1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*
* precomputations.cpp
*
* Used for certain precomputations designed to speed up the main loops.
*
* Created on: 19 Nov 2011
* Author: dan
*/
#include "klustakwik.h"
#include<algorithm>
using namespace std;
// Handles doing all the Initial precomputations once the data has been loaded into
// the class.
void KK::DoInitialPrecomputations()
{
if(UseMaskedEStep || UseMaskedMStep || UseClusterPenalty)
{
// Precompute the indices of the unmasked dimensions for each point
ComputeUnmasked();
// Compute the order of points to consider that minimises the number of
// times the mask changes
ComputeSortIndices();
// Now compute the points at which the mask changes in sorted order
ComputeSortedUnmaskedChangePoints();
// Compute the sum of the masks/float masks for each point (used for computing the cluster penalty)
PointMaskDimension();
}
if(UseMaskedEStep || UseMaskedMStep || UseDistributional)
{
// Precompute the noise means and variances
ComputeNoiseMeansAndVariances();
}
if(UseDistributional)
{
ComputeCorrectionTermsAndReplaceData();
}
}
// Handles doing all the precomputations once the data has been loaded into
// the class. Note that this function has to be called after Data or Masks
// has changed. This is called by TrySplits() and Cluster()
void KK::DoPrecomputations()
{
if(UseMaskedEStep || UseMaskedMStep || UseClusterPenalty)
{
// Precompute the indices of the unmasked dimensions for each point
ComputeUnmasked();
// Compute the order of points to consider that minimises the number of
// times the mask changes
ComputeSortIndices();
// Now compute the points at which the mask changes in sorted order
ComputeSortedUnmaskedChangePoints();
}
if(UseDistributional)
{
ComputeCorrectionTermsAndReplaceData();
}
}
void KK::ComputeUnmasked()
{
int i=0;
if(Unmasked.size() || UnmaskedInd.size())
{
Error("Precomputations have already been done, this indicates a bug.\n");
Error("Error occurred in ComputeUnmasked().\n");
abort();
}
for(int p=0; p<nPoints; p++)
{
UnmaskedInd.push_back(i);
for(int j=0; j<nDims; j++)
{
if(Masks[p*nDims+j])
{
Unmasked.push_back(j);
i++;
}
}
}
UnmaskedInd.push_back(i);
}
// This function computes the points at which the mask changes if we iterate
// through the points in sorted order defined by ComputeSortIndices(). After
// the function is called, SortedMaskChange[SortedIndices[q]] is true if
// the mask for SortedIndices[q] is different from the mask for
// SortedIndices[q-1]
void KK::ComputeSortedUnmaskedChangePoints()
{
if(SortedMaskChange.size()>0)
{
Error("Precomputations have already been done, this indicates a bug.\n");
Error("Error occurred in ComputeSortedUnmaskedChangePoints().\n");
abort();
}
SortedMaskChange.resize(nPoints);
SafeArray<int> safeSortedMaskChange(SortedMaskChange, "CSUCP:SMC");
// The first point when we iterate through the points in sorted order is
// SortedIndices[0] and we consider the mask as having 'changed' for this
// first point, because we use the mask having changed to signal that
// we should recompute the matrices that depend on the masks.
safeSortedMaskChange[SortedIndices[0]] = true;
SafeArray<int> oldmask(Masks, SortedIndices[0]*nDims,
"ComputeSortedUnmaskedChangePoints:oldmask");
int numchanged = 0;
for(int q=1; q<nPoints; q++)
{
int p = SortedIndices[q];
SafeArray<int> newmask(Masks, p*nDims,
"ComputeSortedUnmaskedChangePoints:newmask");
bool changed = false;
for(int i=0; i<nDims; i++)
{
if(newmask[i]!=oldmask[i])
{
oldmask = newmask;
changed = true;
numchanged++;
break;
}
}
safeSortedMaskChange[p] = changed;
}
}
///////////////// SORTING /////////////////////////////////////////////////
// Comparison class, the operator()(i, j) function is used to provide the
// comparison i<j passed to stl::sort. Here i and j are the indices of two
// points, and i<j means that mask_i < mask_j in lexicographical order (we
// could change the ordering, as long as different masks are not considered
// equal).
class KKSort
{
public:
KK *kk;
KKSort(KK *kk) : kk(kk) {};
bool operator()(const int i, const int j) const;
};
// Less than operator for KK.Masks, it's just a lexicographical comparison
bool KKSort::operator()(const int i, const int j) const
{
int nDims = kk->nDims;
for(int k=0; k<nDims; k++)
{
int x = kk->Masks[i*nDims+k];
int y = kk->Masks[j*nDims+k];
if(x<y) return true;
if(x>y) return false;
}
return false;
}
/*
* This function computes the order in which indices should be considered in
* order to minimise the number of times the mask changes. We do this simply
* by creating an array SortedIndices=[0,1,2,...,nPoints-1] and then sorting
* this array where i<j if mask_i<mask_j in lexicographical order. The sorting
* is performed by stl::sort and the comparison function is provided by the
* KKSort class above.
