NAME_reserve and NAME_shrink) invalidate all exiting iterators.
    To delete keys during iteration and resume iterating, use the return value of NAME_erase_itr.

Version history:

  18/06/2024 2.1.1: Fixed a bug affecting iteration on big-endian platforms under MSVC.
  27/05/2024 2.1.0: Replaced the Murmur3 mixer with the fast-hash mixer as the default integer hash function.
                    Fixed a bug that could theoretically cause a crash on rehash (triggerable in testing using
                    NAME_shrink with a maximum load factor significantly higher than 1.0).
  06/02/2024 2.0.0: Improved custom allocator support by introducing the CTX_TY option and allowing user-supplied free
                    functions to receive the allocation size.
                    Improved documentation.
                    Introduced various optimizations, including storing the buckets-array size mask instead of the
                    bucket count, eliminating empty-table checks, combining the buckets memory and metadata memory into
                    one allocation, and adding branch prediction macros.
                    Fixed a bug that caused a key to be used after destruction during erasure.
  12/12/2023 1.0.0: Initial release.

License (MIT):

  Copyright (c) 2023-2024 Jackson L. Allan

  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
  documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
  rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
  persons to whom the Software is furnished to do so, subject to the following conditions:

  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
  Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
  WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
  COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

/*--------------------------------------------------------------------------------------------------------------------*/
/*                                               Common header section                                                */
/*--------------------------------------------------------------------------------------------------------------------*/

#ifndef VERSTABLE_H
#define VERSTABLE_H

#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>

// Two-way concatenation macro.
#define VT_CAT_( a, b ) a##b
#define VT_CAT( a, b ) VT_CAT_( a, b )

// Branch optimization macros.
#ifdef __GNUC__
#define VT_LIKELY( expression )   __builtin_expect( (bool)( expression ), true )
#define VT_UNLIKELY( expression ) __builtin_expect( (bool)( expression ), false )
#else
#define VT_LIKELY( expression )   ( expression )
#define VT_UNLIKELY( expression ) ( expression )
#endif

// Masks for manipulating and extracting data from a bucket's uint16_t metadatum.
#define VT_EMPTY               0x0000
#define VT_HASH_FRAG_MASK      0xF000 // 0b1111000000000000.
#define VT_IN_HOME_BUCKET_MASK 0x0800 // 0b0000100000000000.
#define VT_DISPLACEMENT_MASK   0x07FF // 0b0000011111111111, also denotes the displacement limit. Set to VT_LOAD to 1.0
                                      // to test proper handling of encroachment on the displacement limit during
                                      // inserts.

// Extracts a hash fragment from a uint64_t hash code.
// We take the highest four bits so that keys that map (via modulo) to the same bucket have distinct hash fragments.
static inline uint16_t vt_hashfrag( uint64_t hash )
{
  return ( hash >> 48 ) & VT_HASH_FRAG_MASK;
}

// Standard quadratic probing formula that guarantees that all buckets are visited when the bucket count is a power of
// two (at least in theory, because the displacement limit could terminate the search early when the bucket count is
// high).
static inline size_t vt_quadratic( uint16_t displacement )
{
  return ( (size_t)displacement * displacement + displacement ) / 2;
}

#define VT_MIN_NONZERO_BUCKET_COUNT 8 // Must be a power of two.

// Function to find the left-most non-zero uint16_t in a uint64_t.
// This function is used when we scan four buckets at a time while iterating and relies on compiler intrinsics wherever
// possible.

#if defined( __GNUC__ ) && ULLONG_MAX == 0xFFFFFFFFFFFFFFFF

static inline int vt_first_nonzero_uint16( uint64_t val )
{
  const uint16_t endian_checker = 0x0001;
  if( *(const char *)&endian_checker ) // Little-endian (the compiler will optimize away the check at -O1 and above).
    return __builtin_ctzll( val ) / 16;

  return __builtin_clzll( val ) / 16;
}

#elif defined( _MSC_VER ) && ( defined( _M_X64 ) || defined( _M_ARM64 ) )

#include <intrin.h>
#pragma intrinsic(_BitScanForward64)
#pragma intrinsic(_BitScanReverse64)

static inline int vt_first_nonzero_uint16( uint64_t val )
{
  unsigned long result;

  const uint16_t endian_checker = 0x0001;
  if( *(const char *)&endian_checker )
    _BitScanForward64( &result, val );
  else
  {
    _BitScanReverse64( &result, val );
    result = 63 - result;
  }

  return result / 16;
}

#else

static inline int vt_first_nonzero_uint16( uint64_t val )
{
  int result = 0;

  uint32_t half;
  memcpy( &half, &val, sizeof( uint32_t ) );
  if( !half )
    result += 2;

  uint16_t quarter;
  memcpy( &quarter, (char *)&val + result * sizeof( uint16_t ), sizeof( uint16_t ) );
  if( !quarter )
    result += 1;

  return result;
}

#endif

// When the bucket count is zero, setting the metadata pointer to point to a VT_EMPTY placeholder, rather than NULL,
// allows us to avoid checking for a zero bucket count during insertion and lookup.
static const uint16_t vt_empty_placeholder_metadatum = VT_EMPTY;

// Default hash and comparison functions.

// Fast-hash, as described by https://jonkagstrom.com/bit-mixer-construction and
// https://code.google.com/archive/p/fast-hash.
// In testing, this hash function provided slightly better performance than the Murmur3 mixer.
static inline uint64_t vt_hash_integer( uint64_t key )
{
  key ^= key >> 23;
  key *= 0x2127599bf4325c37ull;
  key ^= key >> 47;
  return key;
}

// FNV-1a.
static inline uint64_t vt_hash_string( const char *key )
{
  uint64_t hash = 0xcbf29ce484222325ull;
  while( *key )
    hash = ( (unsigned char)*key++ ^ hash ) * 0x100000001b3ull;

  return hash;
}

static inline bool vt_cmpr_integer( uint64_t key_1, uint64_t key_2 )
{
  return key_1 == key_2;
}

static inline bool vt_cmpr_string( const char *key_1, const char *key_2 )
{
  return strcmp( key_1, key_2 ) == 0;
}

// Default allocation and free functions.

static inline void *vt_malloc( size_t size )
{
  return malloc( size );
}

static inline void vt_free( void *ptr, size_t size )
{
  (void)size;
  free( ptr );
}

static inline void *vt_malloc_with_ctx( size_t size, void *ctx )
{
  (void)ctx;
  return malloc( size );
}

static inline void vt_free_with_ctx( void *ptr, size_t size, void *ctx )
{
  (void)size;
  (void)ctx;
  free( ptr );
}

