File: raduls_impl.h

package info (click to toggle)
kmc 3.2.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 3,716 kB
  • sloc: cpp: 38,308; python: 664; makefile: 216; perl: 179; sh: 34
file content (808 lines) | stat: -rw-r--r-- 25,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*
  This file is a part of KMC software distributed under GNU GPL 3 licence.
  The homepage of the KMC project is http://sun.aei.polsl.pl/kmc
  
  Authors: Sebastian Deorowicz, Agnieszka Debudaj-Grabysz, Marek Kokot
  
  Version: 3.2.4
  Date   : 2024-02-09
*/

#ifndef _RADULS_IMPL_H
#define _RADULS_IMPL_H

#include <cassert>
#include <queue>
#include <condition_variable>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include "defs.h"
#include "kmer.h"
#include "timer.h"
#include <thread>
#include "first_dispatch.h"
#include "intr_copy.h"
#include "raduls.h"

#define IS_NARROW(x, y)	((x) < (y) * 16)

//#define USE_TIMERS
#include "raduls_impl.h"

namespace RadulsSort
{
	constexpr uint64 insertion_sort_thresholds[] = { 32, 32, 32, 25, 54, 42, 42, 32, 32, 32, 32, 32, 32, 32, 32, 32 };
	constexpr uint64 shell_sort_thresholds[] = { 32, 180, 180, 256, 134, 165, 87, 103, 103, 103, 103, 103, 103, 103, 103, 103 };
	constexpr uint64 std_sort_thresholds[] = { 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384 };
	constexpr uint64 small_sort_thresholds[] = { 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384 };
	constexpr uint64 wide_small_sort_thresholds[] = { 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 };

	constexpr uint64 get_insertion_sort_threshold(uint32 index)
	{
		if (index < 16)
			return insertion_sort_thresholds[index];
		return 32;
	}

	constexpr uint64 get_shell_sort_threshold(uint32 index)
	{
		if (index < 16)
			return shell_sort_thresholds[index];
		return 103;
	}

	constexpr uint64 get_std_sort_threshold(uint32 index)
	{
		if (index < 16)
			return std_sort_thresholds[index];
		return 384;
	}

	constexpr uint64 get_small_sort_threshold(uint32 index)
	{
		if (index < 16)
			return small_sort_thresholds[index];
		return 384;
	}

	constexpr uint64 get_wide_small_sort_threshold(uint32 index)
	{
		if (index < 16)
			return wide_small_sort_thresholds[index];
		return 32;
	}


	template<typename KMER_T>
	inline void ShellSortDispatch(KMER_T* kmers, int size)
	{
		int i, j;
		KMER_T x;

		for (i = 8; i < size; i++)
		{
			j = i;
			x = kmers[i];
			while (j >= 8 && x < kmers[j - 8])
			{
				kmers[j] = kmers[j - 8];
				j -= 8;
			}
			kmers[j] = x;
		}

		for (i = 1; i < size; i++)
		{
			x = kmers[i];
			j = i - 1;
			while (j >= 0 && x < kmers[j])
			{
				kmers[j + 1] = kmers[j];
				j--;
			}
			kmers[j + 1] = x;
		}
	}

	template<typename KMER_T>
	inline void InsertionSortDispatch(KMER_T* kmers, int size)
	{
		int i, j;
		KMER_T x;

		for (i = 1; i < size; i++)
		{
			x = kmers[i];
			j = i - 1;
			while (j >= 0 && x < kmers[j])
			{
				kmers[j + 1] = kmers[j];
				j--;
			}
			kmers[j + 1] = x;
		}
	}

	template<typename KMER_T>
	inline void StdSortDispatch(KMER_T* kmers, uint64 size)
	{
		std::sort(kmers, kmers + size);
	}
	template<typename KMER_T>
	inline void SmallSortDispatch(KMER_T* kmers, uint64 size)
	{
		if (size <= get_insertion_sort_threshold(KMER_T::KMER_SIZE))
			InsertionSortDispatch(kmers, (int)size);
		else if (size <= get_shell_sort_threshold(KMER_T::KMER_SIZE))
			ShellSortDispatch(kmers, (int)size);
		else if (size <= get_std_sort_threshold(KMER_T::KMER_SIZE))
			StdSortDispatch(kmers, size);
	}


	template<typename KMER_T>
	struct CRadixMSDTaskskDesc
	{
		KMER_T* kmers;
		KMER_T* tmp;
		uint64_t n_recs;
		uint32_t byte;
		bool is_narrow;

