1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
|
/*------------------------------------------------- VERSTABLE v2.1.1 ---------------------------------------------------
Verstable is a C99-compatible, open-addressing hash table using quadratic probing and the following additions:
* All keys that hash (i.e. "belong") to the same bucket (their "home bucket") are linked together by an 11-bit integer
specifying the quadratic displacement, relative to that bucket, of the next key in the chain.
* If a chain of keys exists for a given bucket, then it always begins at that bucket. To maintain this policy, a 1-bit
flag is used to mark whether the key occupying a bucket belongs there. When inserting a new key, if the bucket it
belongs to is occupied by a key that does not belong there, then the occupying key is evicted and the new key takes
the bucket.
* A 4-bit fragment of each key's hash code is also stored.
* The aforementioned metadata associated with each bucket (the 4-bit hash fragment, the 1-bit flag, and the 11-bit link
to the next key in the chain) are stored together in a uint16_t array rather than in the bucket alongside the key and
(optionally) the value.
One way to conceptualize this scheme is as a chained hash table in which overflowing keys are stored not in separate
memory allocations but in otherwise unused buckets. In this regard, it shares similarities with Malte Skarupke's Bytell
hash table (https://www.youtube.com/watch?v=M2fKMP47slQ) and traditional "coalesced hashing".
Advantages of this scheme include:
* Fast lookups impervious to load factor: If the table contains any key belonging to the lookup key's home bucket, then
that bucket contains the first in a traversable chain of all keys belonging to it. Hence, only the home bucket and
other buckets containing keys belonging to it are ever probed. Moreover, the stored hash fragments allow skipping most
non-matching keys in the chain without accessing the actual buckets array or calling the (potentially expensive) key
comparison function.
* Fast insertions: Insertions are faster than they are in other schemes that move keys around (e.g. Robin Hood) because
they only move, at most, one existing key.
* Fast, tombstone-free deletions: Deletions, which usually require tombstones in quadratic-probing hash tables, are
tombstone-free and only move, at most, one existing key.
* Fast iteration: The separate metadata array allows keys in sparsely populated tables to be found without incurring the
frequent cache misses that would result from traversing the buckets array.
Usage example:
+---------------------------------------------------------+----------------------------------------------------------+
| Using the generic macro API (C11 and later): | Using the prefixed functions API (C99 and later): |
|---------------------------------------------------------+----------------------------------------------------------+
| #include <stdio.h> | #include <stdio.h> |
| | |
| // Instantiating a set template. | // Instantiating a set template. |
| #define NAME int_set | #define NAME int_set |
| #define KEY_TY int | #define KEY_TY int |
| #include "verstable.h" | #define HASH_FN vt_hash_integer |
| | #define CMPR_FN vt_cmpr_integer |
| // Instantiating a map template. | #include "verstable.h" |
| #define NAME int_int_map | |
| #define KEY_TY int | // Instantiating a map template. |
| #define VAL_TY int | #define NAME int_int_map |
| #include "verstable.h" | #define KEY_TY int |
| | #define VAL_TY int |
| int main( void ) | #define HASH_FN vt_hash_integer |
| { | #define CMPR_FN vt_cmpr_integer |
| // Set. | #include "verstable.h" |
| | |
| int_set our_set; | int main( void ) |
| vt_init( &our_set ); | { |
| | // Set. |
| // Inserting keys. | |
| for( int i = 0; i < 10; ++i ) | int_set our_set; |
| { | int_set_init( &our_set ); |
| int_set_itr itr = vt_insert( &our_set, i ); | |
| if( vt_is_end( itr ) ) | // Inserting keys. |
| { | for( int i = 0; i < 10; ++i ) |
| // Out of memory, so abort. | { |
| vt_cleanup( &our_set ); | int_set_itr itr = |
| return 1; | int_set_insert( &our_set, i ); |
| } | if( int_set_is_end( itr ) ) |
| } | { |
| | // Out of memory, so abort. |
| // Erasing keys. | int_set_cleanup( &our_set ); |
| for( int i = 0; i < 10; i += 3 ) | return 1; |
| vt_erase( &our_set, i ); | } |
| | } |
| // Retrieving keys. | |
| for( int i = 0; i < 10; ++i ) | // Erasing keys. |
| { | for( int i = 0; i < 10; i += 3 ) |
| int_set_itr itr = vt_get( &our_set, i ); | int_set_erase( &our_set, i ); |
| if( !vt_is_end( itr ) ) | |
| printf( "%d ", itr.data->key ); | // Retrieving keys. |
| } | for( int i = 0; i < 10; ++i ) |
| // Printed: 1 2 4 5 7 8 | { |
| | int_set_itr itr = int_set_get( &our_set, i ); |
| // Iteration. | if( !int_set_is_end( itr ) ) |
| for( | printf( "%d ", itr.data->key ); |
| int_set_itr itr = vt_first( &our_set ); | } |
| !vt_is_end( itr ); | // Printed: 1 2 4 5 7 8 |
| itr = vt_next( itr ) | |
| ) | // Iteration. |
| printf( "%d ", itr.data->key ); | for( |
| // Printed: 2 4 7 1 5 8 | int_set_itr itr = |
| | int_set_first( &our_set ); |
| vt_cleanup( &our_set ); | !int_set_is_end( itr ); |
| | itr = int_set_next( itr ) |
| // Map. | ) |
| | printf( "%d ", itr.data->key ); |
| int_int_map our_map; | // Printed: 2 4 7 1 5 8 |
| vt_init( &our_map ); | |
| | int_set_cleanup( &our_set ); |
| // Inserting keys and values. | |
| for( int i = 0; i < 10; ++i ) | // Map. |
| { | |
| int_int_map_itr itr = | int_int_map our_map; |
| vt_insert( &our_map, i, i + 1 ); | int_int_map_init( &our_map ); |
| if( vt_is_end( itr ) ) | |
| { | // Inserting keys and values. |
| // Out of memory, so abort. | for( int i = 0; i < 10; ++i ) |
| vt_cleanup( &our_map ); | { |
| return 1; | int_int_map_itr itr = |
| } | int_int_map_insert( &our_map, i, i + 1 ); |
| } | if( int_int_map_is_end( itr ) ) |
| | { |
| // Erasing keys and values. | // Out of memory, so abort. |
| for( int i = 0; i < 10; i += 3 ) | int_int_map_cleanup( &our_map ); |
| vt_erase( &our_map, i ); | return 1; |
| | } |
| // Retrieving keys and values. | } |
| for( int i = 0; i < 10; ++i ) | |
| { | // Erasing keys and values. |
| int_int_map_itr itr = vt_get( &our_map, i ); | for( int i = 0; i < 10; i += 3 ) |
| if( !vt_is_end( itr ) ) | int_int_map_erase( &our_map, i ); |
| printf( | |
| "%d:%d ", | // Retrieving keys and values. |
| itr.data->key, | for( int i = 0; i < 10; ++i ) |
| itr.data->val | { |
| ); | int_int_map_itr itr = |
| } | int_int_map_get( &our_map, i ); |
| // Printed: 1:2 2:3 4:5 5:6 7:8 8:9 | if( !int_int_map_is_end( itr ) ) |
| | printf( |
| // Iteration. | "%d:%d ", |
| for( | itr.data->key, |
| int_int_map_itr itr = vt_first( &our_map ); | itr.data->val |
| !vt_is_end( itr ); | ); |
| itr = vt_next( itr ) | } |
| ) | // Printed: 1:2 2:3 4:5 5:6 7:8 8:9 |
| printf( | |
| "%d:%d ", | // Iteration. |
| itr.data->key, | for( |
| itr.data->val | int_int_map_itr itr = |
| ); | int_int_map_first( &our_map ); |
| // Printed: 2:3 4:5 7:8 1:2 5:6 8:9 | !int_int_map_is_end( itr ); |
| | itr = int_int_map_next( itr ) |
| vt_cleanup( &our_map ); | ) |
| } | printf( |
| | "%d:%d ", |
| | itr.data->key, |
| | itr.data->val |
| | ); |
| | // Printed: 2:3 4:5 7:8 1:2 5:6 8:9 |
| | |
| | int_int_map_cleanup( &our_map ); |
| | } |
| | |
+---------------------------------------------------------+----------------------------------------------------------+
API:
Instantiating a hash table template:
Create a new hash table type in the following manner:
#define NAME <your chosen type name>
#define KEY_TY <type>
#include "verstable.h"
The NAME macro specifies the name of hash table type that the library will declare, the prefix for the functions
associated with it, and the prefix for the associated iterator type.
The KEY_TY macro specifies the key type.
In C99, it is also always necessary to define HASH_FN and CMPR_FN (see below) before including the header.