// The rest of the common header section pertains to the C11 generic macro API.
// This interface is based on the extendible-_Generic mechanism documented in detail at
// https://github.com/JacksonAllan/CC/blob/main/articles/Better_C_Generics_Part_1_The_Extendible_Generic.md.
// In summary, instantiating a template also defines wrappers for the template's types and functions with names in the
// pattern of vt_table_NNNN and vt_init_NNNN, where NNNN is an automatically generated integer unique to the template
// instance in the current translation unit.
// These wrappers plug in to _Generic-based API macros, which use preprocessor magic to automatically generate _Generic
// slots for every existing template instance.
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined( VT_NO_C11_GENERIC_API )

// Octal counter that supports up to 511 hash table templates.
#define VT_TEMPLATE_COUNT_D1 0 // Digit 1, i.e. least significant digit.
#define VT_TEMPLATE_COUNT_D2 0
#define VT_TEMPLATE_COUNT_D3 0

// Four-way concatenation macro.
#define VT_CAT_4_( a, b, c, d ) a##b##c##d
#define VT_CAT_4( a, b, c, d )  VT_CAT_4_( a, b, c, d )

// Provides the current value of the counter as a three-digit octal number preceded by 0.
#define VT_TEMPLATE_COUNT VT_CAT_4( 0, VT_TEMPLATE_COUNT_D3, VT_TEMPLATE_COUNT_D2, VT_TEMPLATE_COUNT_D1 )

// _Generic-slot generation macros.

#define VT_GENERIC_SLOT( ty, fn, n ) , VT_CAT( ty, n ): VT_CAT( fn, n )
#define VT_R1_0( ty, fn, d3, d2 )
#define VT_R1_1( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 0 ) )
#define VT_R1_2( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 1 ) ) VT_R1_1( ty, fn, d3, d2 )
#define VT_R1_3( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 2 ) ) VT_R1_2( ty, fn, d3, d2 )
#define VT_R1_4( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 3 ) ) VT_R1_3( ty, fn, d3, d2 )
#define VT_R1_5( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 4 ) ) VT_R1_4( ty, fn, d3, d2 )
#define VT_R1_6( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 5 ) ) VT_R1_5( ty, fn, d3, d2 )
#define VT_R1_7( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 6 ) ) VT_R1_6( ty, fn, d3, d2 )
#define VT_R1_8( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 7 ) ) VT_R1_7( ty, fn, d3, d2 )
#define VT_R2_0( ty, fn, d3 )
#define VT_R2_1( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 0 )
#define VT_R2_2( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 1 ) VT_R2_1( ty, fn, d3 )
#define VT_R2_3( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 2 ) VT_R2_2( ty, fn, d3 )
#define VT_R2_4( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 3 ) VT_R2_3( ty, fn, d3 )
#define VT_R2_5( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 4 ) VT_R2_4( ty, fn, d3 )
#define VT_R2_6( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 5 ) VT_R2_5( ty, fn, d3 )
#define VT_R2_7( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 6 ) VT_R2_6( ty, fn, d3 )
#define VT_R2_8( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 7 ) VT_R2_7( ty, fn, d3 )
#define VT_R3_0( ty, fn )
#define VT_R3_1( ty, fn ) VT_R2_8( ty, fn, 0 )
#define VT_R3_2( ty, fn ) VT_R2_8( ty, fn, 1 ) VT_R3_1( ty, fn )
#define VT_R3_3( ty, fn ) VT_R2_8( ty, fn, 2 ) VT_R3_2( ty, fn )
#define VT_R3_4( ty, fn ) VT_R2_8( ty, fn, 3 ) VT_R3_3( ty, fn )
#define VT_R3_5( ty, fn ) VT_R2_8( ty, fn, 4 ) VT_R3_4( ty, fn )
#define VT_R3_6( ty, fn ) VT_R2_8( ty, fn, 5 ) VT_R3_5( ty, fn )
#define VT_R3_7( ty, fn ) VT_R2_8( ty, fn, 6 ) VT_R3_6( ty, fn )

#define VT_GENERIC_SLOTS( ty, fn )                                                           \
VT_CAT( VT_R1_, VT_TEMPLATE_COUNT_D1 )( ty, fn, VT_TEMPLATE_COUNT_D3, VT_TEMPLATE_COUNT_D2 ) \
VT_CAT( VT_R2_, VT_TEMPLATE_COUNT_D2 )( ty, fn, VT_TEMPLATE_COUNT_D3 )                       \
VT_CAT( VT_R3_, VT_TEMPLATE_COUNT_D3 )( ty, fn )                                             \

// Actual generic API macros.

// vt_init must be handled as a special case because it could take one or two arguments, depending on whether CTX_TY
// was defined.
#define VT_ARG_3( _1, _2, _3, ... ) _3
#define vt_init( ... ) VT_ARG_3( __VA_ARGS__, vt_init_with_ctx, vt_init_without_ctx, )( __VA_ARGS__ )
#define vt_init_without_ctx( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_init_ ) )( table )
#define vt_init_with_ctx( table, ... ) _Generic( *( table ) \
  VT_GENERIC_SLOTS( vt_table_, vt_init_ )                   \
)( table, __VA_ARGS__ )                                     \

#define vt_init_clone( table, ... ) _Generic( *( table ) \
  VT_GENERIC_SLOTS( vt_table_, vt_init_clone_ )          \
)( table, __VA_ARGS__ )                                  \

#define vt_size( table )_Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_size_ ) )( table )

#define vt_bucket_count( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_bucket_count_ ) )( table )

#define vt_is_end( itr ) _Generic( itr VT_GENERIC_SLOTS( vt_table_itr_, vt_is_end_ ) )( itr )

#define vt_insert( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_insert_ ) )( table, __VA_ARGS__ )

#define vt_get_or_insert( table, ... ) _Generic( *( table ) \
  VT_GENERIC_SLOTS( vt_table_, vt_get_or_insert_ )          \
)( table, __VA_ARGS__ )                                     \

#define vt_get( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_get_ ) )( table, __VA_ARGS__ )

#define vt_erase( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_erase_ ) )( table, __VA_ARGS__ )

#define vt_next( itr ) _Generic( itr VT_GENERIC_SLOTS( vt_table_itr_, vt_next_ ) )( itr )

#define vt_erase_itr( table, ... ) _Generic( *( table ) \
  VT_GENERIC_SLOTS( vt_table_, vt_erase_itr_ )          \
)( table, __VA_ARGS__ )                                 \

#define vt_reserve( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_reserve_ ) )( table, __VA_ARGS__ )

