File: radix.cpp

package info (click to toggle)
kmc 2.3%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,412 kB
  • sloc: cpp: 17,316; perl: 178; makefile: 90; sh: 16
file content (292 lines) | stat: -rw-r--r-- 9,165 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include "stdafx.h"
/*
  This file is a part of KMC software distributed under GNU GPL 3 licence.
  The homepage of the KMC project is http://sun.aei.polsl.pl/kmc
  
  Authors: Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, Marek Kokot
  
  Version: 2.3.0
  Date   : 2015-08-21
*/

#include <stdio.h>
#include "radix.h"

//----------------------------------------------------------------------------------
/*Parallel radix sort. The input data to be sorted are divided evenly among threads. 
  Each thread is responsible for building a local histogram to enable sorting keys 
  according to a given digit. Then a global histogram is created as a combination
  of local ones and the write offset (location) to which each digit should be written
 is computed. Finally, threads scatter the data to the appropriate locations.*/
template<typename COUNTER_TYPE>
void RadixOMP_uint8(uint32 *SourcePtr, uint32 *DestPtr, const int64 SourceSize, unsigned rec_size, unsigned data_offset, unsigned data_size, const unsigned n_phases, const unsigned n_threads)
{
/* SourceSize - number of records */
/* rec_size - in bytes */
/* data_offset - in bytes*/
/* data_size - in bytes - not used now */

    
#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE ByteCounter[MAX_NUM_THREADS][256];
#else
	COUNTER_TYPE ByteCounter[MAX_NUM_THREADS][256] __attribute__((aligned(ALIGNMENT)));
#endif

#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE globalHisto[256];
#else
	COUNTER_TYPE globalHisto[256] __attribute__((aligned(ALIGNMENT)));
#endif

#pragma omp parallel num_threads(n_threads)
	{ 
		int myID = omp_get_thread_num();
		uint8_t ByteIndex = 0;
		long long i;					
		COUNTER_TYPE prevSum;
		COUNTER_TYPE temp;
		uint32 n;
		
		int private_i;
		int byteValue;
	
		int64 SourceSize_in_bytes = SourceSize * rec_size;

		uint8_t *char_ptr_tempSource = (uint8_t*)(SourcePtr);
		uint8_t *char_ptr_tempDest = (uint8_t*)(DestPtr);
		uint8_t *char_tempPtr;

#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE privateByteCounter[256] = {0};
#else
	__attribute__((aligned(ALIGNMENT)))  COUNTER_TYPE privateByteCounter[256] = {0};
#endif

		for(uint32 privatePhaseCounter = 0; privatePhaseCounter < n_phases; privatePhaseCounter++)
		{
			#pragma omp for private(i) schedule(static) 
			for(i = data_offset; i < SourceSize_in_bytes; i = i + rec_size)
			{
				byteValue = *(&char_ptr_tempSource[i] + ByteIndex);
				
				++privateByteCounter[byteValue];
			}	
			A_memcpy(&ByteCounter[myID][0], privateByteCounter, sizeof(privateByteCounter));

			#pragma omp barrier

			#pragma omp for schedule(static)
			for(i = 0; i < 256; ++i)
			{
				prevSum = 0; 
				for(n = 0; n < n_threads; n++)
				{
					temp = ByteCounter[n][i];
					ByteCounter[n][i] = prevSum;
					prevSum += temp; 
				}
				globalHisto[i] = prevSum;
			}	

			#pragma omp single
			{
				prevSum = 0; 
				for(i = 0; i < 256; ++i)
				{
					temp = globalHisto[i];
					globalHisto[i] = prevSum;
					prevSum += temp; 
				}	
			}


			for (private_i = 0; private_i < 256; private_i++)
				ByteCounter[myID][private_i] += globalHisto[private_i];

			A_memcpy(privateByteCounter, &ByteCounter[myID][0], sizeof(privateByteCounter));
		
			#pragma omp for schedule(static)
			for(i = data_offset; i < SourceSize_in_bytes; i = i + rec_size)
			{
				byteValue = *(&char_ptr_tempSource[i] + ByteIndex);

				memcpy(&char_ptr_tempDest[privateByteCounter[byteValue] * rec_size], &char_ptr_tempSource[i - data_offset], rec_size);

				(privateByteCounter[byteValue])++;
			}

		
			#pragma omp barrier

			char_tempPtr = char_ptr_tempDest;
			char_ptr_tempDest = char_ptr_tempSource;
			char_ptr_tempSource = char_tempPtr;
			ByteIndex++;
			memset(privateByteCounter, 0, sizeof(privateByteCounter));
		}
	}
}

//----------------------------------------------------------------------------------
void RadixSort_uint8(uint32 *&data_ptr, uint32 *&tmp_ptr, uint64 size, unsigned rec_size, unsigned data_offset, unsigned data_size, const unsigned n_phases, const unsigned n_threads)
{
	if(size * rec_size >= (1ull << 32))
		RadixOMP_uint8<uint64>(data_ptr, tmp_ptr, size, rec_size, data_offset, data_size, n_phases, n_threads);
	else
		RadixOMP_uint8<uint32>(data_ptr, tmp_ptr, size, rec_size, data_offset, data_size, n_phases, n_threads);
}