The following macros may also be defined before including the header:
#define VAL_TY <type>
The type of the value associated with each key.
If this macro is defined, the hash table acts as a map associating keys with values.
Otherwise, it acts as a set containing only keys.
#define HASH_FN <function name>
The name of the existing function used to hash each key.
The function should have the signature uint64_t ( KEY_TY key ) and return a 64-bit hash code.
For best performance, the hash function should provide a high level of entropy across all bits.
There are two default hash functions: vt_hash_integer for all integer types up to 64 bits in size, and
vt_hash_string for NULL-terminated strings (i.e. char *).
When KEY_TY is one of such types and the compiler is in C11 mode or later, HASH_FN may be left undefined, in
which case the appropriate default function is inferred from KEY_TY.
Otherwise, HASH_FN must be defined.
#define CMPR_FN <function name>
The name of the existing function used to compare two keys.
The function should have the signature bool ( KEY_TY key_1, KEY_TY key_2 ) and return true if the two keys are
equal.
There are two default comparison functions: vt_cmpr_integer for all integer types up to 64 bits in size, and
vt_cmpr_string for NULL-terminated strings (i.e. char *).
As with the default hash functions, in C11 or later the appropriate default comparison function is inferred if
KEY_TY is one of such types and CMPR_FN is left undefined.
Otherwise, CMPR_FN must be defined.
#define MAX_LOAD <floating point value>
The floating-point load factor at which the hash table automatically doubles the size of its internal buckets
array.
The default is 0.9, i.e. 90%.
#define KEY_DTOR_FN <function name>
The name of the existing destructor function, with the signature void ( KEY_TY key ), called on a key when it is
erased from the table or replaced by a newly inserted key.
The API functions that may call the key destructor are NAME_insert, NAME_erase, NAME_erase_itr, NAME_clear,
and NAME_cleanup.
#define VAL_DTOR_FN <function name>
The name of the existing destructor function, with the signature void ( VAL_TY val ), called on a value when it
is erased from the table or replaced by a newly inserted value.
The API functions that may call the value destructor are NAME_insert, NAME_erase, NAME_erase_itr, NAME_clear,
and NAME_cleanup.
#define CTX_TY <type>
The type of the hash table type's ctx (context) member.
This member only exists if CTX_TY was defined.
It is intended to be used in conjunction with MALLOC_FN and FREE_FN (see below).
#define MALLOC_FN <function name>
The name of the existing function used to allocate memory.
If CTX_TY was defined, the signature should be void *( size_t size, CTX_TY *ctx ), where size is the number of
bytes to allocate and ctx points to the table's ctx member.
Otherwise, the signature should be void *( size_t size ).
The default wraps stdlib.h's malloc.
#define FREE_FN <function name>
The name of the existing function used to free memory.
If CTX_TY was defined, the signature should be void ( void *ptr, size_t size, CTX_TY *ctx ), where ptr points to
the memory to free, size is the number of bytes that were allocated, and ctx points to the table's ctx member.
Otherwise, the signature should be void ( void *ptr, size_t size ).
The default wraps stdlib.h's free.
#define HEADER_MODE
#define IMPLEMENTATION_MODE
By default, all hash table functions are defined as static inline functions, the intent being that a given hash
table template should be instantiated once per translation unit; for best performance, this is the recommended
way to use the library.
However, it is also possible separate the struct definitions and function declarations from the function
definitions such that one implementation can be shared across all translation units (as in a traditional header
and source file pair).
In that case, instantiate a template wherever it is needed by defining HEADER_MODE, along with only NAME,
KEY_TY, and (optionally) VAL_TY, CTX_TY, and header guards, and including the library, e.g.:
#ifndef INT_INT_MAP_H
#define INT_INT_MAP_H
#define NAME int_int_map
#define KEY_TY int
#define VAL_TY int
#define HEADER_MODE
#include "verstable.h"
#endif
In one source file, define IMPLEMENTATION_MODE, along with NAME, KEY_TY, and any of the aforementioned optional
macros, and include the library, e.g.:
#define NAME int_int_map
#define KEY_TY int
#define VAL_TY int
#define HASH_FN vt_hash_integer // C99.
#define CMPR_FN vt_cmpr_integer // C99.
#define MAX_LOAD 0.8
#define IMPLEMENTATION_MODE
#include "verstable.h"
Including the library automatically undefines all the aforementioned macros after they have been used to instantiate
the template.
Functions:
The functions associated with a hash table type are all prefixed with the name the user supplied via the NAME macro.
In C11 and later, the generic "vt_"-prefixed macros may be used to automatically select the correct version of the
specified function based on the arguments.
void NAME_init( NAME *table )
void NAME_init( NAME *table, CTX_TY ctx )
// C11 generic macro: vt_init.
Initializes the table for use.
If CTX_TY was defined, ctx sets the table's ctx member.
bool NAME_init_clone( NAME *table, NAME *source )
bool NAME_init_clone( NAME *table, NAME *source, CTX_TY ctx )
// C11 generic macro: vt_init_clone.
Initializes the table as a shallow copy of the specified source table.
If CTX_TY was defined, ctx sets the table's ctx member.
Returns false in the case of memory allocation failure.
size_t NAME_size( NAME *table ) // C11 generic macro: vt_size.
Returns the number of keys currently in the table.
size_t NAME_bucket_count( NAME *table ) // C11 generic macro: vt_bucket_count.
Returns the table's current bucket count.
NAME_itr NAME_insert( NAME *table, KEY_TY key )
NAME_itr NAME_insert( NAME *table, KEY_TY key, VAL_TY val )
// C11 generic macro: vt_insert.
Inserts the specified key (and value, if VAL_TY was defined) into the hash table.
If the same key already exists, then the new key (and value) replaces the existing key (and value).
Returns an iterator to the new key, or an end iterator in the case of memory allocation failure.
NAME_itr NAME_get_or_insert( NAME *table, KEY_TY key )
NAME_itr NAME_get_or_insert( NAME *table, KEY_TY key, VAL_TY val )
// C11 generic macro: vt_get_or_insert.
Inserts the specified key (and value, if VAL_TY was defined) if it does not already exist in the table.
Returns an iterator to the new key if it was inserted, or an iterator to the existing key, or an end iterator if
the key did not exist but the new key could not be inserted because of memory allocation failure.
Determine whether the key was inserted by comparing the table's size before and after the call.
NAME_itr NAME_get( NAME *table, KEY_TY key ) // C11 generic macro: vt_get.
Returns a iterator to the specified key, or an end iterator if no such key exists.
bool NAME_erase( NAME *table, KEY_TY key ) // C11 generic macro: vt_erase.
Erases the specified key (and associated value, if VAL_TY was defined), if it exists.
Returns true if a key was erased.
NAME_itr NAME_erase_itr( NAME *table, NAME_itr itr ) // C11 generic macro: vt_erase_itr.
Erases the key (and associated value, if VAL_TY was defined) pointed to by the specified iterator.
Returns an iterator to the next key in the table, or an end iterator if the erased key was the last one.
bool NAME_reserve( NAME *table, size_t size ) // C11 generic macro: vt_reserve.
Ensures that the bucket count is large enough to support the specified key count (i.e. size) without rehashing.
Returns false if unsuccessful due to memory allocation failure.
bool NAME_shrink( NAME *table ) // C11 generic macro: vt_shrink.
Shrinks the bucket count to best accommodate the current size.
Returns false if unsuccessful due to memory allocation failure.
NAME_itr NAME_first( NAME *table ) // C11 generic macro: vt_first.
Returns an iterator to the first key in the table, or an end iterator if the table is empty.
bool NAME_is_end( NAME *table, NAME_itr itr ) // C11 generic macro: vt_is_end.
Returns true if the iterator is an end iterator.
NAME_itr NAME_next( NAME_itr itr ) // C11 generic macro: vt_next.
Returns an iterator to the key after the one pointed to by the specified iterator, or an end iterator if the
specified iterator points to the last key in the table.
void NAME_clear( NAME *table ) // C11 generic macro: vt_clear.
Erases all keys (and values, if VAL_TY was defined) in the table.
void NAME_cleanup( NAME *table ) // C11 generic macro: vt_cleanup.
Erases all keys (and values, if VAL_TY was defined) in the table, frees all memory associated with it, and
initializes it for reuse.
Iterators:
Access the key (and value, if VAL_TY was defined) that an iterator points to using the NAME_itr struct's data
member:
itr.data->key
itr.data->val
Functions that may insert new keys (NAME_insert and NAME_get_or_insert), erase keys (NAME_erase and NAME_erase_itr),
or reallocate the internal bucket array (NAME_reserve and NAME_shrink) invalidate all exiting iterators.