#define vt_shrink( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_shrink_ ) )( table )

#define vt_first( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_first_ ) )( table )

#define vt_clear( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_clear_ ) )( table )

#define vt_cleanup( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_cleanup_ ) )( table )

#endif

#endif

/*--------------------------------------------------------------------------------------------------------------------*/
/*                                                  Prefixed structs                                                  */
/*--------------------------------------------------------------------------------------------------------------------*/

#ifndef IMPLEMENTATION_MODE

typedef struct
{
  KEY_TY key;
  #ifdef VAL_TY
  VAL_TY val;
  #endif
} VT_CAT( NAME, _bucket );

typedef struct
{
  VT_CAT( NAME, _bucket ) *data;
  uint16_t *metadatum;
  uint16_t *metadata_end; // Iterators carry an internal end pointer so that NAME_is_end does not need the table to be
                          // passed in as an argument.
                          // This also allows for the zero-bucket-count check to occur once in NAME_first, rather than
                          // repeatedly in NAME_is_end.
  size_t home_bucket; // SIZE_MAX if home bucket is unknown.
} VT_CAT( NAME, _itr );

typedef struct
{
  size_t key_count;
  size_t buckets_mask; // Rather than storing the bucket count directly, we store the bit mask used to reduce a hash
                       // code or displacement-derived bucket index to the buckets array, i.e. the bucket count minus
                       // one.
                       // Consequently, a zero bucket count (i.e. when .metadata points to the placeholder) constitutes
                       // a special case, represented by all bits unset (i.e. zero).
  VT_CAT( NAME, _bucket ) *buckets;
  uint16_t *metadata; // As described above, each metadatum consists of a 4-bit hash-code fragment (X), a 1-bit flag
                      // indicating whether the key in this bucket begins a chain associated with the bucket (Y), and
                      // an 11-bit value indicating the quadratic displacement of the next key in the chain (Z):
                      // XXXXYZZZZZZZZZZZ.
  #ifdef CTX_TY
  CTX_TY ctx;
  #endif
} NAME;

#endif

/*--------------------------------------------------------------------------------------------------------------------*/
/*                                                Function prototypes                                                 */
/*--------------------------------------------------------------------------------------------------------------------*/

#if defined( HEADER_MODE ) || defined( IMPLEMENTATION_MODE )
#define VT_API_FN_QUALIFIERS
#else
#define VT_API_FN_QUALIFIERS static inline
#endif

#ifndef IMPLEMENTATION_MODE

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _init )(
  NAME *
  #ifdef CTX_TY
  , CTX_TY
  #endif
);

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _init_clone )(
  NAME *,
  NAME *
  #ifdef CTX_TY
  , CTX_TY
  #endif
);

VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _size )( const NAME * );

VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _bucket_count )( const NAME * );

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _is_end )( VT_CAT( NAME, _itr ) );

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert )(
  NAME *,
  KEY_TY
  #ifdef VAL_TY
  , VAL_TY
  #endif
);

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get_or_insert )(
  NAME *,
  KEY_TY
  #ifdef VAL_TY
  , VAL_TY
  #endif
);

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get )(
  NAME *table,
  KEY_TY key
);

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase )( NAME *, KEY_TY );

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _next )( VT_CAT( NAME, _itr ) );

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _reserve )( NAME *, size_t );

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _shrink )( NAME * );

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _first )( NAME * );

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _clear )( NAME * );

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _cleanup )( NAME * );

// Not an API function, but must be prototyped anyway because it is called by the inline NAME_erase_itr below.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase_itr_raw ) ( NAME *, VT_CAT( NAME, _itr ) );

// Erases the key pointed to by itr and returns an iterator to the next key in the table.
// This function must be inlined to ensure that the compiler optimizes away the NAME_fast_forward call if the returned
// iterator is discarded.
#ifdef __GNUC__
static inline __attribute__((always_inline))
#elif defined( _MSC_VER )
static __forceinline
#else
static inline
#endif
VT_CAT( NAME, _itr ) VT_CAT( NAME, _erase_itr )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
  if( VT_CAT( NAME, _erase_itr_raw )( table, itr ) )
    return VT_CAT( NAME, _next )( itr );

  return itr;
}

#endif

/*--------------------------------------------------------------------------------------------------------------------*/
/*                                              Function implementations                                              */
/*--------------------------------------------------------------------------------------------------------------------*/

#ifndef HEADER_MODE

// Default settings.

#ifndef MAX_LOAD
#define MAX_LOAD 0.9
#endif

#if !defined( MALLOC ) || !defined( FREE )
#include <stdlib.h>
#endif

#ifndef MALLOC_FN
#ifdef CTX_TY
#define MALLOC_FN vt_malloc_with_ctx
#else
#define MALLOC_FN vt_malloc
#endif
#endif

#ifndef FREE_FN
#ifdef CTX_TY
#define FREE_FN vt_free_with_ctx
#else
#define FREE_FN vt_free
#endif
#endif

#ifndef HASH_FN
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#ifdef _MSC_VER // In MSVC, the compound literal in the _Generic triggers a warning about unused local variables at /W4.
#define HASH_FN                                                               \
_Pragma( "warning( push )" )                                                  \
_Pragma( "warning( disable: 4189 )" )                                         \
_Generic( ( KEY_TY ){ 0 }, char *: vt_hash_string, const char*: vt_hash_string, default: vt_hash_integer ) \
_Pragma( "warning( pop )" )
#else
#define HASH_FN _Generic( ( KEY_TY ){ 0 }, char *: vt_hash_string, const char*: vt_hash_string, default: vt_hash_integer )
#endif
#else
#error Hash function inference is only available in C11 and later. In C99, you need to define HASH_FN manually to \
vt_hash_integer, vt_hash_string, or your own custom function with the signature uint64_t ( KEY_TY ).
#endif
#endif

#ifndef CMPR_FN
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#ifdef _MSC_VER
#define CMPR_FN                                                               \
_Pragma( "warning( push )" )                                                  \
_Pragma( "warning( disable: 4189 )" )                                         \
_Generic( ( KEY_TY ){ 0 }, char *: vt_cmpr_string, const char*: vt_cmpr_string, default: vt_cmpr_integer ) \
_Pragma( "warning( pop )" )
#else
#define CMPR_FN _Generic( ( KEY_TY ){ 0 }, char *: vt_cmpr_string, const char*: vt_cmpr_string, default: vt_cmpr_integer )
#endif
#else
#error Comparison function inference is only available in C11 and later. In C99, you need to define CMPR_FN manually \
to vt_cmpr_integer, vt_cmpr_string, or your own custom function with the signature bool ( KEY_TY, KEY_TY ).
#endif
#endif