		CRadixMSDTaskskDesc(KMER_T* kmers, KMER_T* tmp, uint64_t n_recs, uint32_t byte, bool is_narrow) :
			kmers(kmers), tmp(tmp), n_recs(n_recs), byte(byte), is_narrow(is_narrow)
		{
		}
		bool operator<(const CRadixMSDTaskskDesc<KMER_T> &x) const
		{
			return this->n_recs < x.n_recs;
		}
	};


	template<typename KMER_T>
	class CRadixMSDTasksQueue
	{
		std::priority_queue<CRadixMSDTaskskDesc<KMER_T>> tasks;
		std::condition_variable cv_pop;
		mutable std::mutex mtx;
		uint64_t tasks_in_progress = 0;
	public:
		void push(KMER_T* kmers, KMER_T* tmp, uint64_t n, uint32_t byte, bool is_narrow)
		{
			std::lock_guard<std::mutex> lck(mtx);
			tasks_in_progress++;
			tasks.emplace(kmers, tmp, n, byte, is_narrow);

			if (tasks.size() == 1) // was empty
				cv_pop.notify_all();
		}

		bool pop(KMER_T* &kmers, KMER_T* &tmp, uint64_t& n, uint32_t& byte, bool &is_narrow)
		{
			std::unique_lock<std::mutex> lck(mtx);
			cv_pop.wait(lck, [this] { return tasks.size() || !tasks_in_progress; });
			if (!tasks_in_progress)
				return false;

			kmers = tasks.top().kmers;
			tmp = tasks.top().tmp;
			n = tasks.top().n_recs;
			byte = tasks.top().byte;
			is_narrow = tasks.top().is_narrow;

			tasks.pop();

			return true;
		}

		void notify_task_finished()
		{
			std::lock_guard<std::mutex> lck(mtx);
			--tasks_in_progress;
			if (!tasks_in_progress)
				cv_pop.notify_all();
		}
	};

	template <typename KMER_T, typename COUNTER_TYPE>
	class CRadixSorterMSD
	{
		CRadixMSDTasksQueue<KMER_T>& tasks_queue;
		CMemoryPool* pmm_radix_buf;
		uint64 use_queue_min_recs = 0;

		void Sort(KMER_T* kmers, KMER_T* tmp, uint64_t n_recs, uint32_t byte, bool is_narrow)
		{
#ifdef MEASURE_TIMES
			CThreadWatch tw;
			tw.startTimer();
#endif

			uint8_t* ptr = (uint8_t*)kmers + byte;
			ALIGN_ARRAY COUNTER_TYPE globalHisto[256] = {};
			ALIGN_ARRAY COUNTER_TYPE copy_globalHisto[257] = {};

			//-------------------------------------------------------------------------------
			//the following loop is unrolled below:
			//-------------------------------------------------------------------------------
			//for (uint64_t i = 0; i < n_recs; i++)
			//{
			//globalHisto[*ptr]++;
			//ptr += sizeof(KMER_T);
			//}
			switch (n_recs % 4)
			{
			case 3:
				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);
			case 2:
				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);
			case 1:
				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);
			}
			for (uint64 i = 0; i < n_recs / 4; ++i)
			{
				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);

				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);

				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);

				globalHisto[*ptr]++;
				ptr += sizeof(KMER_T);
			}
			//-------------------------------------------------------------------------------
			//the end of the unrolled loop
			//-------------------------------------------------------------------------------

