File: index.docbook

package info (click to toggle)
kmplot 4%3A16.08.3-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,552 kB
  • ctags: 1,244
  • sloc: cpp: 12,200; xml: 314; sh: 5; makefile: 1
file content (1854 lines) | stat: -rw-r--r-- 66,558 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
<?xml version="1.0" ?>
<!DOCTYPE book PUBLIC "-//KDE//DTD DocBook XML V4.5-Based Variant V1.1//EN" "dtd/kdedbx45.dtd" [
  <!ENTITY % addindex "IGNORE">
  <!ENTITY % English "INCLUDE"><!-- change language only here -->
]>

<book id="kmplot" lang="&language;">

<bookinfo>
<title>The &kmplot; Handbook</title>
<authorgroup>
<author>
<firstname>Klaus-Dieter</firstname>
<surname>M&ouml;ller</surname>
<affiliation>
<address>&Klaus-Dieter.Moeller.mail;</address>
</affiliation>
</author>
<author>
&Philip.Rodrigues; &Philip.Rodrigues.mail;
</author>
<author>
<firstname>David</firstname>
<surname>Saxton</surname>
</author>
<!-- TRANS:ROLES_OF_TRANSLATORS -->
</authorgroup>

<copyright>
<year>2000</year><year>2001</year><year>2002</year>
<holder>Klaus-Dieter M&ouml;ller</holder>
</copyright>

<copyright>
<year>2003</year>
<holder>&Philip.Rodrigues; &Philip.Rodrigues.mail;</holder>
</copyright>

<copyright>
<year>2006</year>
<holder>David Saxton</holder>
</copyright>

<legalnotice>&FDLNotice;</legalnotice>

<date>2016-05-08</date>
<releaseinfo>1.2.1 (Applications 16.04)</releaseinfo>

<!-- Abstract about this handbook -->

<abstract>
<para>&kmplot; is a mathematical function plotter by &kde;.</para>
<para> <inlinemediaobject><imageobject><imagedata
fileref="edu-logo.png"
format="PNG"/></imageobject></inlinemediaobject> &kmplot; is part of
the &kde;-EDU Project: <ulink
url="http://edu.kde.org/">http://edu.kde.org/</ulink></para></abstract>


<keywordset>
<keyword>KDE</keyword>
<keyword>KmPlot</keyword>
<keyword>EDU</keyword>
<keyword>education</keyword>
<keyword>plotting</keyword>
<keyword>math</keyword>
</keywordset>

</bookinfo>

<chapter id="introduction">
<title>Introduction</title>

<para>&kmplot; is a mathematical function plotter by &kde;.
	It has a powerful built-in parser.  You can plot different
	functions simultaneously and combine them to build new
	functions.</para>

<screenshot>
	<screeninfo>Examples</screeninfo>
	<mediaobject>
		<imageobject>
			<imagedata fileref="threeplots.png" format="PNG"/>
		</imageobject>
		<textobject>
			<phrase>Examples</phrase>
		</textobject>
	</mediaobject>
</screenshot>

<para>&kmplot; supports several different types of plots:</para>
<itemizedlist>
	<listitem><para>Explicit cartesian plots of the form y = f(x).</para></listitem>
	<listitem><para>Parametric plots, where the x and y components are specified as functions of an independent variable.</para></listitem>
	<listitem><para>Polar plots of the form r = r(&thgr;).</para></listitem>
	<listitem><para>Implicit plots, where the x and y coordinates are related by an expression.</para></listitem>
	<listitem><para>Explicit differential plots.</para></listitem>
</itemizedlist>

<para>&kmplot; also provides some numerical and visual features like:</para>
<itemizedlist>
	<listitem><para>Filling and calculating
			the area between the plot and the first axis</para>
	</listitem>
	<listitem><para>Finding maximum and
			minimum values</para>
	</listitem>
	<listitem><para>Changing function parameters dynamically</para>
	</listitem>
	<listitem><para>Plotting
			derivatives and integral functions.</para>
	</listitem>
</itemizedlist>

<para>These features help in learning the
	relationship between mathematical functions and their graphical
	representation in a coordinate system.</para>

</chapter>

<chapter id="first-steps">
<title>First Steps With &kmplot;</title>

<sect1 id="simple-function-plot">
	<title>Simple Function Plot</title>

	<para>
		In the sidebar on the left, there is the <guilabel>Create</guilabel> button with a drop down menu for creating new plots.
		Click on it, and select <guilabel>Cartesian Plot</guilabel>. The text box for editing the current equation will be focused. Replace the default text with
		<screen><userinput>y = x^2</userinput></screen>
		and press &Enter;.
		This will draw the plot of y = x<superscript>2</superscript> in the coordinate system.
		Clicking on the <guilabel>Create</guilabel> button again, select <guilabel>Cartesian Plot</guilabel>, and this time enter the text
		<screen><userinput>y = 5sin(x)</userinput></screen>
		to get another plot.
	</para>