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _init )(
  NAME *table
  #ifdef CTX_TY
  , CTX_TY ctx
  #endif
)
{
  table->key_count = 0;
  table->buckets_mask = 0x0000000000000000ull;
  table->buckets = NULL;
  table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
  #ifdef CTX_TY
  table->ctx = ctx;
  #endif
}

// For efficiency, especially in the case of a small table, the buckets array and metadata share the same dynamic memory
// allocation:
//   +-----------------------------+-----+----------------+--------+
//   |           Buckets           | Pad |    Metadata    | Excess |
//   +-----------------------------+-----+----------------+--------+
// Any allocated metadata array requires four excess elements to ensure that iteration functions, which read four
// metadata at a time, never read beyond the end of it.
// This function returns the offset of the beginning of the metadata, i.e. the size of the buckets array plus the
// (usually zero) padding.
// It assumes that the bucket count is not zero.
static inline size_t VT_CAT( NAME, _metadata_offset )( NAME *table )
{
  // Use sizeof, rather than alignof, for C99 compatibility.
  return ( ( ( table->buckets_mask + 1 ) * sizeof( VT_CAT( NAME, _bucket ) ) + sizeof( uint16_t ) - 1 ) /
    sizeof( uint16_t ) ) * sizeof( uint16_t );
}

// Returns the total allocation size, including the buckets array, padding, metadata, and excess metadata.
// As above, this function assumes that the bucket count is not zero.
static inline size_t VT_CAT( NAME, _total_alloc_size )( NAME *table )
{
  return VT_CAT( NAME, _metadata_offset )( table ) + ( table->buckets_mask + 1 + 4 ) * sizeof( uint16_t );
}

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _init_clone )(
  NAME *table,
  NAME *source
  #ifdef CTX_TY
  , CTX_TY ctx
  #endif
)
{
  table->key_count = source->key_count;
  table->buckets_mask = source->buckets_mask;
  #ifdef CTX_TY
  table->ctx = ctx;
  #endif

  if( !source->buckets_mask )
  {
    table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
    table->buckets = NULL;
    return true;
  }

  void *allocation = MALLOC_FN(
    VT_CAT( NAME, _total_alloc_size )( table )
    #ifdef CTX_TY
    , &table->ctx
    #endif
  );

  if( VT_UNLIKELY( !allocation ) )
    return false;

  table->buckets = (VT_CAT( NAME, _bucket ) *)allocation;
  table->metadata = (uint16_t *)( (unsigned char *)allocation + VT_CAT( NAME, _metadata_offset )( table ) );
  memcpy( allocation, source->buckets, VT_CAT( NAME, _total_alloc_size )( table ) );

  return true;
}

VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _size )( const NAME *table )
{
  return table->key_count;
}

VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _bucket_count )( const NAME *table )
{
  // If the bucket count is zero, buckets_mask will be zero, not the bucket count minus one.
  // We account for this special case by adding (bool)buckets_mask rather than one.
  return table->buckets_mask + (bool)table->buckets_mask;
}

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _is_end )( VT_CAT( NAME, _itr ) itr )
{
  return itr.metadatum == itr.metadata_end;
}

// Finds the earliest empty bucket in which a key belonging to home_bucket can be placed, assuming that home_bucket
// is already occupied.
// The reason to begin the search at home_bucket, rather than the end of the existing chain, is that keys deleted from
// other chains might have freed up buckets that could fall in this chain before the final key.
// Returns true if an empty bucket within the range of the displacement limit was found, in which case the final two
// pointer arguments contain the index of the empty bucket and its quadratic displacement from home_bucket.
static inline bool VT_CAT( NAME, _find_first_empty )(
  NAME *table,
  size_t home_bucket,
  size_t *empty,
  uint16_t *displacement
)
{
  *displacement = 1;
  size_t linear_dispacement = 1;

  while( true )
  {
    *empty = ( home_bucket + linear_dispacement ) & table->buckets_mask;
    if( table->metadata[ *empty ] == VT_EMPTY )
      return true;

    if( VT_UNLIKELY( ++*displacement == VT_DISPLACEMENT_MASK ) )
      return false;

    linear_dispacement += *displacement;
  }
}

// Finds the key in the chain beginning in home_bucket after which to link a new key with displacement_to_empty
// quadratic displacement and returns the index of the bucket containing that key.
// Although the new key could simply be linked to the end of the chain, keeping the chain ordered by displacement
// theoretically improves cache locality during lookups.
static inline size_t VT_CAT( NAME, _find_insert_location_in_chain )(
  NAME *table,
  size_t home_bucket,
  uint16_t displacement_to_empty
)
{
  size_t candidate = home_bucket;
  while( true )
  {
    uint16_t displacement = table->metadata[ candidate ] & VT_DISPLACEMENT_MASK;

    if( displacement > displacement_to_empty )
      return candidate;

    candidate = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
  }
}

// Frees up a bucket occupied by a key not belonging there so that a new key belonging there can be placed there as the
// beginning of a new chain.
// This requires:
// * Finding the previous key in the chain to which the occupying key belongs by rehashing it and then traversing the
//   chain.
// * Disconnecting the key from the chain.
// * Finding the appropriate empty bucket to which to move the key.
// * Moving the key (and value) data to the empty bucket.
// * Re-linking the key to the chain.
// Returns true if the eviction succeeded, or false if no empty bucket to which to evict the occupying key could be
// found within the displacement limit.
static inline bool VT_CAT( NAME, _evict )( NAME *table, size_t bucket )
{
  // Find the previous key in chain.
  size_t home_bucket = HASH_FN( table->buckets[ bucket ].key ) & table->buckets_mask;
  size_t prev = home_bucket;
  while( true )
  {
    size_t next = ( home_bucket + vt_quadratic( table->metadata[ prev ] & VT_DISPLACEMENT_MASK ) ) &
      table->buckets_mask;

    if( next == bucket )
      break;

    prev = next;
  }

  // Disconnect the key from chain.
  table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | ( table->metadata[ bucket ] &
    VT_DISPLACEMENT_MASK );

  // Find the empty bucket to which to move the key.
  size_t empty;
  uint16_t displacement;
  if( VT_UNLIKELY( !VT_CAT( NAME, _find_first_empty )( table, home_bucket, &empty, &displacement ) ) )
    return false;

  // Find the key in the chain after which to link the moved key.
  prev = VT_CAT( NAME, _find_insert_location_in_chain )( table, home_bucket, displacement );

  // Move the key (and value) data.
  table->buckets[ empty ] = table->buckets[ bucket ];