			COUNTER_TYPE prevSum = 0;
			for (int i = 0; i < 256; ++i)
			{
				COUNTER_TYPE temp = globalHisto[i];
				globalHisto[i] = prevSum;
				copy_globalHisto[i] = prevSum;
				prevSum += temp;
			}
			copy_globalHisto[256] = (COUNTER_TYPE)n_recs;

			KMER_T* src = kmers;
			ptr = (uint8_t*)kmers + byte;

#ifdef MEASURE_TIMES
			tw.stopTimer();

			times_byte_total[byte] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
			if (n_recs * sizeof(KMER_T) >= (1ull << 17))
				times_satish_stages[byte][0] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
#endif

			if (n_recs * sizeof(KMER_T) < (1ull << 17))
			{
#ifdef MEASURE_TIMES
				tw.startTimer();
#endif
				//-------------------------------------------------------------------------------
				//the following loop is unrolled below:
				//-------------------------------------------------------------------------------

				//for (uint64_t i = 0; i < n_recs; ++i)
				//{
				//tmp[globalHisto[*ptr]] = src[i];
				//globalHisto[*ptr]++;
				//ptr += sizeof(KMER_T);
				//}


				switch (n_recs % 4)
				{
				case 3:
					tmp[globalHisto[*ptr]] = src[(n_recs % 4) - 3];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);
				case 2:
					tmp[globalHisto[*ptr]] = src[(n_recs % 4) - 2];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);
				case 1:
					tmp[globalHisto[*ptr]] = src[(n_recs % 4) - 1];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);
				}

				for (uint64 i = n_recs % 4; i < n_recs; i += 4)
				{
					tmp[globalHisto[*ptr]] = src[i];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);

					tmp[globalHisto[*ptr]] = src[i + 1];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);

					tmp[globalHisto[*ptr]] = src[i + 2];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);

					tmp[globalHisto[*ptr]] = src[i + 3];
					globalHisto[*ptr]++;
					ptr += sizeof(KMER_T);
				}
				//-------------------------------------------------------------------------------
				//the end of the unrolled loop
				//-------------------------------------------------------------------------------
#ifdef MEASURE_TIMES
				tw.stopTimer();

				times_byte_total[byte] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
#endif
			}
			else
			{
#ifdef MEASURE_TIMES
				tw.startTimer();
#endif
				constexpr uint32_t BUFFER_WIDTH = GetBufferWidth(sizeof(KMER_T) / 8);
				constexpr uint32_t BUFFER_WIDTH_IN_128BIT_WORDS = BUFFER_WIDTH * sizeof(KMER_T) / 16;
				constexpr uint32_t BUFFER_16B_ALIGNED = sizeof(KMER_T) % 16 == 0;

				uchar* raw_buffer;
				pmm_radix_buf->reserve(raw_buffer);
				uchar* buffer = raw_buffer;
				while ((uint64_t)buffer % ALIGNMENT)
					++buffer;
				KMER_T *Buffer = (KMER_T*)buffer;

				uint8_t byteValue = 0;
				int index_x = 0;

				//-------------------------------------------------------------------------------
				//the following loop is unrolled below
				//-------------------------------------------------------------------------------

				//for (uint64_t i = 0; i < n_recs; ++i)
				//{
				//	byteValue = *ptr;
				//	index_x = globalHisto[byteValue] % BUFFER_WIDTH;
				//	Buffer[byteValue * BUFFER_WIDTH + index_x] = src[i];
				//	globalHisto[byteValue]++;
				//	if (index_x == (BUFFER_WIDTH - 1))
				//		memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
				//	ptr += sizeof(KMER_T);
				//} //end_for


				switch (n_recs % 4)
				{
				case 3:
					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[(n_recs % 4) - 3];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);
				case 2:
					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[(n_recs % 4) - 2];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);
				case 1:
					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[(n_recs % 4) - 1];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);
				}

				for (uint64_t i = n_recs % 4; i < n_recs; i += 4)
				{
					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[i];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);

					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[i + 1];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);