	<para>Click on one of the lines you have just plotted. Now the crosshair
		becomes the color of the current plot and is attached to the it.  You can
		use the mouse to move the crosshair along the plot.  In the status
		bar at the bottom of the window the coordinates of the current
		position is displayed. Note that if the plot touches the  horizontal axis the
		root will be displayed in the status bar, too.</para>

	<para>Click the mouse again and the crosshair will be detached from
		the plot.</para>
</sect1>

<sect1 id="edit-properties">
	<title>Edit Properties</title>

	<para>Let us make some changes to the function and change the color of
		the plot.</para>

	<para>The <guilabel>Functions</guilabel> sidebar lists all the functions that you have plotted.
		If <guilabel>y = x^2</guilabel> isn't already selected, select it.
		Here you have access to a lot of options. Let us rename
		the function and move the plot 5 units down. Change the function
		equation to <screen><userinput>parabola(x) = x^2 - 5</userinput></screen> and hit enter.
		To select another color for the plot, click the <guilabel>Color</guilabel> button in the section
		<guilabel>Appearance</guilabel> at the bottom of the function sidebar and select a new color.
		<note>
			<para>All changes can be undone via <menuchoice><guimenu>Edit</guimenu><guimenuitem>Undo</guimenuitem> </menuchoice>.</para>
		</note>
	</para>
</sect1>
</chapter>

<chapter id="using-kmplot">
<title>Using &kmplot;</title>

<para>&kmplot; deals with several different types of functions, which can be written in function form or as an equation:</para>

<itemizedlist>
	<listitem><para>Cartesian plots can either be written as &eg; <quote>y = x^2</quote>, where x has to be used as the variable; or as &eg; <quote>f(a) = a^2</quote>, where the name of the variable is arbitrary.</para></listitem>
	<listitem><para>Parametric plots are similar to Cartesian plots. The x and y coordinates can be entered as equations in t, &eg; <quote>x = sin(t)</quote>, <quote>y = cos(t)</quote>, or as functions, &eg; <quote>f_x(s) = sin(s)</quote>, <quote>f_y(s) = cos(s)</quote>.</para></listitem>
	<listitem><para>Polar plots are also similar to Cartesian plots. They can be either be entered as an equation in &thgr;, &eg; <quote>r = &thgr;</quote>, or as a function, &eg;
<quote>f(x) = x</quote>.</para></listitem>
	<listitem><para>For implicit plots, the name of the function is entered separately from the expression relating the x and y coordinates. If the x and y variables are specified via the function name (by entering &eg;<quote>f(a,b)</quote> as the function name), then these variables will be used. Otherwise, the letters x and y will be used for the variables.</para></listitem>
	<listitem><para>Explicit differential plots are differential equations whereby the highest derivative is given in terms of the lower derivatives. Differentiation is denoted by a prime ('). In function form, the equation will look like <quote>f''(x) = f' &minus; f</quote>. In equation form, it will look like <quote>y'' = y' &minus; y</quote>. Note that in both cases, the <quote>(x)</quote> part is not added to the lower order differential terms (so you would enter <quote>f'(x) = &minus;f</quote> and not <quote>f'(x) = &minus;f(x)</quote>).</para></listitem>
</itemizedlist>

<para>All the equation entry boxes come with a button on the right. Clicking this invokes the advanced <guilabel>Equation Editor</guilabel> dialog, which provides:

	<itemizedlist>
		<listitem>
			<para>A variety of mathematical symbols that can be used in equations, but aren't found on normal keyboards.</para>
		</listitem>
		<listitem>
			<para>The list of user constants and a button for editing them.</para>
		</listitem>
		<listitem>
			<para>The list of predefined functions. Note that if you have text already selected, it will be used as the function argument when a function is inserted. For example, if <quote>1 + x</quote> is selected in the equation <quote>y = 1 + x</quote>, and the sine function is chosen, then the equation will become <quote> y = sin(1+x)</quote>.
			</para>
		</listitem>
	</itemizedlist>
</para>

<screenshot>
	<screeninfo>Here is a screenshot of the &kmplot; welcome window</screeninfo>
	<mediaobject>
		<imageobject>
			<imagedata fileref="main.png" format="PNG"/>
		</imageobject>
		<textobject>
			<phrase>Screenshot</phrase>
		</textobject>
	</mediaobject>
</screenshot>

<sect1 id="function-types">
	<title>Function Types</title>

	<sect2 id="cartesian-functions">
		<title>Cartesian Functions</title>
		<para>To enter an explicit function (&ie;, a function in the form y=f(x)) into &kmplot;, just enter it in the
			following form:
			<screen><userinput><replaceable>f</replaceable>(<replaceable>x</replaceable>) = <replaceable>expression</replaceable></userinput></screen>
			where:
			<itemizedlist>
				<listitem><para>
						<replaceable>f</replaceable> is the name of the function, and can be any
						string of letters and numbers.</para>
				</listitem>

				<listitem><para>
						<replaceable>x</replaceable> is the horizontal coordinate, to be used in the expression
						following the equals sign. It is a dummy variable, so you can use any
						variable name you like to achieve the same effect.</para>
				</listitem>