To delete keys during iteration and resume iterating, use the return value of NAME_erase_itr.
Version history:
18/06/2024 2.1.1: Fixed a bug affecting iteration on big-endian platforms under MSVC.
27/05/2024 2.1.0: Replaced the Murmur3 mixer with the fast-hash mixer as the default integer hash function.
Fixed a bug that could theoretically cause a crash on rehash (triggerable in testing using
NAME_shrink with a maximum load factor significantly higher than 1.0).
06/02/2024 2.0.0: Improved custom allocator support by introducing the CTX_TY option and allowing user-supplied free
functions to receive the allocation size.
Improved documentation.
Introduced various optimizations, including storing the buckets-array size mask instead of the
bucket count, eliminating empty-table checks, combining the buckets memory and metadata memory into
one allocation, and adding branch prediction macros.
Fixed a bug that caused a key to be used after destruction during erasure.
12/12/2023 1.0.0: Initial release.
License (MIT):
Copyright (c) 2023-2024 Jackson L. Allan
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*--------------------------------------------------------------------------------------------------------------------*/
/* Common header section */
/*--------------------------------------------------------------------------------------------------------------------*/
#ifndef VERSTABLE_H
#define VERSTABLE_H
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
// Two-way concatenation macro.
#define VT_CAT_( a, b ) a##b
#define VT_CAT( a, b ) VT_CAT_( a, b )
// Branch optimization macros.
#ifdef __GNUC__
#define VT_LIKELY( expression ) __builtin_expect( (bool)( expression ), true )
#define VT_UNLIKELY( expression ) __builtin_expect( (bool)( expression ), false )
#else
#define VT_LIKELY( expression ) ( expression )
#define VT_UNLIKELY( expression ) ( expression )
#endif
// Masks for manipulating and extracting data from a bucket's uint16_t metadatum.
#define VT_EMPTY 0x0000
#define VT_HASH_FRAG_MASK 0xF000 // 0b1111000000000000.
#define VT_IN_HOME_BUCKET_MASK 0x0800 // 0b0000100000000000.
#define VT_DISPLACEMENT_MASK 0x07FF // 0b0000011111111111, also denotes the displacement limit. Set to VT_LOAD to 1.0
// to test proper handling of encroachment on the displacement limit during
// inserts.
// Extracts a hash fragment from a uint64_t hash code.
// We take the highest four bits so that keys that map (via modulo) to the same bucket have distinct hash fragments.
static inline uint16_t vt_hashfrag( uint64_t hash )
{
return ( hash >> 48 ) & VT_HASH_FRAG_MASK;
}
// Standard quadratic probing formula that guarantees that all buckets are visited when the bucket count is a power of
// two (at least in theory, because the displacement limit could terminate the search early when the bucket count is
// high).
static inline size_t vt_quadratic( uint16_t displacement )
{
return ( (size_t)displacement * displacement + displacement ) / 2;
}
#define VT_MIN_NONZERO_BUCKET_COUNT 8 // Must be a power of two.
// Function to find the left-most non-zero uint16_t in a uint64_t.
// This function is used when we scan four buckets at a time while iterating and relies on compiler intrinsics wherever
// possible.
#if defined( __GNUC__ ) && ULLONG_MAX == 0xFFFFFFFFFFFFFFFF
static inline int vt_first_nonzero_uint16( uint64_t val )
{
const uint16_t endian_checker = 0x0001;
if( *(const char *)&endian_checker ) // Little-endian (the compiler will optimize away the check at -O1 and above).
return __builtin_ctzll( val ) / 16;
return __builtin_clzll( val ) / 16;
}
#elif defined( _MSC_VER ) && ( defined( _M_X64 ) || defined( _M_ARM64 ) )
#include <intrin.h>
#pragma intrinsic(_BitScanForward64)
#pragma intrinsic(_BitScanReverse64)
static inline int vt_first_nonzero_uint16( uint64_t val )
{
unsigned long result;
const uint16_t endian_checker = 0x0001;
if( *(const char *)&endian_checker )
_BitScanForward64( &result, val );
else
{
_BitScanReverse64( &result, val );
result = 63 - result;
}
return result / 16;
}
#else
static inline int vt_first_nonzero_uint16( uint64_t val )
{
int result = 0;
uint32_t half;
memcpy( &half, &val, sizeof( uint32_t ) );
if( !half )
result += 2;
uint16_t quarter;
memcpy( &quarter, (char *)&val + result * sizeof( uint16_t ), sizeof( uint16_t ) );
if( !quarter )
result += 1;
return result;
}
#endif
// When the bucket count is zero, setting the metadata pointer to point to a VT_EMPTY placeholder, rather than NULL,
// allows us to avoid checking for a zero bucket count during insertion and lookup.
static const uint16_t vt_empty_placeholder_metadatum = VT_EMPTY;
// Default hash and comparison functions.
// Fast-hash, as described by https://jonkagstrom.com/bit-mixer-construction and
// https://code.google.com/archive/p/fast-hash.
// In testing, this hash function provided slightly better performance than the Murmur3 mixer.
static inline uint64_t vt_hash_integer( uint64_t key )
{
key ^= key >> 23;
key *= 0x2127599bf4325c37ull;
key ^= key >> 47;
return key;
}
// FNV-1a.
static inline uint64_t vt_hash_string( const char *key )
{
uint64_t hash = 0xcbf29ce484222325ull;
while( *key )
hash = ( (unsigned char)*key++ ^ hash ) * 0x100000001b3ull;
return hash;
}
static inline bool vt_cmpr_integer( uint64_t key_1, uint64_t key_2 )
{
return key_1 == key_2;
}
static inline bool vt_cmpr_string( const char *key_1, const char *key_2 )
{
return strcmp( key_1, key_2 ) == 0;
}
// Default allocation and free functions.
static inline void *vt_malloc( size_t size )
{
return malloc( size );
}
static inline void vt_free( void *ptr, size_t size )
{
(void)size;
free( ptr );
}
static inline void *vt_malloc_with_ctx( size_t size, void *ctx )
{
(void)ctx;
return malloc( size );
}
static inline void vt_free_with_ctx( void *ptr, size_t size, void *ctx )
{
(void)size;
(void)ctx;
free( ptr );
}
// The rest of the common header section pertains to the C11 generic macro API.
// This interface is based on the extendible-_Generic mechanism documented in detail at
// https://github.com/JacksonAllan/CC/blob/main/articles/Better_C_Generics_Part_1_The_Extendible_Generic.md.
// In summary, instantiating a template also defines wrappers for the template's types and functions with names in the
// pattern of vt_table_NNNN and vt_init_NNNN, where NNNN is an automatically generated integer unique to the template
// instance in the current translation unit.
// These wrappers plug in to _Generic-based API macros, which use preprocessor magic to automatically generate _Generic
// slots for every existing template instance.
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined( VT_NO_C11_GENERIC_API )
// Octal counter that supports up to 511 hash table templates.
#define VT_TEMPLATE_COUNT_D1 0 // Digit 1, i.e. least significant digit.
#define VT_TEMPLATE_COUNT_D2 0
#define VT_TEMPLATE_COUNT_D3 0
// Four-way concatenation macro.
#define VT_CAT_4_( a, b, c, d ) a##b##c##d
#define VT_CAT_4( a, b, c, d ) VT_CAT_4_( a, b, c, d )
// Provides the current value of the counter as a three-digit octal number preceded by 0.
#define VT_TEMPLATE_COUNT VT_CAT_4( 0, VT_TEMPLATE_COUNT_D3, VT_TEMPLATE_COUNT_D2, VT_TEMPLATE_COUNT_D1 )
// _Generic-slot generation macros.
