1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/***************************************************************************
colorsim.cpp - description
-------------------
begin : Mon Jan 21 14:54:37 CST 2008
copyright : (C) 2008 by Matthew Woehlke
email : mw_triad@users.sourceforge.net
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************/
/***************************************************************************
Citations:
[1] H. Brettel, F. Viénot and J. D. Mollon (1997)
"Computerized simulation of color appearance for dichromats."
J. Opt. Soc. Am. A 14, 2647-2655.
[2] F. Viénot, H. Brettel and J. D. Mollon (1999)
"Digital video colourmaps for checking the legibility of displays by
dichromats."
Color Research and Application 24, 243-252.
***************************************************************************/
// application specific includes
#include "colorsim.h"
// include files for Qt
#include <QColor>
#include <math.h>
typedef qreal matrix[3][3];
#define SIMPLE_ALGORITHM
#ifndef SIMPLE_ALGORITHM
typedef qreal vector[3];
struct fcoef {
vector k[2];
// vector e;
matrix s[2];
};
#endif
class xyza {
private:
qreal x, y, z, a;
public:
xyza() {}
xyza(const QColor &c);
QRgb rgba() const;
xyza gamma(qreal q) const;
xyza operator*(const matrix m) const;
#ifndef SIMPLE_ALGORITHM
xyza(const vector v);
qreal operator*(const vector m) const;
xyza flatten(fcoef c) const;
#endif
};
xyza::xyza(const QColor &c) :
x(c.redF()), y(c.greenF()), z(c.blueF()), a(c.alphaF())
{
}
inline qreal clamp(qreal n)
{
return qMin(qreal(1.0), qMax(qreal(0.0), n));
}
QRgb xyza::rgba() const
{
return QColor::fromRgbF(clamp(x), clamp(y), clamp(z), a).rgba();
}
xyza xyza::operator*(const matrix m) const
{
xyza r;
r.x = (x * m[0][0]) + (y * m[0][1]) + (z * m[0][2]);
r.y = (x * m[1][0]) + (y * m[1][1]) + (z * m[1][2]);
r.z = (x * m[2][0]) + (y * m[2][1]) + (z * m[2][2]);
r.a = a;
return r;
}
xyza xyza::gamma(qreal q) const
{
xyza r;
r.x = pow(x, q);
r.y = pow(y, q);
r.z = pow(z, q);
r.a = a;
return r;
}
#if !defined(SIMPLE_ALGORITHM) || !defined(STANFORD_ALGORITHM)
/***************************************************************************
These RGB<->LMS transformation matrices are from [1].
***************************************************************************/
static const matrix rgb2lms = {
{0.1992, 0.4112, 0.0742},
{0.0353, 0.2226, 0.0574},
{0.0185, 0.1231, 1.3550}
};
static const matrix lms2rgb = {
{ 7.4645, -13.8882, 0.1796},
{-1.1852, 6.8053, -0.2234},
{ 0.0058, -0.4286, 0.7558}
};
#endif
#ifdef SIMPLE_ALGORITHM
# ifndef STANFORD_ALGORITHM // from "Computerized simulation of color appearance for dichromats"
# ifdef CRA_ALGORITHM
/***************************************************************************
These matrices are derived from Table II in [2], for the code based on the
Onur/Poliang algorithm below, using the LMS transformation from [1].
No tritanopia data were provided, so that simulation does not work correctly.
***************************************************************************/
static const matrix coef[3] = {
{ {0.0, 2.39238646, -0.04658523}, {0.0, 1.0, 0.0 }, {0.0, 0.0, 1.0} },
{ {1.0, 0.0, 0.0 }, {0.41799267, 0.0, 0.01947228}, {0.0, 0.0, 1.0} },
{ {1.0, 0.0, 0.0 }, {0.0, 1.0, 0.0 }, {0.0, 0.0, 0.0} }
};
# else
/***************************************************************************
These matrices are derived from the "Color Blindness Simulation" sample
palettes from Visolve, Ryobi System Solutions, using the LMS transformations
from [1].
https://www.ryobi-sol.co.jp/visolve/en/simulation.html
***************************************************************************/
static const matrix coef[3] = {
{ {0.0, 2.60493696, -0.08742194}, {0.0, 1.0, 0.0 }, {0.0, 0.0, 1.0} },
{ {1.0, 0.0, 0.0 }, {0.38395980, 0.0, 0.03370622}, {0.0, 0.0, 1.0} },
{ {1.0, 0.0, 0.0 }, {0.0, 1.0, 0.0 }, {-3.11932916, 12.18076308, 0.0} }
};
# endif
# else // from the "Analysis of Color Blindness" project
/***************************************************************************
This code is based on the matrices from [2], as presented by Onur and Poliang.