  // Re-link the key to the chain from its new bucket.
  table->metadata[ empty ] = ( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) | ( table->metadata[ prev ] &
    VT_DISPLACEMENT_MASK );
  table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | displacement;

  return true;
}

// Returns an end iterator, i.e. any iterator for which .metadatum == .metadata_end.
// This function just cleans up the library code in functions that return an end iterator as a failure indicator.
static inline VT_CAT( NAME, _itr ) VT_CAT( NAME, _end_itr )( void )
{
  VT_CAT( NAME, _itr ) itr = { NULL, NULL, NULL, 0 };
  return itr;
}

// Inserts a key, optionally replacing the existing key if it already exists.
// There are two main cases that must be handled:
// * If the key's home bucket is empty or occupied by a key that does not belong there, then the key is inserted there,
//   evicting the occupying key if there is one.
// * Otherwise, the chain of keys beginning at the home bucket is (if unique is false) traversed in search of a matching
//   key.
//   If none is found, then the new key is inserted at the earliest available bucket, per quadratic probing from the
//   home bucket, and then linked to the chain in a manner that maintains its quadratic order.
// The unique argument tells the function whether to skip searching for the key before inserting it (on rehashing, this
// step is unnecessary).
// The replace argument tells the function whether to replace an existing key.
// If replace is true, the function returns an iterator to the inserted key, or an end iterator if the key was not
// inserted because of the maximum load factor or displacement limit constraints.
// If replace is false, then the return value is as described above, except that if the key already exists, the function
// returns an iterator to the existing key.
static inline VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert_raw )(
  NAME *table,
  KEY_TY key,
  #ifdef VAL_TY
  VAL_TY *val,
  #endif
  bool unique,
  bool replace
)
{
  uint64_t hash = HASH_FN( key );
  uint16_t hashfrag = vt_hashfrag( hash );
  size_t home_bucket = hash & table->buckets_mask;

  // Case 1: The home bucket is empty or contains a key that doesn't belong there.
  // This case also implicitly handles the case of a zero bucket count, since home_bucket will be zero and metadata[ 0 ]
  // will be the empty placeholder.
  // In that scenario, the zero buckets_mask triggers the below load-factor check.
  if( !( table->metadata[ home_bucket ] & VT_IN_HOME_BUCKET_MASK ) )
  {
    if(
      // Load-factor check.
      VT_UNLIKELY( table->key_count + 1 > VT_CAT( NAME, _bucket_count )( table ) * MAX_LOAD ) ||
      // Vacate the home bucket if it contains a key.
      ( table->metadata[ home_bucket ] != VT_EMPTY && VT_UNLIKELY( !VT_CAT( NAME, _evict )( table, home_bucket ) ) )
    )
      return VT_CAT( NAME, _end_itr )();

    table->buckets[ home_bucket ].key = key;
    #ifdef VAL_TY
    table->buckets[ home_bucket ].val = *val;
    #endif
    table->metadata[ home_bucket ] = hashfrag | VT_IN_HOME_BUCKET_MASK | VT_DISPLACEMENT_MASK;

    ++table->key_count;

    VT_CAT( NAME, _itr ) itr = {
      table->buckets + home_bucket,
      table->metadata + home_bucket,
      table->metadata + table->buckets_mask + 1, // Iteration stopper (i.e. the first of the four excess metadata).
      home_bucket
    };
    return itr;
  }

  // Case 2: The home bucket contains the beginning of a chain.

  // Optionally, check the existing chain.
  if( !unique )
  {
    size_t bucket = home_bucket;
    while( true )
    {
      if(
        ( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) == hashfrag &&
        VT_LIKELY( CMPR_FN( table->buckets[ bucket ].key, key ) )
      )
      {
        if( replace )
        {
          #ifdef KEY_DTOR_FN
          KEY_DTOR_FN( table->buckets[ bucket ].key );
          #endif
          table->buckets[ bucket ].key = key;

          #ifdef VAL_TY
          #ifdef VAL_DTOR_FN
          VAL_DTOR_FN( table->buckets[ bucket ].val );
          #endif
          table->buckets[ bucket ].val = *val;
          #endif
        }

        VT_CAT( NAME, _itr ) itr = {
          table->buckets + bucket,
          table->metadata + bucket,
          table->metadata + table->buckets_mask + 1,
          home_bucket
        };
        return itr;
      }

      uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
      if( displacement == VT_DISPLACEMENT_MASK )
        break;

      bucket = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
    }
  }

  size_t empty;
  uint16_t displacement;
  if(
    VT_UNLIKELY(
      // Load-factor check.
      table->key_count + 1 > VT_CAT( NAME, _bucket_count )( table ) * MAX_LOAD ||
      // Find the earliest empty bucket, per quadratic probing.
      !VT_CAT( NAME, _find_first_empty )( table, home_bucket, &empty, &displacement )
    )
  )
    return VT_CAT( NAME, _end_itr )();

  // Insert the new key (and value) in the empty bucket and link it to the chain.

  size_t prev = VT_CAT( NAME, _find_insert_location_in_chain )( table, home_bucket, displacement );

  table->buckets[ empty ].key = key;
  #ifdef VAL_TY
  table->buckets[ empty ].val = *val;
  #endif
  table->metadata[ empty ] = hashfrag | ( table->metadata[ prev ] & VT_DISPLACEMENT_MASK );
  table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | displacement;

  ++table->key_count;

  VT_CAT( NAME, _itr ) itr = {
    table->buckets + empty,
    table->metadata + empty,
    table->metadata + table->buckets_mask + 1,
    home_bucket
  };
  return itr;
}

// Resizes the bucket array.
// This function assumes that bucket_count is a power of two and large enough to accommodate all keys without violating
// the maximum load factor.
// Returns false in the case of allocation failure.
// As this function is called very rarely in _insert and _get_or_insert, ideally it should not be inlined into those
// functions.
// In testing, the no-inline approach showed a performance benefit when inserting existing keys (i.e. replacing).
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wattributes" // Silence warning about combining noinline with static inline.
__attribute__((noinline)) static inline
#elif defined( _MSC_VER )
__declspec(noinline) static inline
#else
static inline
#endif
bool VT_CAT( NAME, _rehash )( NAME *table, size_t bucket_count )
{
  // The attempt to resize the bucket array and rehash the keys must occur inside a loop that incrementally doubles the
  // target bucket count because a failure could theoretically occur at any load factor due to the displacement limit.
  while( true )
  {
    NAME new_table =  {
      0,
      bucket_count - 1,
      NULL,
      NULL
      #ifdef CTX_TY
      , table->ctx
      #endif
    };

    void *allocation = MALLOC_FN(
      VT_CAT( NAME, _total_alloc_size )( &new_table )
      #ifdef CTX_TY
      , &new_table.ctx
      #endif
    );

    if( VT_UNLIKELY( !allocation ) )
      return false;

    new_table.buckets = (VT_CAT( NAME, _bucket ) *)allocation;
    new_table.metadata = (uint16_t *)( (unsigned char *)allocation + VT_CAT( NAME, _metadata_offset )( &new_table ) );

    memset( new_table.metadata, 0x00, ( bucket_count + 4 ) * sizeof( uint16_t ) );