				<listitem>
					<para><replaceable>expression</replaceable> is the expression to be plotted,
						given in the appropriate syntax for &kmplot;. See <xref linkend="math-syntax"/>.
					</para>
				</listitem>

			</itemizedlist>
		</para>
	</sect2>

	<sect2 id="parametric-functions">
		<title>Parametric Functions</title>
		<para>Parametric functions are those in which the x and y coordinates are
			defined by separate functions of another variable, often called t. To enter a
			parametric function in &kmplot;, follow the procedure as for a Cartesian
			function for each of the x and y functions. As with Cartesian functions, you may use any variable name you wish for the
			parameter.</para>
		<para>As an example, suppose you want to draw a circle, which has parametric
			equations x = sin(t), y = cos(t). After creating a parametric plot, enter the appropriate equations in the x and y boxes, &ie;,
			<userinput>f_x(t)=sin(t)</userinput> and
			<userinput>f_y(t)=cos(t)</userinput>.
		</para>
		<para>You can set some further options for the plot in the function editor:
			<variablelist>
				<varlistentry>
					<term><guilabel>Min</guilabel></term>
					<term><guilabel>Max</guilabel></term>
					<listitem>
						<para>These options control the range of the parameter t for which the function is plotted.</para>
					</listitem>
				</varlistentry>
			</variablelist>
		</para>
	</sect2>

	<sect2 id="polar-functions">
		<title>Functions in Polar Coordinates</title>

		<para>Polar coordinates represent a point by its distance from the origin
			(usually called r), and the angle a line from the origin to the point makes
			with the horizontal axis (usually represented by &thgr; the Greek letter theta). To enter
			functions in polar coordinates, click the <guilabel>Create</guilabel> button and select <guilabel>Polar Plot</guilabel> from the list.
			In the definition box, complete the
			function definition, including the name of the theta variable you want
			to use, &eg;, to draw the Archimedes' spiral r = &thgr;, enter:
			<screen><userinput>r(&thgr;) = &thgr;</userinput></screen>
			Note that you can use any name for the theta variable, so
			<quote>r(t) = t</quote> or <quote>f(x) = x</quote> will produce exactly the same output.
		</para>
	</sect2>

	<sect2 id="implicit-functions">
		<title>Implicit Functions</title>

		<para>An implicit expression relates the x and y coordinates as an equality. To create a circle, for example,
		click the <guilabel>Create</guilabel> button and select <guilabel>Implicit Plot</guilabel> from the list.
		Then, enter into the equation box (below the function name box) the following:
			<screen><userinput>x^2 + y^2 = 25</userinput></screen>
		</para>
	</sect2>

	<sect2 id="differential-functions">
		<title>Differential Functions</title>

		<para>&kmplot; can plot explicit differential equations. These are equations of the form
			y<superscript>(n)</superscript> = F(x,y',y'',...,y<superscript>(n&minus;1)</superscript>), where y<superscript>k</superscript> is the k<superscript>th</superscript> derivative of y(x). &kmplot; can only interpret the derivative order as the number of primes following the function name.

			To draw a sinusoidal curve, for example, you would use the differential equation
			<userinput>y'' = &minus; y</userinput> or <userinput>f''(x) = −f</userinput>.
		</para>

		<para>However, a differential equation on its own isn't enough to determine a plot. Each curve in the diagram is generated by a combination of the differential equation and the initial conditions. You can edit the initial conditions by clicking on the <guilabel>Initial Conditions</guilabel> tab when a differential equation is selected. The number of columns provided for editing the initial conditions is dependent on the order of the differential equation.
		</para>

		<para>You can set some further options for the plot in the function editor:
			<variablelist>
				<varlistentry>
					<term><guilabel>Step</guilabel></term>
					<listitem>
						<para>The step value in the precision box is used in numerically solving the differential equation (using the Runge Kutta method). Its value is the maximum step size used; a smaller step size may be used if part of the differential plot is zoomed in close enough.</para>
					</listitem>
				</varlistentry>
			</variablelist>
		</para>

	</sect2>
</sect1>

<sect1 id="combining-functions">
	<title>Combining Functions</title>
	<para>Functions can be combined to produce new ones. Simply enter the functions
		after the equals sign in an expression as if the functions were variables. For
		example, if you have defined functions f(x) and g(x), you can plot the sum of f
		and g with:
		<screen><userinput>sum(x) = f(x) + g(x)</userinput></screen>
	</para>
</sect1>

<sect1 id="function-appearance">
	<title>Changing the appearance of functions</title>

	<para>To change the appearance of a function's graph on the main plot
		window, select the function in the <guilabel>Functions</guilabel> sidebar.
		You can change the plot's line width, color and many other aspects by clicking on the
		<guibutton>Color</guibutton> or <guibutton>Advanced...</guibutton>
		 button at the bottom of the section <guilabel>Appearance</guilabel>.
	</para>

	<para>
		If you are editing a Cartesian function, the function editor will have three tabs.
		In the first one you specify the equation of the function.
		The <guilabel>Derivatives</guilabel> tab lets you draw the first and second derivative to the function.
		With the <guilabel>Integral</guilabel> tab you can draw the integral of the function.
	</para>
</sect1>