#define VT_GENERIC_SLOT( ty, fn, n ) , VT_CAT( ty, n ): VT_CAT( fn, n )
#define VT_R1_0( ty, fn, d3, d2 )
#define VT_R1_1( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 0 ) )
#define VT_R1_2( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 1 ) ) VT_R1_1( ty, fn, d3, d2 )
#define VT_R1_3( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 2 ) ) VT_R1_2( ty, fn, d3, d2 )
#define VT_R1_4( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 3 ) ) VT_R1_3( ty, fn, d3, d2 )
#define VT_R1_5( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 4 ) ) VT_R1_4( ty, fn, d3, d2 )
#define VT_R1_6( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 5 ) ) VT_R1_5( ty, fn, d3, d2 )
#define VT_R1_7( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 6 ) ) VT_R1_6( ty, fn, d3, d2 )
#define VT_R1_8( ty, fn, d3, d2 ) VT_GENERIC_SLOT( ty, fn, VT_CAT_4( 0, d3, d2, 7 ) ) VT_R1_7( ty, fn, d3, d2 )
#define VT_R2_0( ty, fn, d3 )
#define VT_R2_1( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 0 )
#define VT_R2_2( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 1 ) VT_R2_1( ty, fn, d3 )
#define VT_R2_3( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 2 ) VT_R2_2( ty, fn, d3 )
#define VT_R2_4( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 3 ) VT_R2_3( ty, fn, d3 )
#define VT_R2_5( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 4 ) VT_R2_4( ty, fn, d3 )
#define VT_R2_6( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 5 ) VT_R2_5( ty, fn, d3 )
#define VT_R2_7( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 6 ) VT_R2_6( ty, fn, d3 )
#define VT_R2_8( ty, fn, d3 ) VT_R1_8( ty, fn, d3, 7 ) VT_R2_7( ty, fn, d3 )
#define VT_R3_0( ty, fn )
#define VT_R3_1( ty, fn ) VT_R2_8( ty, fn, 0 )
#define VT_R3_2( ty, fn ) VT_R2_8( ty, fn, 1 ) VT_R3_1( ty, fn )
#define VT_R3_3( ty, fn ) VT_R2_8( ty, fn, 2 ) VT_R3_2( ty, fn )
#define VT_R3_4( ty, fn ) VT_R2_8( ty, fn, 3 ) VT_R3_3( ty, fn )
#define VT_R3_5( ty, fn ) VT_R2_8( ty, fn, 4 ) VT_R3_4( ty, fn )
#define VT_R3_6( ty, fn ) VT_R2_8( ty, fn, 5 ) VT_R3_5( ty, fn )
#define VT_R3_7( ty, fn ) VT_R2_8( ty, fn, 6 ) VT_R3_6( ty, fn )
#define VT_GENERIC_SLOTS( ty, fn ) \
VT_CAT( VT_R1_, VT_TEMPLATE_COUNT_D1 )( ty, fn, VT_TEMPLATE_COUNT_D3, VT_TEMPLATE_COUNT_D2 ) \
VT_CAT( VT_R2_, VT_TEMPLATE_COUNT_D2 )( ty, fn, VT_TEMPLATE_COUNT_D3 ) \
VT_CAT( VT_R3_, VT_TEMPLATE_COUNT_D3 )( ty, fn ) \
// Actual generic API macros.
// vt_init must be handled as a special case because it could take one or two arguments, depending on whether CTX_TY
// was defined.
#define VT_ARG_3( _1, _2, _3, ... ) _3
#define vt_init( ... ) VT_ARG_3( __VA_ARGS__, vt_init_with_ctx, vt_init_without_ctx, )( __VA_ARGS__ )
#define vt_init_without_ctx( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_init_ ) )( table )
#define vt_init_with_ctx( table, ... ) _Generic( *( table ) \
VT_GENERIC_SLOTS( vt_table_, vt_init_ ) \
)( table, __VA_ARGS__ ) \
#define vt_init_clone( table, ... ) _Generic( *( table ) \
VT_GENERIC_SLOTS( vt_table_, vt_init_clone_ ) \
)( table, __VA_ARGS__ ) \
#define vt_size( table )_Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_size_ ) )( table )
#define vt_bucket_count( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_bucket_count_ ) )( table )
#define vt_is_end( itr ) _Generic( itr VT_GENERIC_SLOTS( vt_table_itr_, vt_is_end_ ) )( itr )
#define vt_insert( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_insert_ ) )( table, __VA_ARGS__ )
#define vt_get_or_insert( table, ... ) _Generic( *( table ) \
VT_GENERIC_SLOTS( vt_table_, vt_get_or_insert_ ) \
)( table, __VA_ARGS__ ) \
#define vt_get( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_get_ ) )( table, __VA_ARGS__ )
#define vt_erase( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_erase_ ) )( table, __VA_ARGS__ )
#define vt_next( itr ) _Generic( itr VT_GENERIC_SLOTS( vt_table_itr_, vt_next_ ) )( itr )
#define vt_erase_itr( table, ... ) _Generic( *( table ) \
VT_GENERIC_SLOTS( vt_table_, vt_erase_itr_ ) \
)( table, __VA_ARGS__ ) \
#define vt_reserve( table, ... ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_reserve_ ) )( table, __VA_ARGS__ )
#define vt_shrink( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_shrink_ ) )( table )
#define vt_first( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_first_ ) )( table )
#define vt_clear( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_clear_ ) )( table )
#define vt_cleanup( table ) _Generic( *( table ) VT_GENERIC_SLOTS( vt_table_, vt_cleanup_ ) )( table )
#endif
#endif
/*--------------------------------------------------------------------------------------------------------------------*/
/* Prefixed structs */
/*--------------------------------------------------------------------------------------------------------------------*/
#ifndef IMPLEMENTATION_MODE
typedef struct
{
KEY_TY key;
#ifdef VAL_TY
VAL_TY val;
#endif
} VT_CAT( NAME, _bucket );
typedef struct
{
VT_CAT( NAME, _bucket ) *data;
uint16_t *metadatum;
uint16_t *metadata_end; // Iterators carry an internal end pointer so that NAME_is_end does not need the table to be
// passed in as an argument.
// This also allows for the zero-bucket-count check to occur once in NAME_first, rather than
// repeatedly in NAME_is_end.
size_t home_bucket; // SIZE_MAX if home bucket is unknown.
} VT_CAT( NAME, _itr );
typedef struct
{
size_t key_count;
size_t buckets_mask; // Rather than storing the bucket count directly, we store the bit mask used to reduce a hash
// code or displacement-derived bucket index to the buckets array, i.e. the bucket count minus
// one.
// Consequently, a zero bucket count (i.e. when .metadata points to the placeholder) constitutes
// a special case, represented by all bits unset (i.e. zero).
VT_CAT( NAME, _bucket ) *buckets;
uint16_t *metadata; // As described above, each metadatum consists of a 4-bit hash-code fragment (X), a 1-bit flag
// indicating whether the key in this bucket begins a chain associated with the bucket (Y), and
// an 11-bit value indicating the quadratic displacement of the next key in the chain (Z):
// XXXXYZZZZZZZZZZZ.
#ifdef CTX_TY
CTX_TY ctx;
#endif
} NAME;
#endif
/*--------------------------------------------------------------------------------------------------------------------*/
/* Function prototypes */
/*--------------------------------------------------------------------------------------------------------------------*/
#if defined( HEADER_MODE ) || defined( IMPLEMENTATION_MODE )
#define VT_API_FN_QUALIFIERS
#else
#define VT_API_FN_QUALIFIERS static inline
#endif
#ifndef IMPLEMENTATION_MODE
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _init )(
NAME *
#ifdef CTX_TY
, CTX_TY
#endif
);
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _init_clone )(
NAME *,
NAME *
#ifdef CTX_TY
, CTX_TY
#endif
);
VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _size )( const NAME * );
VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _bucket_count )( const NAME * );
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _is_end )( VT_CAT( NAME, _itr ) );
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert )(
NAME *,
KEY_TY
#ifdef VAL_TY
, VAL_TY
#endif
);
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get_or_insert )(
NAME *,
KEY_TY
#ifdef VAL_TY
, VAL_TY
#endif
);
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get )(
NAME *table,
KEY_TY key
);
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase )( NAME *, KEY_TY );
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _next )( VT_CAT( NAME, _itr ) );
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _reserve )( NAME *, size_t );
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _shrink )( NAME * );
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _first )( NAME * );
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _clear )( NAME * );
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _cleanup )( NAME * );
// Not an API function, but must be prototyped anyway because it is called by the inline NAME_erase_itr below.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase_itr_raw ) ( NAME *, VT_CAT( NAME, _itr ) );
// Erases the key pointed to by itr and returns an iterator to the next key in the table.
// This function must be inlined to ensure that the compiler optimizes away the NAME_fast_forward call if the returned
// iterator is discarded.
#ifdef __GNUC__
static inline __attribute__((always_inline))
#elif defined( _MSC_VER )
static __forceinline
#else
static inline
#endif
VT_CAT( NAME, _itr ) VT_CAT( NAME, _erase_itr )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
if( VT_CAT( NAME, _erase_itr_raw )( table, itr ) )
return VT_CAT( NAME, _next )( itr );
return itr;
}
#endif
/*--------------------------------------------------------------------------------------------------------------------*/
/* Function implementations */
/*--------------------------------------------------------------------------------------------------------------------*/
#ifndef HEADER_MODE
// Default settings.