    // Iteration stopper at the end of the actual metadata array (i.e. the first of the four excess metadata).
    new_table.metadata[ bucket_count ] = 0x01;

    for( size_t bucket = 0; bucket < VT_CAT( NAME, _bucket_count )( table ); ++bucket )
      if( table->metadata[ bucket ] != VT_EMPTY )
      {
        VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
          &new_table,
          table->buckets[ bucket ].key,
          #ifdef VAL_TY
          &table->buckets[ bucket ].val,
          #endif
          true,
          false
        );

        if( VT_UNLIKELY( VT_CAT( NAME, _is_end )( itr ) ) )
          break;
      }

    // If a key could not be reinserted due to the displacement limit, double the bucket count and retry.
    if( VT_UNLIKELY( new_table.key_count < table->key_count ) )
    {
      FREE_FN(
        new_table.buckets,
        VT_CAT( NAME, _total_alloc_size )( &new_table )
        #ifdef CTX_TY
        , &new_table.ctx
        #endif
      );

      bucket_count *= 2;
      continue;
    }

    if( table->buckets_mask )
      FREE_FN(
        table->buckets,
        VT_CAT( NAME, _total_alloc_size )( table )
        #ifdef CTX_TY
        , &table->ctx
        #endif
      );

    *table = new_table;
    return true;
  }
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif

// Inserts a key, replacing the existing key if it already exists.
// This function wraps insert_raw in a loop that handles growing and rehashing the table if a new key cannot be inserted
// because of the maximum load factor or displacement limit constraints.
// Returns an iterator to the inserted key, or an end iterator in the case of allocation failure.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert )(
  NAME *table,
  KEY_TY key
  #ifdef VAL_TY
  , VAL_TY val
  #endif
)
{
  while( true )
  {
    VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
      table,
      key,
      #ifdef VAL_TY
      &val,
      #endif
      false,
      true
    );

    if(
      // Lookup succeeded, in which case itr points to the found key.
      VT_LIKELY( !VT_CAT( NAME, _is_end )( itr ) ) ||
      // Lookup failed and rehash also fails, in which case itr is an end iterator.
      VT_UNLIKELY(
        !VT_CAT( NAME, _rehash )(
          table, table->buckets_mask ? VT_CAT( NAME, _bucket_count )( table ) * 2 : VT_MIN_NONZERO_BUCKET_COUNT
        )
      )
    )
      return itr;
  }
}

// Same as NAME_insert, except that if the key already exists, no insertion occurs and the function returns an iterator
// to the existing key.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get_or_insert )(
  NAME *table,
  KEY_TY key
  #ifdef VAL_TY
  , VAL_TY val
  #endif
)
{
  while( true )
  {
    VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
      table,
      key,
      #ifdef VAL_TY
      &val,
      #endif
      false,
      false
    );

    if(
      // Lookup succeeded, in which case itr points to the found key.
      VT_LIKELY( !VT_CAT( NAME, _is_end )( itr ) ) ||
      // Lookup failed and rehash also fails, in which case itr is an end iterator.
      VT_UNLIKELY(
        !VT_CAT( NAME, _rehash )(
          table, table->buckets_mask ? VT_CAT( NAME, _bucket_count )( table ) * 2 : VT_MIN_NONZERO_BUCKET_COUNT
        )
      )
    )
      return itr;
  }
}

// Returns an iterator pointing to the specified key, or an end iterator if the key does not exist.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get )( NAME *table, KEY_TY key )
{
  uint64_t hash = HASH_FN( key );
  size_t home_bucket = hash & table->buckets_mask;

  // If the home bucket is empty or contains a key that does not belong there, then our key does not exist.
  // This check also implicitly handles the case of a zero bucket count, since home_bucket will be zero and
  // metadata[ 0 ] will be the empty placeholder.
  if( !( table->metadata[ home_bucket ] & VT_IN_HOME_BUCKET_MASK ) )
    return VT_CAT( NAME, _end_itr )();

  // Traverse the chain of keys belonging to the home bucket.
  uint16_t hashfrag = vt_hashfrag( hash );
  size_t bucket = home_bucket;
  while( true )
  {
    if(
      ( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) == hashfrag &&
      VT_LIKELY( CMPR_FN( table->buckets[ bucket ].key, key ) )
    )
    {
      VT_CAT( NAME, _itr ) itr = {
        table->buckets + bucket,
        table->metadata + bucket,
        table->metadata + table->buckets_mask + 1,
        home_bucket
      };
      return itr;
    }

    uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
    if( displacement == VT_DISPLACEMENT_MASK )
      return VT_CAT( NAME, _end_itr )();

    bucket = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
  }
}

// Erases the key pointed to by the specified iterator.
// The erasure always occurs at the end of the chain to which the key belongs.
// If the key to be erased is not the last in the chain, it is swapped with the last so that erasure occurs at the end.
// This helps keep a chain's keys close to their home bucket for the sake of cache locality.
// Returns true if, in the case of iteration from first to end, NAME_next should now be called on the iterator to find
// the next key.
// This return value is necessary because at the iterator location, the erasure could result in an empty bucket, a
// bucket containing a moved key already visited during the iteration, or a bucket containing a moved key not yet
// visited.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase_itr_raw )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
  --table->key_count;
  size_t itr_bucket = itr.metadatum - table->metadata;

  // For now, we only call the value's destructor because the key may need to be hashed below to determine the home
  // bucket.
  #ifdef VAL_DTOR_FN
  VAL_DTOR_FN( table->buckets[ itr_bucket ].val );
  #endif

  // Case 1: The key is the only one in its chain, so just remove it.
  if(
    table->metadata[ itr_bucket ] & VT_IN_HOME_BUCKET_MASK &&
    ( table->metadata[ itr_bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK
  )
  {
    #ifdef KEY_DTOR_FN
    KEY_DTOR_FN( table->buckets[ itr_bucket ].key );
    #endif
    table->metadata[ itr_bucket ] = VT_EMPTY;
    return true;
  }