<sect1 id="popupmenu">
	<title>Popup menu</title>
	<screenshot>
	<screeninfo>Graph right-click popup menu</screeninfo>
	<mediaobject>
		<imageobject>
			<imagedata fileref="popup.png" format="PNG"/>
		</imageobject>
		<textobject>
			<phrase>Graph right-click popup menu</phrase>
		</textobject>
	</mediaobject>
	</screenshot>

	<para>When right-clicking on a plot function or a single-point parametric plot function a popup menu will appear.
		In the menu there are three items available:</para>

	<variablelist>
		<varlistentry>
			<term><menuchoice><guimenuitem>Edit</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Selects the function in the <guilabel>Functions</guilabel> sidebar for editing.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenuitem>Hide</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Hides the selected graph. Other plots of the graph's function will still be shown.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenuitem>Remove</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Removes the function. All its graphs will disappear.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term><menuchoice><guimenuitem>Animate Plot...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Displays the <guilabel>Parameter Animator</guilabel> dialog.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term><menuchoice><guimenuitem>Calculator</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Opens the <guilabel>Calculator</guilabel> dialog.</para>
			</listitem>
		</varlistentry>
	</variablelist>

	<para>Depending on the plot type, there will also be up to four tools available:</para>

	<variablelist>
		<varlistentry>
			<term><menuchoice><guimenuitem>Plot Area...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Select the minimum and maximum horizontal values for the graph in the new dialog that appears.
					Calculates the integral and draws the area between the graph and the horizontal axis in the
					selected range in the color of the graph.
				</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenuitem>Find Minimum...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>
					Find the minimum value of the graph in a specified range. The
					selected graph will be highlighted in the dialog that appears. Enter
					the lower and upper boundaries of the region in which you want to
					search for a minimum.
				</para>
				<para>
					Note: You can also tell the plot to visually show the extreme points in the <guilabel>Plot Appearance</guilabel> dialog, accessible in the <guilabel>Functions</guilabel> sidebar by clicking on <guibutton>Advanced...</guibutton>.
				</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenuitem>Find Maximum...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>This is the same as <guimenuitem>Find Minimum...</guimenuitem> above, but finds the maximum value instead of the minimum value.</para>
			</listitem>
		</varlistentry>

	</variablelist>
</sect1>

</chapter>

<chapter id="configuration">
<title>Configuring &kmplot;</title>
<para>To access the &kmplot; configuration
	dialog, select <menuchoice><guimenu>Settings</guimenu><guimenuitem>Configure
			&kmplot;...</guimenuitem></menuchoice>
	The settings for <guimenuitem>Constants...</guimenuitem> can only be changed
	from the <guimenu>Edit</guimenu> menu and the <guimenuitem>Coordinate System...</guimenuitem> only
	from the <guimenu>View</guimenu> menu. </para>

<sect1 id="general-config">
	<title>General Configuration</title>

	<screenshot>
		<screeninfo>Screenshot of the General Settings dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-general.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the General Settings dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<para>Here you can set global settings which automatic will be saved when you exit &kmplot;. you can set angle-mode (radians and degrees), zoom in and zoom out factors, and whether to show advanced plot tracing. </para>
</sect1>

<sect1 id="diagram-config">
	<title>Diagram Configuration</title>

	<screenshot>
		<screeninfo>Screenshot of the Diagram Appearance dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-diagram.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the Diagram Appearance dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<para>You can set the <guilabel>Grid Style</guilabel> to one of four options:
		<variablelist>

			<varlistentry>
				<term><guilabel>None</guilabel></term>
				<listitem>
					<para>No gridlines are drawn on the plot area</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Lines</guilabel></term>
				<listitem>
					<para>Straight lines form a grid of squares on the plot area.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Crosses</guilabel></term>
				<listitem>
					<para>Crosses are drawn to indicate points where x and y have integer values
						(&eg;, (1,1), (4,2) &etc;).</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Polar</guilabel></term>
				<listitem>
					<para>Lines of constant radius and of constant angle are drawn on the plot
						area.</para>
				</listitem>
			</varlistentry>
		</variablelist>
	</para>

	<para>Other options for the diagram appearance can also be configured:
		<variablelist>
			<varlistentry>
				<term><guilabel>Axis Labels</guilabel></term>
				<listitem>
					<para>Sets labels for the horizontal and vertical axes.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Axis width:</guilabel></term>
				<listitem>
					<para>Sets the width of the lines representing the axes.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Line width:</guilabel></term>
				<listitem>
					<para>Sets the width of the lines used for drawing the grid.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Tic width:</guilabel></term>
				<listitem>
					<para>Sets the width of the lines representing tics on the axes.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Tic length:</guilabel></term>
				<listitem>
					<para>Sets the length of the lines representing tics on the axes.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Show labels</guilabel></term>
				<listitem>
					<para>If checked, the names of the axes are shown on the plot and the axes' tics are labeled.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Show axes</guilabel></term>
				<listitem>
					<para>If checked, the axes are visible.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Show arrows</guilabel></term>
				<listitem>
					<para>If checked, the axes are displayed with arrows at their ends.</para>
				</listitem>
			</varlistentry>