*
* The optional force flag forces a recomputation of the sorted indices, which
* is necessary only in TrySplits(), but we should probably change this by
* refactoring.
*/
void KK::ComputeSortIndices()
{
KKSort kksorter(this);
if(SortedIndices.size())
{
Error("Precomputations have already been done, this indicates a bug.\n");
Error("Error occurred in ComputeSortIndices().\n");
abort();
}
SortedIndices.resize(nPoints);
for(int i=0; i<nPoints; i++)
SortedIndices[i] = i;
stable_sort(SortedIndices.begin(), SortedIndices.end(), kksorter);
}
//void KK::ComputeNoiseMeansAndVariances()
//{
//For TrySplits
//maintain noise mean and variance of each channel
// maintain number of masked points in each channel
// Output("ComputeNoiseMeansandVariances ");
// NoiseMean.resize(nDims);
// NoiseVariance.resize(nDims);
// nMasked.resize(nDims);
//}
void KK::ComputeNoiseMeansAndVariances()
{
// compute noise mean and variance of each channel
// compute number of masked points in each channel
Output("ComputeNoiseMeansandVariances ");
NoiseMean.resize(nDims);
NoiseVariance.resize(nDims);
nMasked.resize(nDims);
// for(int i=0; i<nDims; i++)
// { NoiseMean[i] = 0;
// NoiseVariance[i] = 0;
// nMasked[i] = 0;
// }
for(int p=0; p<nPoints; p++)
for(int i=0; i<nDims; i++)
if(!Masks[p*nDims+i])
{
scalar thisdata = Data[p*nDims+i];
NoiseMean[i] += thisdata;
// NoiseVariance[i] += thisdata*thisdata; // sum of squares
nMasked[i]++;
}
for(int i=0; i<nDims; i++)
{
if(nMasked[i]==0)
{
NoiseMean[i] = 0.0;
NoiseVariance[i] = 0;
// NoiseVariance[i] = 1.0;
} else
{
NoiseMean[i] /= (scalar)nMasked[i];
// NoiseVariance[i] /= (scalar)nMasked[i]; // E[X^2]
// NoiseVariance[i] -= NoiseMean[i]*NoiseMean[i]; // -E[X]^2
}
}
for(int p=0; p<nPoints; p++)
for(int i=0; i<nDims; i++)
if(!Masks[p*nDims+i])
{ scalar thisdata = Data[p*nDims+i];
NoiseVariance[i] += (thisdata-NoiseMean[i])*(thisdata-NoiseMean[i]);
}
for(int i=0; i<nDims; i++)
{
if(nMasked[i]==0)
{ NoiseVariance[i]= 0;
}else {
NoiseVariance[i] /= (scalar)nMasked[i];
}
}
// for(int i=0; i<nDims; i++)
// { Output(" NoiseMean[%d] = %f",i,NoiseMean[i]);
// Output(" NoiseVariance[%d] = %f",i,NoiseVariance[i]);
// Output(" nMasked[%d] = %d",i,nMasked[i]);
// }
}
void KK::ComputeCorrectionTermsAndReplaceData()
{
for(int p=0; p<nPoints; p++)
for(int i=0; i<nDims; i++)
{
scalar x = Data[p*nDims+i];
scalar w = FloatMasks[p*nDims+i];
scalar nu = NoiseMean[i];
scalar sigma2 = NoiseVariance[i];
scalar y = w*x+(1-w)*nu;
scalar z = w*x*x+(1-w)*(nu*nu+sigma2);
CorrectionTerm[p*nDims+i] = z-y*y;
Data[p*nDims+i] = y;
}
}
//SNK PointMaskDimension() computes the sum of the masks/float masks for each point
void KK::PointMaskDimension()
{
int i,p;
for (p=0; p<nPoints; p++)
{
MaskDims[p]=0;
for (i=0;i<nDims;i++)
{
MaskDims[p] += FloatMasks[p*nDims+i];
}
if (Debug)
{
Output("MaskDims[%d] = %f ",p,MaskDims[p]);
}
}
}
|