					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[i + 2];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);

					byteValue = *ptr;
					index_x = globalHisto[byteValue] % BUFFER_WIDTH;
					Buffer[byteValue * BUFFER_WIDTH + index_x] = src[i + 3];
					globalHisto[byteValue]++;
					if (index_x == (BUFFER_WIDTH - 1))
						//					memcpy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH], BUFFER_WIDTH *sizeof(KMER_T));
						IntrCopy128<BUFFER_WIDTH_IN_128BIT_WORDS, BUFFER_16B_ALIGNED>::Copy(&tmp[globalHisto[byteValue] - (BUFFER_WIDTH)], &Buffer[byteValue * BUFFER_WIDTH]);
					ptr += sizeof(KMER_T);
				}
#ifdef MEASURE_TIMES
				tw.stopTimer();

				times_byte_total[byte] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
				times_satish_stages[byte][1] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
#endif
				//-------------------------------------------------------------------------------
				//the end of the unrolled loop
				//-------------------------------------------------------------------------------
#ifdef MEASURE_TIMES
				tw.startTimer();
#endif
				int64_t elemInBuffer;
				int64_t index_stop;
				int64_t index_start;
				int64_t elemWrittenIntoBuffer;

				for (uint32_t private_i = 0; private_i < 256; private_i++)
				{
					index_stop = globalHisto[private_i] % BUFFER_WIDTH;
					index_start = copy_globalHisto[private_i] % BUFFER_WIDTH;
					elemWrittenIntoBuffer = globalHisto[private_i] - copy_globalHisto[private_i];

					if ((index_stop - elemWrittenIntoBuffer) <= 0)
						elemInBuffer = index_stop;
					else
						elemInBuffer = index_stop - index_start;

					if (elemInBuffer != 0)
						//					memcpy(&tmp[globalHisto[private_i] - elemInBuffer], &Buffer[private_i * BUFFER_WIDTH + (globalHisto[private_i] - elemInBuffer) % BUFFER_WIDTH], (elemInBuffer)*sizeof(KMER_T));
						IntrCopy64fun(&tmp[globalHisto[private_i] - elemInBuffer],
							&Buffer[private_i * BUFFER_WIDTH + (globalHisto[private_i] - elemInBuffer) % BUFFER_WIDTH], elemInBuffer * sizeof(KMER_T) / 8);
				}

				pmm_radix_buf->free(raw_buffer);
#ifdef MEASURE_TIMES
				tw.stopTimer();

				times_byte_total[byte] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
				times_satish_stages[byte][2] += (uint64_t)(tw.getElapsedTime() * 1000000000.0);
#endif
			}

			if (byte > 0)
			{
				bool must_copy_tmp = byte % 2 != 0;

				uint64_t narrow_small_sort_threshold = get_small_sort_threshold(KMER_T::KMER_SIZE);
				uint64_t wide_small_sort_threshold = get_wide_small_sort_threshold(KMER_T::KMER_SIZE);

				for (int i = 0; i < 256; i++)
				{
					uint64_t new_n = copy_globalHisto[i + 1] - copy_globalHisto[i];

					if (new_n <= wide_small_sort_threshold || (is_narrow && new_n <= narrow_small_sort_threshold))
					{
						SmallSortDispatch(tmp + copy_globalHisto[i], new_n);
						if (must_copy_tmp)
							for (COUNTER_TYPE j = copy_globalHisto[i]; j < copy_globalHisto[i] + (COUNTER_TYPE)new_n; ++j)
								kmers[j] = tmp[j];
					}
					else
					{
						if (new_n >= use_queue_min_recs)
							tasks_queue.push(tmp + copy_globalHisto[i], kmers + copy_globalHisto[i], new_n, byte - 1, IS_NARROW(n_recs, new_n));
						else
							Sort(tmp + copy_globalHisto[i], kmers + copy_globalHisto[i], new_n, byte - 1, IS_NARROW(n_recs, new_n));
					}
				}
			}
		}

	public:
		CRadixSorterMSD(CRadixMSDTasksQueue<KMER_T>& tasks_queue, CMemoryPool* pmm_radix_buf, uint64 use_queue_min_recs) :
			tasks_queue(tasks_queue),
			pmm_radix_buf(pmm_radix_buf),
			use_queue_min_recs(use_queue_min_recs)
		{
		}
		void operator()()
		{
			KMER_T* kmers;
			KMER_T* tmp;
			uint64_t n_recs;
			uint32 byte;
			bool is_narrow;