		</variablelist>

	</para>
</sect1>

<sect1 id="colors-config">
	<title>Colors Configuration</title>

	<screenshot>
		<screeninfo>Screenshot of the Colors dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-colors.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the Colors dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<para>
		In the <guilabel>Coords</guilabel> section of the <guilabel>Colors</guilabel>
		configuration dialog, you can change the colors of the axes, the grid and the background of the
		main &kmplot; area.
	</para>

	<para>The <guilabel>Default Function Colors</guilabel> control which colors are cycled through when creating new functions.</para>
</sect1>

<sect1 id="font-config">
	<title>Fonts Configuration</title>

	<screenshot>
		<screeninfo>Screenshot of the Fonts dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-fonts.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the Fonts dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<variablelist>

		<varlistentry>
			<term><guilabel>Axis labels</guilabel></term>
			<listitem>
				<para>The font used for drawing the axis numbers and x/y labels.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><guilabel>Diagram label</guilabel></term>
			<listitem>
				<para>The font used for drawing diagram labels (&eg;, those showing the plot name or extreme points).</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term><guilabel>Header table</guilabel></term>
			<listitem>
				<para>The font used for drawing the header when printing a plot.</para>
			</listitem>
		</varlistentry>

	</variablelist>
</sect1>

</chapter>

<chapter id="reference">
<title>&kmplot; Reference</title>

<sect1 id="func-syntax">
	<title>Function Syntax</title>

	<para>Some syntax rules must be complied with:</para>

	<screen>
		<userinput>name(var1[, var2])=term [;extensions]</userinput>
	</screen>


	<variablelist>
		<varlistentry>
			<term>name</term>
			<listitem>

				<para>The function name.  If the first character is <quote>r</quote>
					the parser assumes that you are using polar coordinates.  If the first
					character is <quote>x</quote> (for instance <quote>xfunc</quote>) the
					parser expects a second function with a leading <quote>y</quote> (here
					<quote>yfunc</quote>) to define the function in parametric form.
				</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>var1</term>
			<listitem><para>The function's variable</para></listitem>
		</varlistentry>
		<varlistentry>
			<term>var2</term>
			<listitem><para> The function <quote>group parameter</quote>. It must be
					separated from the function's variable by a comma. You can use the group
					parameter to, for example, plot a number of graphs from one function. The parameter values can be selected manually or you can choose to have a slider bar that controls one parameter. By changing the value of the slider the value parameter will be changed. The slider can be set to an integer between 0 and 100.</para></listitem>
		</varlistentry>
		<varlistentry>
			<term>term</term>
			<listitem><para>The expression defining the function.</para></listitem>
		</varlistentry>
	</variablelist>
</sect1>

<sect1 id="func-predefined">
	<title>Predefined Function Names and Constants</title>

	<para>
		All the predefined functions and constants that &kmplot; knows can be shown by
		selecting <menuchoice><guimenu>Help</guimenu><guimenuitem>Predefined Math Functions</guimenuitem>
		</menuchoice>, which displays this page of &kmplot;'s handbook.
	</para>

	<para>
		These functions and constants and even all user defined functions can
		be used to determine the axes settings as well. See <xref linkend="axes-config"/>.
	</para>

	<sect2 id="trigonometric-functions">
		<title>Trigonometric Functions</title>

		<para>
			By default, the trigonometric functions work in radians. However, this can be changed via <menuchoice><guimenu>Settings</guimenu><guimenuitem>Configure &kmplot;</guimenuitem></menuchoice>.
		</para>

		<variablelist>

			<varlistentry>
				<term>sin(x)</term>
				<term>arcsin(x)</term>
				<term>cosec(x)</term>
				<term>arccosec(x)</term>
				<listitem><para>The sine, inverse sine, cosecant and inverse cosecant respectively.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>cos(x)</term>
				<term>arccos(x)</term>
				<term>sec(x)</term>
				<term>arcsec(x)</term>
				<listitem><para>The cosine, inverse cosine, secant and inverse secant respectively.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>tan(x)</term>
				<term>arctan(x)</term>
				<term>cot(x)</term>
				<term>arccot(x)</term>
				<listitem><para>The tangent, inverse tangent, cotangent and inverse cotangent respectively.</para></listitem>
			</varlistentry>

		</variablelist>
	</sect2>

	<sect2 id="hyperbolic-functions">
		<title>Hyperbolic Functions</title>
		<para>The Hyperbolic Functions.</para>

		<variablelist>

			<varlistentry>
				<term>sinh(x)</term>
				<term>arcsinh(x)</term>
				<term>cosech(x)</term>
				<term>arccosech(x)</term>
				<listitem><para>The hyperbolic sine, inverse sine, cosecant and inverse cosecant respectively.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>cosh(x)</term>
				<term>arccosh(x)</term>
				<term>sech(x)</term>
				<term>arcsech(x)</term>
				<listitem><para>The hyperbolic cosine, inverse cosine, secant and inverse secant respectively.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>tanh(x)</term>
				<term>arctanh(x)</term>
				<term>coth(x)</term>
				<term>arccoth(x)</term>
				<listitem><para>The hyperbolic tangent, inverse tangent, cotangent and inverse cotangent respectively.</para></listitem>
			</varlistentry>