  // Case 2 and 3 require that we know the key's home bucket, which the iterator may not have recorded.
  if( itr.home_bucket == SIZE_MAX )
  {
    if( table->metadata[ itr_bucket ] & VT_IN_HOME_BUCKET_MASK )
      itr.home_bucket = itr_bucket;
    else
      itr.home_bucket = HASH_FN( table->buckets[ itr_bucket ].key ) & table->buckets_mask;
  }

  // The key can now be safely destructed for cases 2 and 3.
  #ifdef KEY_DTOR_FN
  KEY_DTOR_FN( table->buckets[ itr_bucket ].key );
  #endif

  // Case 2: The key is the last in a multi-key chain.
  // Traverse the chain from the beginning and find the penultimate key.
  // Then disconnect the key and erase.
  if( ( table->metadata[ itr_bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK )
  {
    size_t bucket = itr.home_bucket;
    while( true )
    {
      uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
      size_t next = ( itr.home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
      if( next == itr_bucket )
      {
        table->metadata[ bucket ] |= VT_DISPLACEMENT_MASK;
        table->metadata[ itr_bucket ] = VT_EMPTY;
        return true;
      }

      bucket = next;
    }
  }

  // Case 3: The chain has multiple keys, and the key is not the last one.
  // Traverse the chain from the key to be erased and find the last and penultimate keys.
  // Disconnect the last key from the chain, and swap it with the key to erase.
  size_t bucket = itr_bucket;
  while( true )
  {
    size_t prev = bucket;
    bucket = ( itr.home_bucket + vt_quadratic( table->metadata[ bucket ] & VT_DISPLACEMENT_MASK ) ) &
      table->buckets_mask;

    if( ( table->metadata[ bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK )
    {
      table->buckets[ itr_bucket ] = table->buckets[ bucket ];

      table->metadata[ itr_bucket ] = ( table->metadata[ itr_bucket ] & ~VT_HASH_FRAG_MASK ) | (
        table->metadata[ bucket ] & VT_HASH_FRAG_MASK );

      table->metadata[ prev ] |= VT_DISPLACEMENT_MASK;
      table->metadata[ bucket ] = VT_EMPTY;

      // Whether the iterator should be advanced depends on whether the key moved to the iterator bucket came from
      // before or after that bucket.
      // In the former case, the iteration would already have hit the moved key, so the iterator should still be
      // advanced.
      if( bucket > itr_bucket )
        return false;

      return true;
    }
  }
}

// Erases the specified key, if it exists.
// Returns true if a key was erased.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase )( NAME *table, KEY_TY key )
{
  VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _get)( table, key );
  if( VT_CAT( NAME, _is_end )( itr ) )
    return false;

  VT_CAT( NAME, _erase_itr_raw )( table, itr );
  return true;
}

// Finds the first occupied bucket at or after the bucket pointed to by itr.
// This function scans four buckets at a time, ideally using intrinsics.
static inline void VT_CAT( NAME, _fast_forward )( VT_CAT( NAME, _itr ) *itr )
{
  while( true )
  {
    uint64_t metadata;
    memcpy( &metadata, itr->metadatum, sizeof( uint64_t ) );
    if( metadata )
    {
      int offset = vt_first_nonzero_uint16( metadata );
      itr->data += offset;
      itr->metadatum += offset;
      itr->home_bucket = SIZE_MAX;
      return;
    }

    itr->data += 4;
    itr->metadatum += 4;
  }
}

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _next )( VT_CAT( NAME, _itr ) itr )
{
  ++itr.data;
  ++itr.metadatum;
  VT_CAT( NAME, _fast_forward )( &itr );
  return itr;
}

// Returns the minimum bucket count required to accommodate a certain number of keys, which is governed by the maximum
// load factor.
static inline size_t VT_CAT( NAME, _min_bucket_count_for_size )( size_t size )
{
  if( size == 0 )
    return 0;

  // Round up to a power of two.
  size_t bucket_count = VT_MIN_NONZERO_BUCKET_COUNT;
  while( size > bucket_count * MAX_LOAD )
    bucket_count *= 2;

  return bucket_count;
}

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _reserve )( NAME *table, size_t size )
{
  size_t bucket_count = VT_CAT( NAME, _min_bucket_count_for_size )( size );

  if( bucket_count <= VT_CAT( NAME, _bucket_count )( table ) )
    return true;

  return VT_CAT( NAME, _rehash )( table, bucket_count );
}

VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _shrink )( NAME *table )
{
  size_t bucket_count = VT_CAT( NAME, _min_bucket_count_for_size )( table->key_count );

  if( bucket_count == VT_CAT( NAME, _bucket_count )( table ) ) // Shrink unnecessary.
    return true;

  if( bucket_count == 0 )
  {
    FREE_FN(
      table->buckets,
      VT_CAT( NAME, _total_alloc_size )( table )
      #ifdef CTX_TY
      , &table->ctx
      #endif
    );

    table->buckets_mask = 0x0000000000000000ull;
    table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
    return true;
  }

  return VT_CAT( NAME, _rehash )( table, bucket_count );
}

VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _first )( NAME *table )
{
  if( !table->key_count )
    return VT_CAT( NAME, _end_itr )();

  VT_CAT( NAME, _itr ) itr = { table->buckets, table->metadata, table->metadata + table->buckets_mask + 1, SIZE_MAX };
  VT_CAT( NAME, _fast_forward )( &itr );
  return itr;
}

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _clear )( NAME *table )
{
  if( !table->key_count )
    return;

  for( size_t i = 0; i < VT_CAT( NAME, _bucket_count )( table ); ++i )
  {
    if( table->metadata[ i ] != VT_EMPTY )
    {
      #ifdef KEY_DTOR_FN
      KEY_DTOR_FN( table->buckets[ i ].key );
      #endif
      #ifdef VAL_DTOR_FN
      VAL_DTOR_FN( table->buckets[ i ].val );
      #endif
    }

    table->metadata[ i ] = VT_EMPTY;
  }

  table->key_count = 0;
}

VT_API_FN_QUALIFIERS void VT_CAT( NAME, _cleanup )( NAME *table )
{
  if( !table->buckets_mask )
    return;

  #if defined( KEY_DTOR_FN ) || defined( VAL_DTOR_FN )
  VT_CAT( NAME, _clear )( table );
  #endif

  FREE_FN(
    table->buckets,
    VT_CAT( NAME, _total_alloc_size )( table )
    #ifdef CTX_TY
    , &table->ctx
    #endif
  );

  VT_CAT( NAME, _init )(
    table
    #ifdef CTX_TY
    , table->ctx
    #endif
  );
}