			while (tasks_queue.pop(kmers, tmp, n_recs, byte, is_narrow))
			{
				Sort(kmers, tmp, n_recs, byte, is_narrow);
				tasks_queue.notify_task_finished();
			}
		}
	};


	template<typename KMER_T, typename COUNTER_TYPE>
	void RadixSortMSD_impl(KMER_T* kmers, KMER_T* tmp, uint64 n_recs, uint32 byte, uint32 n_threads, CMemoryPool* pmm_radix_buf, bool is_first_level,
		uint64 is_big_threshold, uint64 n_total_recs)
	{
		uint64_t current_small_sort_threshold = get_small_sort_threshold(KMER_T::KMER_SIZE);

		if (n_recs <= current_small_sort_threshold)
		{
			SmallSortDispatch(kmers, n_recs);
			if (byte % 2 == 0)
			{
				for (uint64 j = 0; j < n_recs; ++j)
					tmp[j] = kmers[j];
			}
			return;
		}

		CRangeQueue my_buffer(MAGIC_NUMBER * n_threads, n_recs);

		uint64 per_thread = n_recs / n_threads;

#ifdef USE_TIMERS
		CStopWatch sw;
		sw.startTimer();
#endif

		std::vector<std::thread> threads;
		//	std::vector<ALIGN_ARRAY COUNTER_TYPE[256]> histos(MAGIC_NUMBER * n_threads);
		std::vector<std::array<COUNTER_TYPE, 256>> histos(MAGIC_NUMBER * n_threads);
		ALIGN_ARRAY COUNTER_TYPE globalHisto[256] = {};
		for (uint32_t th_id = 0; th_id < n_threads; ++th_id)
		{
			threads.push_back(std::thread(pierwsze_kolko_etap1<KMER_T, COUNTER_TYPE>, th_id, kmers, n_recs, n_threads, per_thread,
				ref(histos), byte, std::ref(my_buffer)));
		}

		for (auto& t : threads)
			t.join();
		threads.clear();

#ifdef USE_TIMERS
		sw.stopTimer();
		cout << "1: " << sw.getElapsedTime() << endl; 	fflush(stdout);
		sw.startTimer();
#endif

		// ***** collecting counters
		for (int i = 0; i < 256; ++i)
		{
			COUNTER_TYPE prevSum = 0;
			for (uint32_t n = 0; n < MAGIC_NUMBER * n_threads; n++) //<<<---------------
			{
				COUNTER_TYPE temp = histos[n][i];
				histos[n][i] = prevSum;
				prevSum += temp;
			}
			globalHisto[i] = prevSum;
		}

		COUNTER_TYPE prevSum = 0;
		for (int i = 0; i < 256; ++i)
		{
			COUNTER_TYPE temp = globalHisto[i];
			globalHisto[i] = prevSum;
			prevSum += temp;
		}

		for (uint32_t n = 0; n < MAGIC_NUMBER * n_threads; ++n) //<<<------------------
		{
			for (int i = 0; i < 256; i++)
			{
				histos[n][i] += globalHisto[i];
			}
		}

		my_buffer.reset_indices();

		std::vector<uchar*> _raw_buffers(MAGIC_NUMBER * n_threads);
		//	std::vector<ALIGN_ARRAY COUNTER_TYPE[256]> threads_histos(MAGIC_NUMBER * n_threads);
		std::vector<std::array<COUNTER_TYPE, 256>> threads_histos(MAGIC_NUMBER * n_threads);

		for (uint32_t th_id = 0; th_id < n_threads; ++th_id)
		{
			threads.push_back(std::thread(pierwsze_kolko_etap2<KMER_T, COUNTER_TYPE>, th_id, kmers, tmp,
				n_recs, n_threads, per_thread, byte,
				ref(histos), ref(_raw_buffers), ref(threads_histos), pmm_radix_buf, ref(my_buffer)));
		}
		for (auto& t : threads)
			t.join();
		threads.clear();