		</variablelist>
	</sect2>

	<sect2 id="other-functions">
		<title>Other Functions</title>
		<variablelist>

			<varlistentry>
				<term>sqr(x)</term>
				<listitem><para>The square x^2 of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>sqrt(x)</term>
				<listitem><para>The square root of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>sign(x)</term>
				<listitem><para>The sign of x. Returns 1 if x is positive, 0 if x is zero, or &minus;1 if x is negative.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>H(x)</term>
				<listitem><para>The Heaviside Step Function. Returns 1 if x is positive, 0.5 if x is zero, or 0 if x is negative.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>exp(x)</term>
				<listitem><para>The exponent e^x of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>ln(x)</term>
				<listitem><para>The natural logarithm (inverse exponent) of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>log(x)</term>
				<listitem><para>The logarithm of x to base 10.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>abs(x)</term>
				<listitem><para>The absolute value of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>floor(x)</term>
				<listitem><para>Rounds x to closest integer less than or equal to x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>ceil(x)</term>
				<listitem><para>Rounds x to the closest integer greater than or equal to x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>round(x)</term>
				<listitem><para>Rounds x to the closest integer.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>gamma(x)</term>
				<listitem><para>The gamma function.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>factorial(x)</term>
				<listitem><para>The factorial of x.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>min(x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>)</term>
				<listitem><para>Returns the minimum of the set of numbers {x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>}.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>max(x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>)</term>
				<listitem><para>Returns the maximum of the set of numbers {x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>}.</para></listitem>
			</varlistentry>

			<varlistentry>
				<term>mod(x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>)</term>
				<listitem><para>Returns the modulus (Euclidean length) of the set of numbers {x<subscript>1</subscript>,x<subscript>2</subscript>,...,x<subscript>n</subscript>}.</para></listitem>
			</varlistentry>

			<!-- TODO: Legendre polynomials -->

		</variablelist>
	</sect2>

	<sect2>
		<title>Predefined Constants</title>
		<variablelist>

			<varlistentry>
				<term>pi</term>
				<term>&pgr;</term>
				<listitem>
					<para>Constants representing &pgr; (3.14159...).</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>e</term>
				<listitem>
					<para>Constant representing Euler's Number e (2.71828...).</para>
				</listitem>
			</varlistentry>

		</variablelist>
	</sect2>
</sect1>

<sect1 id="func-extension"> <!--FIXME does this still work-->
	<title>Extensions</title>
	<para>An extension for a function is specified by entering a semicolon,
		followed by the extension, after the function definition. The extension can be entered by using the &DBus; method parser addFunction. None of the extensions are available
for parametric functions but N and D[a,b] work for polar functions too. For example:
		<screen>
			<userinput>
				f(x)=x^2; A1
			</userinput>
		</screen>
		will show the graph y=x<superscript>2</superscript> with its first
		derivative. Supported extensions are described below:
		<variablelist>
			<varlistentry>
				<term>N</term>
				<listitem>
					<para>
						The function will be stored but not be drawn.
						It can be used like any other user-defined or predefined function.
					</para>
				</listitem>
			</varlistentry>
			<varlistentry>
				<term>A1</term>
				<listitem>
					<para>
						The graph of the derivative of the function will be drawn
						additionally with the same color but less line width.
					</para>
				</listitem>
			</varlistentry>
			<varlistentry>
				<term>A2</term>
				<listitem>
					<para>
						The graph of the second derivative of the function will be
						drawn additionally with the same color but less line width.
					</para>
				</listitem>
			</varlistentry>
			<varlistentry>
				<term>D[a,b]</term>
				<listitem>
					<para>
						Sets the domain for which the function will be displayed.
					</para>
				</listitem>
			</varlistentry>
			<varlistentry>
				<term>P[a{,b...}]</term>
				<listitem>
					<para>
						Give a set of values of a group parameter for which the function should be
						displayed. For example: <userinput>f(x,k)=k*x;P[1,2,3]</userinput> will plot
						the functions f(x)=x, f(x)=2*x and f(x)=3*x. You can also use functions as the
						arguments to the P option.
					</para>
				</listitem>
			</varlistentry>
		</variablelist>
	</para>
	<para>
		Please note that you can do all of these operations by editing the items in the <guilabel>Derivates</guilabel> tab, the <guilabel>Custom plot range</guilabel> section and the <guilabel>Parameters</guilabel> section in the <guilabel>Functions</guilabel> sidebar too.
	</para>
</sect1>

<sect1 id="math-syntax">
	<title>Mathematical Syntax</title>
	<para>&kmplot; uses a common way of expressing mathematical functions, so you
		should have no trouble working it out. The operators &kmplot; understands are,
		in order of decreasing precedence:
		<variablelist>