#endif

/*--------------------------------------------------------------------------------------------------------------------*/
/*                                Wrapper types and functions for the C11 generic API                                 */
/*--------------------------------------------------------------------------------------------------------------------*/

#if defined(__STDC_VERSION__) &&       \
    __STDC_VERSION__ >= 201112L &&     \
    !defined( IMPLEMENTATION_MODE ) && \
    !defined( VT_NO_C11_GENERIC_API )  \

typedef NAME VT_CAT( vt_table_, VT_TEMPLATE_COUNT );
typedef VT_CAT( NAME, _itr ) VT_CAT( vt_table_itr_, VT_TEMPLATE_COUNT );

static inline void VT_CAT( vt_init_, VT_TEMPLATE_COUNT )(
  NAME *table
  #ifdef CTX_TY
  , CTX_TY ctx
  #endif
)
{
  VT_CAT( NAME, _init )(
    table
    #ifdef CTX_TY
    , ctx
    #endif
  );
}

static inline bool VT_CAT( vt_init_clone_, VT_TEMPLATE_COUNT )(
  NAME *table,
  NAME* source
  #ifdef CTX_TY
  , CTX_TY ctx
  #endif
)
{
  return VT_CAT( NAME, _init_clone )(
    table,
    source
    #ifdef CTX_TY
    , ctx
    #endif
  );
}

static inline size_t VT_CAT( vt_size_, VT_TEMPLATE_COUNT )( const NAME *table )
{
  return VT_CAT( NAME, _size )( table );
}

static inline size_t VT_CAT( vt_bucket_count_, VT_TEMPLATE_COUNT )( const NAME *table )
{
  return VT_CAT( NAME, _bucket_count )( table );
}

static inline bool VT_CAT( vt_is_end_, VT_TEMPLATE_COUNT )( VT_CAT( NAME, _itr ) itr )
{
  return VT_CAT( NAME, _is_end )( itr );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_insert_, VT_TEMPLATE_COUNT )(
  NAME *table,
  KEY_TY key
  #ifdef VAL_TY
  , VAL_TY val
  #endif
)
{
  return VT_CAT( NAME, _insert )(
    table,
    key
    #ifdef VAL_TY
    , val
    #endif
  );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_get_or_insert_, VT_TEMPLATE_COUNT )(
  NAME *table,
  KEY_TY key
  #ifdef VAL_TY
  , VAL_TY val
  #endif
)
{
  return VT_CAT( NAME, _get_or_insert )(
    table,
    key
    #ifdef VAL_TY
    , val
    #endif
  );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_get_, VT_TEMPLATE_COUNT )( NAME *table, KEY_TY key )
{
  return VT_CAT( NAME, _get )( table, key );
}

static inline bool VT_CAT( vt_erase_, VT_TEMPLATE_COUNT )( NAME *table, KEY_TY key )
{
  return VT_CAT( NAME, _erase )( table, key );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_next_, VT_TEMPLATE_COUNT )( VT_CAT( NAME, _itr ) itr )
{
  return VT_CAT( NAME, _next )( itr );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_erase_itr_, VT_TEMPLATE_COUNT )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
  return VT_CAT( NAME, _erase_itr )( table, itr );
}

static inline bool VT_CAT( vt_reserve_, VT_TEMPLATE_COUNT )( NAME *table, size_t bucket_count )
{
  return VT_CAT( NAME, _reserve )( table, bucket_count );
}

static inline bool VT_CAT( vt_shrink_, VT_TEMPLATE_COUNT )( NAME *table )
{
  return VT_CAT( NAME, _shrink )( table );
}

static inline VT_CAT( NAME, _itr ) VT_CAT( vt_first_, VT_TEMPLATE_COUNT )( NAME *table )
{
  return VT_CAT( NAME, _first )( table );
}

static inline void VT_CAT( vt_clear_, VT_TEMPLATE_COUNT )( NAME *table )
{
  VT_CAT( NAME, _clear )( table );
}

static inline void VT_CAT( vt_cleanup_, VT_TEMPLATE_COUNT )( NAME *table )
{
  VT_CAT( NAME, _cleanup )( table );
}

// Increment the template counter.
#if     VT_TEMPLATE_COUNT_D1 == 0
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 1
#elif   VT_TEMPLATE_COUNT_D1 == 1
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 2
#elif   VT_TEMPLATE_COUNT_D1 == 2
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 3
#elif   VT_TEMPLATE_COUNT_D1 == 3
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 4
#elif   VT_TEMPLATE_COUNT_D1 == 4
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 5
#elif   VT_TEMPLATE_COUNT_D1 == 5
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 6
#elif   VT_TEMPLATE_COUNT_D1 == 6
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 7
#elif   VT_TEMPLATE_COUNT_D1 == 7
#undef  VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 0
#if     VT_TEMPLATE_COUNT_D2 == 0
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 1
#elif   VT_TEMPLATE_COUNT_D2 == 1
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 2
#elif   VT_TEMPLATE_COUNT_D2 == 2
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 3
#elif   VT_TEMPLATE_COUNT_D2 == 3
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 4
#elif   VT_TEMPLATE_COUNT_D2 == 4
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 5
#elif   VT_TEMPLATE_COUNT_D2 == 5
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 6
#elif   VT_TEMPLATE_COUNT_D2 == 6
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 7
#elif   VT_TEMPLATE_COUNT_D2 == 7
#undef  VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 0
#if     VT_TEMPLATE_COUNT_D3 == 0
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 1
#elif   VT_TEMPLATE_COUNT_D3 == 1
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 2
#elif   VT_TEMPLATE_COUNT_D3 == 2
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 3
#elif   VT_TEMPLATE_COUNT_D3 == 3
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 4
#elif   VT_TEMPLATE_COUNT_D3 == 4
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 5
#elif   VT_TEMPLATE_COUNT_D3 == 5
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 6
#elif   VT_TEMPLATE_COUNT_D3 == 6
#undef  VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 7
#elif   VT_TEMPLATE_COUNT_D3 == 7
#error  Sorry, the number of template instances is limited to 511. Define VT_NO_C11_GENERIC_API globally and use the \
C99 prefixed function API to circumvent this restriction.
#endif
#endif
#endif

#endif

#undef NAME
#undef KEY_TY
#undef VAL_TY
#undef HASH_FN
#undef CMPR_FN
#undef MAX_LOAD
#undef KEY_DTOR_FN
#undef VAL_DTOR_FN
#undef CTX_TY
#undef MALLOC_FN
#undef FREE_FN
#undef HEADER_MODE
#undef IMPLEMENTATION_MODE
#undef VT_API_FN_QUALIFIERS