#ifndef MAX_LOAD
#define MAX_LOAD 0.9
#endif
#if !defined( MALLOC ) || !defined( FREE )
#include <stdlib.h>
#endif
#ifndef MALLOC_FN
#ifdef CTX_TY
#define MALLOC_FN vt_malloc_with_ctx
#else
#define MALLOC_FN vt_malloc
#endif
#endif
#ifndef FREE_FN
#ifdef CTX_TY
#define FREE_FN vt_free_with_ctx
#else
#define FREE_FN vt_free
#endif
#endif
#ifndef HASH_FN
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#ifdef _MSC_VER // In MSVC, the compound literal in the _Generic triggers a warning about unused local variables at /W4.
#define HASH_FN \
_Pragma( "warning( push )" ) \
_Pragma( "warning( disable: 4189 )" ) \
_Generic( ( KEY_TY ){ 0 }, char *: vt_hash_string, const char*: vt_hash_string, default: vt_hash_integer ) \
_Pragma( "warning( pop )" )
#else
#define HASH_FN _Generic( ( KEY_TY ){ 0 }, char *: vt_hash_string, const char*: vt_hash_string, default: vt_hash_integer )
#endif
#else
#error Hash function inference is only available in C11 and later. In C99, you need to define HASH_FN manually to \
vt_hash_integer, vt_hash_string, or your own custom function with the signature uint64_t ( KEY_TY ).
#endif
#endif
#ifndef CMPR_FN
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#ifdef _MSC_VER
#define CMPR_FN \
_Pragma( "warning( push )" ) \
_Pragma( "warning( disable: 4189 )" ) \
_Generic( ( KEY_TY ){ 0 }, char *: vt_cmpr_string, const char*: vt_cmpr_string, default: vt_cmpr_integer ) \
_Pragma( "warning( pop )" )
#else
#define CMPR_FN _Generic( ( KEY_TY ){ 0 }, char *: vt_cmpr_string, const char*: vt_cmpr_string, default: vt_cmpr_integer )
#endif
#else
#error Comparison function inference is only available in C11 and later. In C99, you need to define CMPR_FN manually \
to vt_cmpr_integer, vt_cmpr_string, or your own custom function with the signature bool ( KEY_TY, KEY_TY ).
#endif
#endif
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _init )(
NAME *table
#ifdef CTX_TY
, CTX_TY ctx
#endif
)
{
table->key_count = 0;
table->buckets_mask = 0x0000000000000000ull;
table->buckets = NULL;
table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
#ifdef CTX_TY
table->ctx = ctx;
#endif
}
// For efficiency, especially in the case of a small table, the buckets array and metadata share the same dynamic memory
// allocation:
// +-----------------------------+-----+----------------+--------+
// | Buckets | Pad | Metadata | Excess |
// +-----------------------------+-----+----------------+--------+
// Any allocated metadata array requires four excess elements to ensure that iteration functions, which read four
// metadata at a time, never read beyond the end of it.
// This function returns the offset of the beginning of the metadata, i.e. the size of the buckets array plus the
// (usually zero) padding.
// It assumes that the bucket count is not zero.
static inline size_t VT_CAT( NAME, _metadata_offset )( NAME *table )
{
// Use sizeof, rather than alignof, for C99 compatibility.
return ( ( ( table->buckets_mask + 1 ) * sizeof( VT_CAT( NAME, _bucket ) ) + sizeof( uint16_t ) - 1 ) /
sizeof( uint16_t ) ) * sizeof( uint16_t );
}
// Returns the total allocation size, including the buckets array, padding, metadata, and excess metadata.
// As above, this function assumes that the bucket count is not zero.
static inline size_t VT_CAT( NAME, _total_alloc_size )( NAME *table )
{
return VT_CAT( NAME, _metadata_offset )( table ) + ( table->buckets_mask + 1 + 4 ) * sizeof( uint16_t );
}
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _init_clone )(
NAME *table,
NAME *source
#ifdef CTX_TY
, CTX_TY ctx
#endif
)
{
table->key_count = source->key_count;
table->buckets_mask = source->buckets_mask;
#ifdef CTX_TY
table->ctx = ctx;
#endif
if( !source->buckets_mask )
{
table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
table->buckets = NULL;
return true;
}
void *allocation = MALLOC_FN(
VT_CAT( NAME, _total_alloc_size )( table )
#ifdef CTX_TY
, &table->ctx
#endif
);
if( VT_UNLIKELY( !allocation ) )
return false;
table->buckets = (VT_CAT( NAME, _bucket ) *)allocation;
table->metadata = (uint16_t *)( (unsigned char *)allocation + VT_CAT( NAME, _metadata_offset )( table ) );
memcpy( allocation, source->buckets, VT_CAT( NAME, _total_alloc_size )( table ) );
return true;
}
VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _size )( const NAME *table )
{
return table->key_count;
}
VT_API_FN_QUALIFIERS size_t VT_CAT( NAME, _bucket_count )( const NAME *table )
{
// If the bucket count is zero, buckets_mask will be zero, not the bucket count minus one.
// We account for this special case by adding (bool)buckets_mask rather than one.
return table->buckets_mask + (bool)table->buckets_mask;
}
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _is_end )( VT_CAT( NAME, _itr ) itr )
{
return itr.metadatum == itr.metadata_end;
}
// Finds the earliest empty bucket in which a key belonging to home_bucket can be placed, assuming that home_bucket
// is already occupied.
// The reason to begin the search at home_bucket, rather than the end of the existing chain, is that keys deleted from
// other chains might have freed up buckets that could fall in this chain before the final key.
// Returns true if an empty bucket within the range of the displacement limit was found, in which case the final two
// pointer arguments contain the index of the empty bucket and its quadratic displacement from home_bucket.
static inline bool VT_CAT( NAME, _find_first_empty )(
NAME *table,
size_t home_bucket,
size_t *empty,
uint16_t *displacement
)
{
*displacement = 1;
size_t linear_dispacement = 1;
while( true )
{
*empty = ( home_bucket + linear_dispacement ) & table->buckets_mask;
if( table->metadata[ *empty ] == VT_EMPTY )
return true;
if( VT_UNLIKELY( ++*displacement == VT_DISPLACEMENT_MASK ) )
return false;
linear_dispacement += *displacement;
}
}
// Finds the key in the chain beginning in home_bucket after which to link a new key with displacement_to_empty
// quadratic displacement and returns the index of the bucket containing that key.
// Although the new key could simply be linked to the end of the chain, keeping the chain ordered by displacement
// theoretically improves cache locality during lookups.
static inline size_t VT_CAT( NAME, _find_insert_location_in_chain )(
NAME *table,
size_t home_bucket,
uint16_t displacement_to_empty
)
{
size_t candidate = home_bucket;
while( true )
{
uint16_t displacement = table->metadata[ candidate ] & VT_DISPLACEMENT_MASK;
if( displacement > displacement_to_empty )
return candidate;
candidate = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
}
}
// Frees up a bucket occupied by a key not belonging there so that a new key belonging there can be placed there as the
// beginning of a new chain.
// This requires:
// * Finding the previous key in the chain to which the occupying key belongs by rehashing it and then traversing the
// chain.
// * Disconnecting the key from the chain.
// * Finding the appropriate empty bucket to which to move the key.
// * Moving the key (and value) data to the empty bucket.
// * Re-linking the key to the chain.
// Returns true if the eviction succeeded, or false if no empty bucket to which to evict the occupying key could be
// found within the displacement limit.
static inline bool VT_CAT( NAME, _evict )( NAME *table, size_t bucket )
{
// Find the previous key in chain.
size_t home_bucket = HASH_FN( table->buckets[ bucket ].key ) & table->buckets_mask;
size_t prev = home_bucket;
while( true )
{
size_t next = ( home_bucket + vt_quadratic( table->metadata[ prev ] & VT_DISPLACEMENT_MASK ) ) &
table->buckets_mask;
if( next == bucket )
break;
prev = next;
}
// Disconnect the key from chain.
table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | ( table->metadata[ bucket ] &
VT_DISPLACEMENT_MASK );
// Find the empty bucket to which to move the key.
size_t empty;
uint16_t displacement;
if( VT_UNLIKELY( !VT_CAT( NAME, _find_first_empty )( table, home_bucket, &empty, &displacement ) ) )
return false;
// Find the key in the chain after which to link the moved key.
prev = VT_CAT( NAME, _find_insert_location_in_chain )( table, home_bucket, displacement );
// Move the key (and value) data.
table->buckets[ empty ] = table->buckets[ bucket ];
// Re-link the key to the chain from its new bucket.
table->metadata[ empty ] = ( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) | ( table->metadata[ prev ] &
VT_DISPLACEMENT_MASK );
table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | displacement;
return true;
}
// Returns an end iterator, i.e. any iterator for which .metadatum == .metadata_end.