			<varlistentry>
				<term>^</term>
				<listitem><para>The caret symbol performs exponentiation. &eg;,
						<userinput>2^4</userinput> returns 16.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>*</term>
				<term>/</term>
				<listitem>
					<para>The asterisk and slash symbols perform multiplication and
						division . &eg;,
						<userinput>3*4/2</userinput> returns 6.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>+</term>
				<term>&minus;</term>
				<listitem><para>The plus and minus symbols perform addition and
						subtraction. &eg;, <userinput>1+3&minus;2</userinput> returns 2.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>&lt;</term>
				<term>&gt;</term>
				<term>&le;</term>
				<term>&ge;</term>
				<listitem><para>Comparison operators. They return 1 if the expression is true, otherwise they return 0.
						&eg;, <userinput>1 &le; 2</userinput> returns 1.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>&radic;</term>
				<listitem><para>The square root of a number.
						&eg;, <userinput>&radic;4</userinput> returns 2.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>|x|</term>
				<listitem><para>The absolute value of x.  &eg;,
						<userinput>|&minus;4|</userinput> returns 4.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term>&plusmn;</term>
				<term></term>
				<listitem><para>Each plus-minus sign gives two sets of plots: one in which the plus is taken, and one in which the minus is taken.&eg;.
						<userinput>y = &plusmn;sqrt(1&minus;x^2)</userinput> will draw a circle.
						These, therefore, cannot be used in constants. </para>
				</listitem>
			</varlistentry>



		</variablelist>
	</para>
	<para>
		Note the precedence, which means that if parentheses are not used,
		exponentiation is performed before multiplication/division, which is performed
		before addition/subtraction. So <userinput>1+2*4^2</userinput> returns 33, and
		not, say 144. To override this, use parentheses. To use the above example,
		<userinput>((1+2)*4)^2</userinput> <emphasis>will</emphasis> return 144.
	</para>
</sect1>

<sect1 id="coord-area"><title>Plotting Area</title>
	<para>
		By default, explicitly given functions are plotted for the whole of the visible part of the
		horizontal axis. You can specify an other range in the edit-dialog for the function.
		If the plotting area contains the resulting point it is connected to the last
		drawn point by a line.
	</para>
	<para>
		Parametric and polar functions have a default plotting range of 0 to 2&pgr;.
		This plotting range can also be changed in the <guilabel>Functions</guilabel> sidebar.
	</para>
</sect1>

<sect1 id="coord-cross">
	<title>Crosshair Cursor</title>
	<para>
		While the mouse cursor is over the plotting area the cursor changes to a crosshair. The current coordinates can be seen at the intersections with the coordinate axes and also in the status bar at the bottom of the main window.
	</para>
	<para>
		You can trace a function's values more precisely by clicking onto or next to a graph. The selected function is shown in the status bar in the right column. The crosshair then will be caught and be colored in the same color as the graph. If the graph has the same color as the background color, the crosshair will have the inverted color of the background. When moving the mouse or pressing the keys Left or Right the crosshair will follow the function and you see the current horizontal and vertical value. If the crosshair is close to  vertical axis, the root-value is shown in the statusbar. You can switch function with the Up and Down keys. A second click anywhere in the window or pressing any non-navigating key will leave this trace mode.
	</para>
	<para>
		For more advanced tracing, open up the configuration dialog, and select <guilabel>Draw tangent and normal when tracing</guilabel> from the <guilabel>General Settings</guilabel> page. This option will draw the tangent, normal and oscillating circle of the plot currently being traced.
	</para>

</sect1>

<sect1 id="coords-config">
	<title>Coordinate System Configuration</title>
	<para>To open this dialog select <menuchoice><guimenu>View</guimenu><guimenuitem>Coordinate System...</guimenuitem></menuchoice> from the menubar.</para>
	<screenshot>
		<screeninfo>Screenshot of the Coordinate System dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-coords.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the Coordinate System dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<sect2 id="axes-config">
		<title>Axes Configuration</title>
		<para>
			<variablelist>

				<varlistentry>
					<term><guilabel>Horizontal axis Range</guilabel></term>
					<listitem>
						<para>Sets the range for the horizontal axis scale.
							Note that you can use the
							predefined functions and constants (see <xref linkend="func-predefined"/>) as
							the extremes of the range (&eg;, set <guilabel>Min:</guilabel> to
							<userinput>2*pi</userinput>). You can even use functions you have defined to
							set the extremes of the axis range. For example, if you have defined a function
							<userinput>f(x) = x^2</userinput>, you could set <guilabel>Min:</guilabel> to
							<userinput>f(3)</userinput>, which would make the lower end of the range equal
							to 9.</para>
					</listitem>
				</varlistentry>

				<varlistentry>
				  <term><guilabel>Vertical axis Range</guilabel></term>
					<listitem>
						<para>Sets the range for the vertical axis. See <quote>Horizontal axis Range</quote> above.</para>
					</listitem>
				</varlistentry>