#ifdef USE_TIMERS
		sw.stopTimer();
		cout << "2: " << sw.getElapsedTime() << endl; 	fflush(stdout);
		sw.startTimer();
#endif

		my_buffer.reset_indices();
		for (uint32_t th_id = 0; th_id < n_threads; ++th_id)
		{
			threads.push_back(std::thread(pierwsze_kolko_etap3<KMER_T, COUNTER_TYPE>, th_id, kmers, tmp,
				n_recs, n_threads, per_thread, byte,
				ref(histos), ref(_raw_buffers), ref(threads_histos), pmm_radix_buf, ref(my_buffer)));
		}
		for (auto& t : threads)
			t.join();
		threads.clear();

#ifdef USE_TIMERS
		sw.stopTimer();
		cout << "3: " << sw.getElapsedTime() << endl; 	fflush(stdout);
#endif

		if (byte > 0)
		{
			//---------------------------

			CRadixMSDTasksQueue<KMER_T> tasks_queue;

			KMER_T* kmers_ptr = kmers;
			KMER_T* ptr = tmp;

			/*		if (n_threads <= 4)
			is_big_threshold = n_recs; //for 4 or less threads do not extract big bins
			*/

			std::vector<std::tuple<KMER_T*, KMER_T*, uint64>> big_bins;
			uint64_t n_rec_in_big_bins = 0;

			for (uint32_t i = 1; i < 256; ++i)
			{
				uint64_t n = globalHisto[i] - globalHisto[i - 1];
				if (n > 0)
				{
					if (n > is_big_threshold)
						if (!is_first_level)
							RadixSortMSD_impl<KMER_T, COUNTER_TYPE>(ptr, kmers_ptr, n, byte - 1, n_threads, pmm_radix_buf, false, is_big_threshold, n_total_recs);
						else
						{
							big_bins.push_back(std::make_tuple(ptr, kmers_ptr, n));
							n_rec_in_big_bins += n;
						}
					else
						tasks_queue.push(ptr, kmers_ptr, n, byte - 1, IS_NARROW(n_recs, n));
					//					tasks_queue.push(ptr, kmers_ptr, n, byte - 1, 0);
				}
				ptr += n;
				kmers_ptr += n;
			}
			uint64_t n = n_recs - globalHisto[255];
			if (n > 0)
			{
				if (n > is_big_threshold)
					if (!is_first_level)
						RadixSortMSD_impl<KMER_T, COUNTER_TYPE>(ptr, kmers_ptr, n, byte - 1, n_threads, pmm_radix_buf, false, is_big_threshold, n_total_recs);
					else
					{
						big_bins.push_back(std::make_tuple(ptr, kmers_ptr, n));
						n_rec_in_big_bins += n;
					}
				else
					tasks_queue.push(ptr, kmers_ptr, n, byte - 1, IS_NARROW(n, n_recs));
				//				tasks_queue.push(ptr, kmers_ptr, n, byte - 1, 0);
			}
			ptr += n;
			kmers_ptr += n;

			sort(big_bins.begin(), big_bins.end(), [](std::tuple<KMER_T*, KMER_T*, uint64> x, std::tuple<KMER_T*, KMER_T*, uint64> y) { return get<2>(x) > get<2>(y); });

			//		uint32 n_threads_for_big_bins = 2 * n_threads / 3;
			uint32 n_threads_for_big_bins = uint32(ceil(n_threads * n_rec_in_big_bins * 5.0 / (4 * n_total_recs)));
			if (n_threads_for_big_bins > n_threads)
				n_threads_for_big_bins = n_threads;

			uint32 n_threads_for_small_bins_running;
			uint32 n_threads_for_small_bins = n_threads - n_threads_for_big_bins;
			//		cout << n_threads_for_small_bins_running << " " << n_threads_for_small_bins << " " << n_threads_for_big_bins << " " << n_recs << " " << n_rec_in_big_bins << endl;