//----------------------------------------------------------------------------------
/*Parallel radix sort. Parallelization scheme taken from 
  Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P. (2010). 
  Fast Sort on CPUs and GPUs. A Case for Bandwidth Oblivious SIMD Sort. 
  Proc. of the 2010 Int. Conf. on Management of data, pp. 351362. 
  The usage of software-managed buffers in the writing phase results in diminishing
  the influence of irregular memory accesses. As the number of cache conflict misses
  is reduced better efficiency is reached.*/
template<typename COUNTER_TYPE, typename INT_TYPE>
	void RadixOMP_buffer(CMemoryPool *pmm_radix_buf, uint64 *Source, uint64 *Dest, const int64 SourceSize, const unsigned n_phases, const unsigned n_threads)
{
#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE ByteCounter[MAX_NUM_THREADS][256];
#else
	COUNTER_TYPE ByteCounter[MAX_NUM_THREADS][256] __attribute__((aligned(ALIGNMENT)));
#endif

#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE globalHisto[256];
#else
	COUNTER_TYPE globalHisto[256] __attribute__((aligned(ALIGNMENT)));
#endif
	
#pragma omp parallel num_threads(n_threads)
	{ 
		int myID = omp_get_thread_num();
		uint8_t ByteIndex = 0;
		long long i;
		COUNTER_TYPE prevSum;
		COUNTER_TYPE temp;

		uint32 n;
		
		int index_x;
		int private_i;
		int byteValue;
		uint64 *tempSource = Source;
		uint64 *tempDest = Dest;
		uint64 *tempPtr;
					
		uint64 *raw_Buffer;
		pmm_radix_buf->reserve(raw_Buffer);
		uint64 *Buffer = raw_Buffer;     
		
		while(((unsigned long long) Buffer) % ALIGNMENT)
			Buffer++; 

#ifdef WIN32
	__declspec( align( WIN_ALIGNMENT ) ) COUNTER_TYPE privateByteCounter[256] = {0};
#else
	__attribute__((aligned(ALIGNMENT)))  COUNTER_TYPE privateByteCounter[256] = {0};
#endif
		
   		for(uint32 privatePhaseCounter = 0; privatePhaseCounter < n_phases; privatePhaseCounter++)
		{
			#pragma omp for private(i) schedule(static) 
			for(i = 0; i < SourceSize; ++i)
			{
				byteValue = *(reinterpret_cast<const uint8_t*>(&tempSource[i]) + ByteIndex);
				++privateByteCounter[byteValue];
			}	
			A_memcpy(&ByteCounter[myID][0], privateByteCounter, sizeof(privateByteCounter));

			#pragma omp barrier

			#pragma omp for schedule(static)
			for(i = 0; i < 256; ++i)
			{
				prevSum = 0; 
				for(n = 0; n < n_threads; n++)
				{
					temp = ByteCounter[n][i];
					ByteCounter[n][i] = prevSum;
					prevSum += temp; 
				}
				globalHisto[i] = prevSum;
			}	

			#pragma omp single
			{
				prevSum = 0; 
				for(i = 0; i < 256; ++i)
				{
					temp = globalHisto[i];
					globalHisto[i] = prevSum;
					prevSum += temp; 
				}	
			}

			for (private_i = 0; private_i < 256; private_i++)
				ByteCounter[myID][private_i] += globalHisto[private_i];

			A_memcpy(privateByteCounter, &ByteCounter[myID][0], sizeof(privateByteCounter));
		

			#pragma omp for schedule(static)
			for(i = 0; i < SourceSize; ++i)
			{
				byteValue = *(reinterpret_cast<const uint8_t*>(&tempSource[i]) + ByteIndex);

				index_x = privateByteCounter[byteValue] % BUFFER_WIDTH;

				Buffer[byteValue * BUFFER_WIDTH + index_x] = tempSource[i];
			
				privateByteCounter[byteValue]++;

				if(index_x == (BUFFER_WIDTH -1))
					A_memcpy ( &tempDest[privateByteCounter[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(uint64) );
			} //end_for

			INT_TYPE elemInBuffer;
			INT_TYPE index_stop;
			INT_TYPE index_start;
			INT_TYPE elemWrittenIntoBuffer;
		
			for(private_i = 0; private_i < 256; private_i++)
			{
				index_stop = privateByteCounter[private_i] % BUFFER_WIDTH;
				index_start = ByteCounter[myID][private_i] % BUFFER_WIDTH;
				elemWrittenIntoBuffer = privateByteCounter[private_i] - ByteCounter[myID][private_i];

				if((index_stop - elemWrittenIntoBuffer) <= 0)
					elemInBuffer = index_stop;
				else
					elemInBuffer = index_stop - index_start;

				if(elemInBuffer != 0)
					A_memcpy ( &tempDest[privateByteCounter[private_i] - elemInBuffer], &Buffer[private_i * BUFFER_WIDTH + (privateByteCounter[private_i] - elemInBuffer)%BUFFER_WIDTH], (elemInBuffer)*sizeof(uint64) );
			
			}
			#pragma omp barrier

			tempPtr = tempDest;
			tempDest = tempSource;
			tempSource = tempPtr;
			ByteIndex++;
			memset(privateByteCounter, 0, sizeof(privateByteCounter));
		}
		pmm_radix_buf->free(raw_Buffer);
	}
}

//----------------------------------------------------------------------------------
void RadixSort_buffer(CMemoryPool *pmm_radix_buf, uint64 *&data, uint64 *&tmp, uint64 size, const unsigned n_phases, const unsigned n_threads)
{
	if(size >= (1ull << 31))
		RadixOMP_buffer<uint64, int64>(pmm_radix_buf, data, tmp, size, n_phases, n_threads);
	else
		RadixOMP_buffer<uint32, int32>(pmm_radix_buf, data, tmp, size, n_phases, n_threads);
}

// ***** EOF