// This function just cleans up the library code in functions that return an end iterator as a failure indicator.
static inline VT_CAT( NAME, _itr ) VT_CAT( NAME, _end_itr )( void )
{
VT_CAT( NAME, _itr ) itr = { NULL, NULL, NULL, 0 };
return itr;
}
// Inserts a key, optionally replacing the existing key if it already exists.
// There are two main cases that must be handled:
// * If the key's home bucket is empty or occupied by a key that does not belong there, then the key is inserted there,
// evicting the occupying key if there is one.
// * Otherwise, the chain of keys beginning at the home bucket is (if unique is false) traversed in search of a matching
// key.
// If none is found, then the new key is inserted at the earliest available bucket, per quadratic probing from the
// home bucket, and then linked to the chain in a manner that maintains its quadratic order.
// The unique argument tells the function whether to skip searching for the key before inserting it (on rehashing, this
// step is unnecessary).
// The replace argument tells the function whether to replace an existing key.
// If replace is true, the function returns an iterator to the inserted key, or an end iterator if the key was not
// inserted because of the maximum load factor or displacement limit constraints.
// If replace is false, then the return value is as described above, except that if the key already exists, the function
// returns an iterator to the existing key.
static inline VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert_raw )(
NAME *table,
KEY_TY key,
#ifdef VAL_TY
VAL_TY *val,
#endif
bool unique,
bool replace
)
{
uint64_t hash = HASH_FN( key );
uint16_t hashfrag = vt_hashfrag( hash );
size_t home_bucket = hash & table->buckets_mask;
// Case 1: The home bucket is empty or contains a key that doesn't belong there.
// This case also implicitly handles the case of a zero bucket count, since home_bucket will be zero and metadata[ 0 ]
// will be the empty placeholder.
// In that scenario, the zero buckets_mask triggers the below load-factor check.
if( !( table->metadata[ home_bucket ] & VT_IN_HOME_BUCKET_MASK ) )
{
if(
// Load-factor check.
VT_UNLIKELY( table->key_count + 1 > VT_CAT( NAME, _bucket_count )( table ) * MAX_LOAD ) ||
// Vacate the home bucket if it contains a key.
( table->metadata[ home_bucket ] != VT_EMPTY && VT_UNLIKELY( !VT_CAT( NAME, _evict )( table, home_bucket ) ) )
)
return VT_CAT( NAME, _end_itr )();
table->buckets[ home_bucket ].key = key;
#ifdef VAL_TY
table->buckets[ home_bucket ].val = *val;
#endif
table->metadata[ home_bucket ] = hashfrag | VT_IN_HOME_BUCKET_MASK | VT_DISPLACEMENT_MASK;
++table->key_count;
VT_CAT( NAME, _itr ) itr = {
table->buckets + home_bucket,
table->metadata + home_bucket,
table->metadata + table->buckets_mask + 1, // Iteration stopper (i.e. the first of the four excess metadata).
home_bucket
};
return itr;
}
// Case 2: The home bucket contains the beginning of a chain.
// Optionally, check the existing chain.
if( !unique )
{
size_t bucket = home_bucket;
while( true )
{
if(
( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) == hashfrag &&
VT_LIKELY( CMPR_FN( table->buckets[ bucket ].key, key ) )
)
{
if( replace )
{
#ifdef KEY_DTOR_FN
KEY_DTOR_FN( table->buckets[ bucket ].key );
#endif
table->buckets[ bucket ].key = key;
#ifdef VAL_TY
#ifdef VAL_DTOR_FN
VAL_DTOR_FN( table->buckets[ bucket ].val );
#endif
table->buckets[ bucket ].val = *val;
#endif
}
VT_CAT( NAME, _itr ) itr = {
table->buckets + bucket,
table->metadata + bucket,
table->metadata + table->buckets_mask + 1,
home_bucket
};
return itr;
}
uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
if( displacement == VT_DISPLACEMENT_MASK )
break;
bucket = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
}
}
size_t empty;
uint16_t displacement;
if(
VT_UNLIKELY(
// Load-factor check.
table->key_count + 1 > VT_CAT( NAME, _bucket_count )( table ) * MAX_LOAD ||
// Find the earliest empty bucket, per quadratic probing.
!VT_CAT( NAME, _find_first_empty )( table, home_bucket, &empty, &displacement )
)
)
return VT_CAT( NAME, _end_itr )();
// Insert the new key (and value) in the empty bucket and link it to the chain.
size_t prev = VT_CAT( NAME, _find_insert_location_in_chain )( table, home_bucket, displacement );
table->buckets[ empty ].key = key;
#ifdef VAL_TY
table->buckets[ empty ].val = *val;
#endif
table->metadata[ empty ] = hashfrag | ( table->metadata[ prev ] & VT_DISPLACEMENT_MASK );
table->metadata[ prev ] = ( table->metadata[ prev ] & ~VT_DISPLACEMENT_MASK ) | displacement;
++table->key_count;
VT_CAT( NAME, _itr ) itr = {
table->buckets + empty,
table->metadata + empty,
table->metadata + table->buckets_mask + 1,
home_bucket
};
return itr;
}
// Resizes the bucket array.
// This function assumes that bucket_count is a power of two and large enough to accommodate all keys without violating
// the maximum load factor.
// Returns false in the case of allocation failure.
// As this function is called very rarely in _insert and _get_or_insert, ideally it should not be inlined into those
// functions.
// In testing, the no-inline approach showed a performance benefit when inserting existing keys (i.e. replacing).
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wattributes" // Silence warning about combining noinline with static inline.
__attribute__((noinline)) static inline
#elif defined( _MSC_VER )
__declspec(noinline) static inline
#else
static inline
#endif
bool VT_CAT( NAME, _rehash )( NAME *table, size_t bucket_count )
{
// The attempt to resize the bucket array and rehash the keys must occur inside a loop that incrementally doubles the
// target bucket count because a failure could theoretically occur at any load factor due to the displacement limit.
while( true )
{
NAME new_table = {
0,
bucket_count - 1,
NULL,
NULL
#ifdef CTX_TY
, table->ctx
#endif
};
void *allocation = MALLOC_FN(
VT_CAT( NAME, _total_alloc_size )( &new_table )
#ifdef CTX_TY
, &new_table.ctx
#endif
);
if( VT_UNLIKELY( !allocation ) )
return false;
new_table.buckets = (VT_CAT( NAME, _bucket ) *)allocation;
new_table.metadata = (uint16_t *)( (unsigned char *)allocation + VT_CAT( NAME, _metadata_offset )( &new_table ) );
memset( new_table.metadata, 0x00, ( bucket_count + 4 ) * sizeof( uint16_t ) );
// Iteration stopper at the end of the actual metadata array (i.e. the first of the four excess metadata).
new_table.metadata[ bucket_count ] = 0x01;
for( size_t bucket = 0; bucket < VT_CAT( NAME, _bucket_count )( table ); ++bucket )
if( table->metadata[ bucket ] != VT_EMPTY )
{
VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
&new_table,
table->buckets[ bucket ].key,
#ifdef VAL_TY
&table->buckets[ bucket ].val,
#endif
true,
false
);
if( VT_UNLIKELY( VT_CAT( NAME, _is_end )( itr ) ) )
break;
}
// If a key could not be reinserted due to the displacement limit, double the bucket count and retry.
if( VT_UNLIKELY( new_table.key_count < table->key_count ) )
{
FREE_FN(
new_table.buckets,
VT_CAT( NAME, _total_alloc_size )( &new_table )
#ifdef CTX_TY
, &new_table.ctx
#endif
);
bucket_count *= 2;
continue;
}
if( table->buckets_mask )
FREE_FN(
table->buckets,
VT_CAT( NAME, _total_alloc_size )( table )
#ifdef CTX_TY
, &table->ctx
#endif
);
*table = new_table;
return true;
}
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
// Inserts a key, replacing the existing key if it already exists.
// This function wraps insert_raw in a loop that handles growing and rehashing the table if a new key cannot be inserted
// because of the maximum load factor or displacement limit constraints.
// Returns an iterator to the inserted key, or an end iterator in the case of allocation failure.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _insert )(
NAME *table,
KEY_TY key
#ifdef VAL_TY
, VAL_TY val
#endif
)
{
while( true )
{
VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
table,
key,
#ifdef VAL_TY
&val,
#endif
false,
true
);
if(
// Lookup succeeded, in which case itr points to the found key.
VT_LIKELY( !VT_CAT( NAME, _is_end )( itr ) ) ||
// Lookup failed and rehash also fails, in which case itr is an end iterator.