The tritanopia simulation uses different representative wavelengths (yellow
and blue) than those recommended by [1] and found in most other simulations
(red and cyan).
https://stacks.stanford.edu/file/druid:yj296hj2790/Woods_Assisting_Color_Blind_Viewers.pdf
***************************************************************************/
static const matrix coef[3] = {
{ { 0.0, 2.02344, -2.52581}, {0.0, 1.0, 0.0 }, { 0.0, 0.0, 1.0} },
{ { 1.0, 0.0, 0.0 }, {0.494207, 0.0, 1.24827}, { 0.0, 0.0, 1.0} },
{ { 1.0, 0.0, 0.0 }, {0.0, 1.0, 0.0 }, {-0.395913, 0.801109, 0.0} }
};
static const matrix rgb2lms = {
{17.8824, 43.5161, 4.11935},
{ 3.45565, 27.1554, 3.86714},
{ 0.0299566, 0.184309, 1.46709}
};
static const matrix lms2rgb = {
{ 0.080944447905, -0.130504409160, 0.116721066440},
{-0.010248533515, 0.054019326636, -0.113614708214},
{-0.000365296938, -0.004121614686, 0.693511404861}
};
# endif
inline QRgb recolor(QRgb c, int mode, qreal g)
{
if (mode > 0 && mode < 4) {
xyza n = QColor(c);
if (g != 1.0) {
xyza r = n.gamma(g) * rgb2lms * coef[mode-1] * lms2rgb;
return r.gamma(qreal(1.0) / g).rgba();
}
else {
xyza r = n * rgb2lms * coef[mode-1] * lms2rgb;
return r.rgba();
}
}
else {
return qRgb(qGray(c), qGray(c), qGray(c));
}
}
#else // from "Computerized simulation of color appearance for dichromats"
/***************************************************************************
This code is based on [1]. The RGB<->LMS transformation matrices are declared
above.
***************************************************************************/
static const fcoef coef[3] = {
{
{ {0.0, 0.0, 1.0}, {0.0, 1.0, 0.0} }, // k
// { }, // e
// a { }
{ // s
{ {0.0, 2.39238646, -0.04658523}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0} },
{ {0.0, 0.37421464, -0.02034378}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0} }
}
},
{
{ {0.0, 0.0, 1.0}, {1.0, 0.0, 0.0} }, // k
// { }, // e
// a { }
{ // s
{ {1.0, 0.0, 0.0}, {0.41799267, 0.0, 0.01947228}, {0.0, 0.0, 1.0} },
{ {1.0, 0.0, 0.0}, {0.41799267, 0.0, 0.01947228}, {0.0, 0.0, 1.0} }
}
},
{
{ {0.0, 1.0, 0.0}, {1.0, 0.0, 0.0} }, // k
// { }, // e
// a { }
{ // s
{ {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0} },
{ {1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0} }
}
}
/* The 's' matrices are calculated thusly:
u = E.y*A.z - E.z*A.y;
v = E.z*A.x - E.x*A.z;
w = E.x*A.y - E.y*A.x;
r.x = (mode != 1) ? x : (-v/u) * y + (-w/u) * z;
r.y = (mode != 2) ? y : (-u/v) * x + (-w/v) * z;
r.z = (mode != 3) ? z : (-u/w) * x + (-v/w) * y;
*/
};
xyza::xyza(const vector v) :
x(v[0]), y(v[1]), z(v[2]), a(0.0)
{
}
qreal xyza::operator*(const vector v) const
{
return (x * v[0]) + (y * v[1]) + (z * v[2]);
}
xyza xyza::flatten(fcoef c) const
{
// xyza e(c.e);
// qreal u = (*this * c.k[0]) / (*this * c.k[1]);
// qreal v = (e * c.k[0]) / (e * c.k[1]);
// int i = (u < v ? 0 : 1);
int i = 0;
return *this * c.s[i];
}
inline QRgb recolor(QRgb c, int mode, qreal g)
{
if (mode > 0 && mode < 4) {
xyza n = QColor(c);
xyza r = n.gamma(g) * rgb2lms;
r = r.flatten(coef[mode-1]) * lms2rgb;
return r.gamma(qreal(1.0) / g).rgba();
}
else {
const int g = qGray(c);
return qRgb(g,g,g);
}
}
#endif
QImage ColorSim::recolor(const QImage &pm, int mode, qreal gamma)
{
// get raw data in a format we can manipulate
QImage i = pm;
if (i.format() != QImage::Format_RGB32 && i.format() != QImage::Format_ARGB32)
i = i.convertToFormat(QImage::Format_ARGB32);
int n = i.width() * i.height();
QRgb *d = (QRgb*)i.bits();
for (int k = 0; k < n; ++k)
d[k] = ::recolor(d[k], mode, gamma);
return i;
}
// kate: indent-width 2;
|