			std::vector<CRadixSorterMSD<KMER_T, COUNTER_TYPE>*> sorters;
			for (n_threads_for_small_bins_running = 0; n_threads_for_small_bins_running < n_threads_for_small_bins; ++n_threads_for_small_bins_running)
			{
				sorters.push_back(new CRadixSorterMSD<KMER_T, COUNTER_TYPE>(tasks_queue, pmm_radix_buf, n_recs / 4096));
				threads.push_back(std::thread(std::ref(*sorters.back())));
			}
			//		cout << n_threads_for_small_bins_running << " " << n_threads_for_small_bins << " " << n_threads_for_big_bins << " " << n_recs << " " << n_rec_in_big_bins << endl;

			//process big bins (only in first radix pass, for later big_bins.size() equals 0)
			for (auto& big_bin : big_bins)
			{
				RadixSortMSD_impl<KMER_T, COUNTER_TYPE>(get<0>(big_bin), get<1>(big_bin), get<2>(big_bin), byte - 1, n_threads_for_big_bins, pmm_radix_buf, false,
					is_big_threshold, n_total_recs);
			}
			//		cout << n_threads_for_small_bins_running << " " << n_threads_for_small_bins << " " << n_threads_for_big_bins << " " << n_recs << " " << n_rec_in_big_bins << endl;
			//now i can use threads left after processing big bins to process small ones
			for (; n_threads_for_small_bins_running < n_threads; ++n_threads_for_small_bins_running)
			{
				sorters.push_back(new CRadixSorterMSD<KMER_T, COUNTER_TYPE>(tasks_queue, pmm_radix_buf, n_recs / 4096));
				threads.push_back(std::thread(std::ref(*sorters.back())));
			}

			for (auto& t : threads)
				t.join();
			for (auto s : sorters)
				delete s;
			//---------------------------

			//----------------------------
		}
	}

#if defined(__AVX2__)
#warning "building raduls radix sort for avx2"
#define RADULS_RADIX_SORT_FUNNAME RadixSortMSD_AVX2
#elif defined (__AVX__)
#warning "building raduls radix sort for avx"
#define RADULS_RADIX_SORT_FUNNAME RadixSortMSD_AVX
#elif defined(__SSE4_1__)
#warning "building raduls radix sort for sse4.1"
#define RADULS_RADIX_SORT_FUNNAME RadixSortMSD_SSE41
#elif defined(__aarch64__)
#warning "building raduls radix sort for neon"
#define RADULS_RADIX_SORT_FUNNAME RadixSortMSD_NEON
#else
#warning "building raduls radix sort for sse2"
#define RADULS_RADIX_SORT_FUNNAME RadixSortMSD_SSE2
#endif


	template<typename KMER_T>
	void RADULS_RADIX_SORT_FUNNAME(KMER_T* kmers, KMER_T* tmp, uint64 n_recs, uint32 byte, uint32 n_threads, CMemoryPool* pmm_radix_buf)
	{
		if (n_recs >= (1ull << 31))
			RadixSortMSD_impl<KMER_T, int64>(kmers, tmp, n_recs, byte, n_threads, pmm_radix_buf, true, 2 * n_recs / (3 * n_threads), n_recs);
		else
			RadixSortMSD_impl<KMER_T, int32>(kmers, tmp, n_recs, byte, n_threads, pmm_radix_buf, true, 2 * n_recs / (3 * n_threads), n_recs);
	}

	template<unsigned SIZE>
	class InstantiateTempl
	{
		friend class InstantiateTempl<SIZE + 1>;
		void inst()
		{
			volatile auto ptr = RADULS_RADIX_SORT_FUNNAME<CKmer<SIZE>>;
			(void)ptr; //suppress `unused` warning
			InstantiateTempl<SIZE - 1>().inst();
		}
	};

	template<>
	class InstantiateTempl<0>
	{
		friend class InstantiateTempl<0 + 1>;
		void inst()
		{
		}
	};
	template class InstantiateTempl<KMER_WORDS>;
}

#endif

// ***** EOF