VT_UNLIKELY(
!VT_CAT( NAME, _rehash )(
table, table->buckets_mask ? VT_CAT( NAME, _bucket_count )( table ) * 2 : VT_MIN_NONZERO_BUCKET_COUNT
)
)
)
return itr;
}
}
// Same as NAME_insert, except that if the key already exists, no insertion occurs and the function returns an iterator
// to the existing key.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get_or_insert )(
NAME *table,
KEY_TY key
#ifdef VAL_TY
, VAL_TY val
#endif
)
{
while( true )
{
VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _insert_raw )(
table,
key,
#ifdef VAL_TY
&val,
#endif
false,
false
);
if(
// Lookup succeeded, in which case itr points to the found key.
VT_LIKELY( !VT_CAT( NAME, _is_end )( itr ) ) ||
// Lookup failed and rehash also fails, in which case itr is an end iterator.
VT_UNLIKELY(
!VT_CAT( NAME, _rehash )(
table, table->buckets_mask ? VT_CAT( NAME, _bucket_count )( table ) * 2 : VT_MIN_NONZERO_BUCKET_COUNT
)
)
)
return itr;
}
}
// Returns an iterator pointing to the specified key, or an end iterator if the key does not exist.
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _get )( NAME *table, KEY_TY key )
{
uint64_t hash = HASH_FN( key );
size_t home_bucket = hash & table->buckets_mask;
// If the home bucket is empty or contains a key that does not belong there, then our key does not exist.
// This check also implicitly handles the case of a zero bucket count, since home_bucket will be zero and
// metadata[ 0 ] will be the empty placeholder.
if( !( table->metadata[ home_bucket ] & VT_IN_HOME_BUCKET_MASK ) )
return VT_CAT( NAME, _end_itr )();
// Traverse the chain of keys belonging to the home bucket.
uint16_t hashfrag = vt_hashfrag( hash );
size_t bucket = home_bucket;
while( true )
{
if(
( table->metadata[ bucket ] & VT_HASH_FRAG_MASK ) == hashfrag &&
VT_LIKELY( CMPR_FN( table->buckets[ bucket ].key, key ) )
)
{
VT_CAT( NAME, _itr ) itr = {
table->buckets + bucket,
table->metadata + bucket,
table->metadata + table->buckets_mask + 1,
home_bucket
};
return itr;
}
uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
if( displacement == VT_DISPLACEMENT_MASK )
return VT_CAT( NAME, _end_itr )();
bucket = ( home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
}
}
// Erases the key pointed to by the specified iterator.
// The erasure always occurs at the end of the chain to which the key belongs.
// If the key to be erased is not the last in the chain, it is swapped with the last so that erasure occurs at the end.
// This helps keep a chain's keys close to their home bucket for the sake of cache locality.
// Returns true if, in the case of iteration from first to end, NAME_next should now be called on the iterator to find
// the next key.
// This return value is necessary because at the iterator location, the erasure could result in an empty bucket, a
// bucket containing a moved key already visited during the iteration, or a bucket containing a moved key not yet
// visited.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase_itr_raw )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
--table->key_count;
size_t itr_bucket = itr.metadatum - table->metadata;
// For now, we only call the value's destructor because the key may need to be hashed below to determine the home
// bucket.
#ifdef VAL_DTOR_FN
VAL_DTOR_FN( table->buckets[ itr_bucket ].val );
#endif
// Case 1: The key is the only one in its chain, so just remove it.
if(
table->metadata[ itr_bucket ] & VT_IN_HOME_BUCKET_MASK &&
( table->metadata[ itr_bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK
)
{
#ifdef KEY_DTOR_FN
KEY_DTOR_FN( table->buckets[ itr_bucket ].key );
#endif
table->metadata[ itr_bucket ] = VT_EMPTY;
return true;
}
// Case 2 and 3 require that we know the key's home bucket, which the iterator may not have recorded.
if( itr.home_bucket == SIZE_MAX )
{
if( table->metadata[ itr_bucket ] & VT_IN_HOME_BUCKET_MASK )
itr.home_bucket = itr_bucket;
else
itr.home_bucket = HASH_FN( table->buckets[ itr_bucket ].key ) & table->buckets_mask;
}
// The key can now be safely destructed for cases 2 and 3.
#ifdef KEY_DTOR_FN
KEY_DTOR_FN( table->buckets[ itr_bucket ].key );
#endif
// Case 2: The key is the last in a multi-key chain.
// Traverse the chain from the beginning and find the penultimate key.
// Then disconnect the key and erase.
if( ( table->metadata[ itr_bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK )
{
size_t bucket = itr.home_bucket;
while( true )
{
uint16_t displacement = table->metadata[ bucket ] & VT_DISPLACEMENT_MASK;
size_t next = ( itr.home_bucket + vt_quadratic( displacement ) ) & table->buckets_mask;
if( next == itr_bucket )
{
table->metadata[ bucket ] |= VT_DISPLACEMENT_MASK;
table->metadata[ itr_bucket ] = VT_EMPTY;
return true;
}
bucket = next;
}
}
// Case 3: The chain has multiple keys, and the key is not the last one.
// Traverse the chain from the key to be erased and find the last and penultimate keys.
// Disconnect the last key from the chain, and swap it with the key to erase.
size_t bucket = itr_bucket;
while( true )
{
size_t prev = bucket;
bucket = ( itr.home_bucket + vt_quadratic( table->metadata[ bucket ] & VT_DISPLACEMENT_MASK ) ) &
table->buckets_mask;
if( ( table->metadata[ bucket ] & VT_DISPLACEMENT_MASK ) == VT_DISPLACEMENT_MASK )
{
table->buckets[ itr_bucket ] = table->buckets[ bucket ];
table->metadata[ itr_bucket ] = ( table->metadata[ itr_bucket ] & ~VT_HASH_FRAG_MASK ) | (
table->metadata[ bucket ] & VT_HASH_FRAG_MASK );
table->metadata[ prev ] |= VT_DISPLACEMENT_MASK;
table->metadata[ bucket ] = VT_EMPTY;
// Whether the iterator should be advanced depends on whether the key moved to the iterator bucket came from
// before or after that bucket.
// In the former case, the iteration would already have hit the moved key, so the iterator should still be
// advanced.
if( bucket > itr_bucket )
return false;
return true;
}
}
}
// Erases the specified key, if it exists.
// Returns true if a key was erased.
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _erase )( NAME *table, KEY_TY key )
{
VT_CAT( NAME, _itr ) itr = VT_CAT( NAME, _get)( table, key );
if( VT_CAT( NAME, _is_end )( itr ) )
return false;
VT_CAT( NAME, _erase_itr_raw )( table, itr );
return true;
}
// Finds the first occupied bucket at or after the bucket pointed to by itr.
// This function scans four buckets at a time, ideally using intrinsics.
static inline void VT_CAT( NAME, _fast_forward )( VT_CAT( NAME, _itr ) *itr )
{
while( true )
{
uint64_t metadata;
memcpy( &metadata, itr->metadatum, sizeof( uint64_t ) );
if( metadata )
{
int offset = vt_first_nonzero_uint16( metadata );
itr->data += offset;
itr->metadatum += offset;
itr->home_bucket = SIZE_MAX;
return;
}
itr->data += 4;
itr->metadatum += 4;
}
}
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _next )( VT_CAT( NAME, _itr ) itr )
{
++itr.data;
++itr.metadatum;
VT_CAT( NAME, _fast_forward )( &itr );
return itr;
}
// Returns the minimum bucket count required to accommodate a certain number of keys, which is governed by the maximum
// load factor.
static inline size_t VT_CAT( NAME, _min_bucket_count_for_size )( size_t size )
{
if( size == 0 )
return 0;
// Round up to a power of two.
size_t bucket_count = VT_MIN_NONZERO_BUCKET_COUNT;
while( size > bucket_count * MAX_LOAD )
bucket_count *= 2;
return bucket_count;
}
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _reserve )( NAME *table, size_t size )
{
size_t bucket_count = VT_CAT( NAME, _min_bucket_count_for_size )( size );
if( bucket_count <= VT_CAT( NAME, _bucket_count )( table ) )
return true;
return VT_CAT( NAME, _rehash )( table, bucket_count );
}
VT_API_FN_QUALIFIERS bool VT_CAT( NAME, _shrink )( NAME *table )
{
size_t bucket_count = VT_CAT( NAME, _min_bucket_count_for_size )( table->key_count );
if( bucket_count == VT_CAT( NAME, _bucket_count )( table ) ) // Shrink unnecessary.
return true;
if( bucket_count == 0 )
{
FREE_FN(
table->buckets,
VT_CAT( NAME, _total_alloc_size )( table )
#ifdef CTX_TY
, &table->ctx
#endif
);
table->buckets_mask = 0x0000000000000000ull;
table->metadata = (uint16_t *)&vt_empty_placeholder_metadatum;
return true;
}
return VT_CAT( NAME, _rehash )( table, bucket_count );
}
VT_API_FN_QUALIFIERS VT_CAT( NAME, _itr ) VT_CAT( NAME, _first )( NAME *table )
{
if( !table->key_count )
return VT_CAT( NAME, _end_itr )();
VT_CAT( NAME, _itr ) itr = { table->buckets, table->metadata, table->metadata + table->buckets_mask + 1, SIZE_MAX };
VT_CAT( NAME, _fast_forward )( &itr );
return itr;
}
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _clear )( NAME *table )
{
if( !table->key_count )
return;
for( size_t i = 0; i < VT_CAT( NAME, _bucket_count )( table ); ++i )
{
if( table->metadata[ i ] != VT_EMPTY )
{
#ifdef KEY_DTOR_FN
KEY_DTOR_FN( table->buckets[ i ].key );
#endif
#ifdef VAL_DTOR_FN
VAL_DTOR_FN( table->buckets[ i ].val );
#endif
}
table->metadata[ i ] = VT_EMPTY;
}
table->key_count = 0;
}
VT_API_FN_QUALIFIERS void VT_CAT( NAME, _cleanup )( NAME *table )
{
if( !table->buckets_mask )
return;
#if defined( KEY_DTOR_FN ) || defined( VAL_DTOR_FN )
VT_CAT( NAME, _clear )( table );
#endif
FREE_FN(
table->buckets,
VT_CAT( NAME, _total_alloc_size )( table )
#ifdef CTX_TY
, &table->ctx
#endif
);
VT_CAT( NAME, _init )(
table
#ifdef CTX_TY
, table->ctx
#endif
);
}
#endif
/*--------------------------------------------------------------------------------------------------------------------*/
/* Wrapper types and functions for the C11 generic API */
/*--------------------------------------------------------------------------------------------------------------------*/
#if defined(__STDC_VERSION__) && \
__STDC_VERSION__ >= 201112L && \
!defined( IMPLEMENTATION_MODE ) && \
!defined( VT_NO_C11_GENERIC_API ) \
typedef NAME VT_CAT( vt_table_, VT_TEMPLATE_COUNT );
typedef VT_CAT( NAME, _itr ) VT_CAT( vt_table_itr_, VT_TEMPLATE_COUNT );
static inline void VT_CAT( vt_init_, VT_TEMPLATE_COUNT )(
NAME *table
#ifdef CTX_TY
, CTX_TY ctx
#endif
)
{
VT_CAT( NAME, _init )(
table
#ifdef CTX_TY
, ctx
#endif
);
}
static inline bool VT_CAT( vt_init_clone_, VT_TEMPLATE_COUNT )(
NAME *table,
NAME* source
#ifdef CTX_TY
, CTX_TY ctx
#endif
)
{
return VT_CAT( NAME, _init_clone )(
table,
source
#ifdef CTX_TY
, ctx
#endif
);
}
static inline size_t VT_CAT( vt_size_, VT_TEMPLATE_COUNT )( const NAME *table )
{
return VT_CAT( NAME, _size )( table );
}
static inline size_t VT_CAT( vt_bucket_count_, VT_TEMPLATE_COUNT )( const NAME *table )
{
return VT_CAT( NAME, _bucket_count )( table );
}
static inline bool VT_CAT( vt_is_end_, VT_TEMPLATE_COUNT )( VT_CAT( NAME, _itr ) itr )
{
return VT_CAT( NAME, _is_end )( itr );
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_insert_, VT_TEMPLATE_COUNT )(
NAME *table,
KEY_TY key
#ifdef VAL_TY
, VAL_TY val
#endif
)
{
return VT_CAT( NAME, _insert )(
table,
key
#ifdef VAL_TY
, val
#endif
);
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_get_or_insert_, VT_TEMPLATE_COUNT )(
NAME *table,
KEY_TY key
#ifdef VAL_TY
, VAL_TY val
#endif
)
{
return VT_CAT( NAME, _get_or_insert )(
table,
key
#ifdef VAL_TY
, val
#endif
);
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_get_, VT_TEMPLATE_COUNT )( NAME *table, KEY_TY key )
{
return VT_CAT( NAME, _get )( table, key );
}
static inline bool VT_CAT( vt_erase_, VT_TEMPLATE_COUNT )( NAME *table, KEY_TY key )
{
return VT_CAT( NAME, _erase )( table, key );
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_next_, VT_TEMPLATE_COUNT )( VT_CAT( NAME, _itr ) itr )
{
return VT_CAT( NAME, _next )( itr );
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_erase_itr_, VT_TEMPLATE_COUNT )( NAME *table, VT_CAT( NAME, _itr ) itr )
{
return VT_CAT( NAME, _erase_itr )( table, itr );
}
static inline bool VT_CAT( vt_reserve_, VT_TEMPLATE_COUNT )( NAME *table, size_t bucket_count )
{
return VT_CAT( NAME, _reserve )( table, bucket_count );
}
static inline bool VT_CAT( vt_shrink_, VT_TEMPLATE_COUNT )( NAME *table )
{
return VT_CAT( NAME, _shrink )( table );
}
static inline VT_CAT( NAME, _itr ) VT_CAT( vt_first_, VT_TEMPLATE_COUNT )( NAME *table )
{
return VT_CAT( NAME, _first )( table );
}
static inline void VT_CAT( vt_clear_, VT_TEMPLATE_COUNT )( NAME *table )
{
VT_CAT( NAME, _clear )( table );
}
static inline void VT_CAT( vt_cleanup_, VT_TEMPLATE_COUNT )( NAME *table )
{
VT_CAT( NAME, _cleanup )( table );
}
// Increment the template counter.
#if VT_TEMPLATE_COUNT_D1 == 0
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 1
#elif VT_TEMPLATE_COUNT_D1 == 1
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 2
#elif VT_TEMPLATE_COUNT_D1 == 2
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 3
#elif VT_TEMPLATE_COUNT_D1 == 3
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 4
#elif VT_TEMPLATE_COUNT_D1 == 4
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 5
#elif VT_TEMPLATE_COUNT_D1 == 5
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 6
#elif VT_TEMPLATE_COUNT_D1 == 6
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 7
#elif VT_TEMPLATE_COUNT_D1 == 7
#undef VT_TEMPLATE_COUNT_D1
#define VT_TEMPLATE_COUNT_D1 0
#if VT_TEMPLATE_COUNT_D2 == 0
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 1
#elif VT_TEMPLATE_COUNT_D2 == 1
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 2
#elif VT_TEMPLATE_COUNT_D2 == 2
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 3
#elif VT_TEMPLATE_COUNT_D2 == 3
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 4
#elif VT_TEMPLATE_COUNT_D2 == 4
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 5
#elif VT_TEMPLATE_COUNT_D2 == 5
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 6
#elif VT_TEMPLATE_COUNT_D2 == 6
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 7
#elif VT_TEMPLATE_COUNT_D2 == 7
#undef VT_TEMPLATE_COUNT_D2
#define VT_TEMPLATE_COUNT_D2 0
#if VT_TEMPLATE_COUNT_D3 == 0
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 1
#elif VT_TEMPLATE_COUNT_D3 == 1
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 2
#elif VT_TEMPLATE_COUNT_D3 == 2
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 3
#elif VT_TEMPLATE_COUNT_D3 == 3
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 4
#elif VT_TEMPLATE_COUNT_D3 == 4
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 5
#elif VT_TEMPLATE_COUNT_D3 == 5
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 6
#elif VT_TEMPLATE_COUNT_D3 == 6
#undef VT_TEMPLATE_COUNT_D3
#define VT_TEMPLATE_COUNT_D3 7
#elif VT_TEMPLATE_COUNT_D3 == 7
#error Sorry, the number of template instances is limited to 511. Define VT_NO_C11_GENERIC_API globally and use the \
C99 prefixed function API to circumvent this restriction.
#endif
#endif
#endif
#endif
#undef NAME
#undef KEY_TY
#undef VAL_TY
#undef HASH_FN
#undef CMPR_FN
#undef MAX_LOAD
#undef KEY_DTOR_FN
#undef VAL_DTOR_FN
#undef CTX_TY
#undef MALLOC_FN
#undef FREE_FN
#undef HEADER_MODE
#undef IMPLEMENTATION_MODE
#undef VT_API_FN_QUALIFIERS
|