				<varlistentry>
					<term><guilabel>Horizontal axis Grid Spacing</guilabel></term>
					<listitem>
						<para>This controls the spacing between grid lines in the horizontal direction.
							If <guilabel>Automatic</guilabel> is selected, then &kmplot; will try to find a grid line spacing of about two centimeters that is also numerically nice.
							If <guilabel>Custom</guilabel> is selected, then you can enter the horizontal grid spacing. This value will be used regardless of the zoom. For example, if a value of 0.5 is entered, and the x range is 0 to 8, then 16 grid lines will be shown.
						</para>
					</listitem>
				</varlistentry>

				<varlistentry>
					<term><guilabel>Vertical axis Grid Spacing</guilabel></term>
					<listitem>
						<para>This controls the spacing between grid lines in the vertical direction.
							See <quote>Horizontal axis Grid Spacing</quote> above.
						</para>
					</listitem>
				</varlistentry>

			</variablelist>
		</para>

	</sect2>
</sect1>

<sect1 id="constants-config">
	<title>Constants Configuration</title>
	<para>To open this dialog select <menuchoice><guimenu>Edit</guimenu><guimenuitem>Constants...</guimenuitem></menuchoice> from the menubar.</para>

	<screenshot>
		<screeninfo>Screenshot of the Constants dialog</screeninfo>
		<mediaobject>
			<imageobject>
				<imagedata fileref="settings-constants.png" format="PNG"/>
			</imageobject>
			<textobject>
				<phrase>Screenshot of the Constants dialog</phrase>
			</textobject>
		</mediaobject>
	</screenshot>

	<para>
		Constants can be used as part of an expression anywhere inside of &kmplot;. Each constant must have a name and a value. Some names are invalid, however, such as existing function names or existing constants.
	</para>

	<para>
		There are two options that control the scope of a constant:

		<variablelist>

			<varlistentry>
				<term><guilabel>Document</guilabel></term>
				<listitem>
					<para>If you select the <guilabel>Document</guilabel> checkbox, then the Constant will be saved along with the current diagram when you save it to file. However, unless you have also selected the <guilabel>Global</guilabel> option, the constant will not be available between instances of &kmplot;.</para>
				</listitem>
			</varlistentry>

			<varlistentry>
				<term><guilabel>Global</guilabel></term>
				<listitem>
					<para>If you select the <guilabel>Global</guilabel> checkbox, then the Constant's name and value will be written to &kde; settings (where it can
also be used by &kcalc;). The constant will not be lost when &kmplot; is closed, and will be available again for use when &kmplot; is started again.</para>
				</listitem>
			</varlistentry>

		</variablelist>
	</para>
</sect1>

</chapter>

<chapter id="commands">
<title>Command Reference</title>

<sect1 id="menu">
<title>Menu Items</title>

<para>Apart from the common &kde; menus described in the <ulink url="help:/fundamentals/ui.html#menus">Menu</ulink>
chapter of the &kde; Fundamentals documentation &kmplot; has these application specific menu entries:
</para>

<sect2 id="a-file-menu">
	<title>The File Menu</title>
	<variablelist>

		<varlistentry>
			<term>
				<menuchoice>
					<guimenu>File</guimenu>
					<guimenuitem>Export...</guimenuitem></menuchoice></term>
			<listitem><para><action>Exports</action> the plotted graphs to an image file in all formats supported by &kde;.</para></listitem>
		</varlistentry>

	</variablelist>
</sect2>

<sect2 id="a-edit-menu">
	<title>The Edit Menu</title>
	<variablelist>
		<varlistentry>
			<term><menuchoice><guimenu>Edit</guimenu><guimenuitem>Constants...</guimenuitem>
				</menuchoice></term>
			<listitem><para>Displays the <guilabel>Constants</guilabel> dialog box. See <xref linkend="constants-config"/>.
				</para>
			</listitem>
		</varlistentry>
	</variablelist>
</sect2>

<sect2 id="a-view-menu">
	<title>The View Menu</title>
	<para>The first three items in the menu are related to zooming.</para>

	<variablelist>
		<varlistentry>
			<term>
				<menuchoice>
					<shortcut>
						<keycombo action="simul">&Ctrl;<keycap>1</keycap></keycombo>
					</shortcut>
					<guimenu>View</guimenu>
					<guimenuitem>Zoom In</guimenuitem>
				</menuchoice>
			</term>
			<listitem>
				<para>This tool can be operator in two different manners. To zoom in on a point on the graph, click on it. To zoom in on a specific section of the graph, hold and drag the mouse to form a rectangle, which will be the new axes ranges when the mouse button is released.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term>
				<menuchoice>
					<shortcut>
						<keycombo action="simul">&Ctrl;<keycap>2</keycap></keycombo>
					</shortcut>
					<guimenu>View</guimenu>
					<guimenuitem>Zoom Out</guimenuitem>
				</menuchoice>
			</term>
			<listitem>
				<para>The tool can also be used in two different manners. To zoom out and center on a point, click on that point. To fit the existing view into a rectangle, hold and drag the mouse to form that rectangle.</para></listitem>
		</varlistentry>

		<varlistentry>
			<term>
				<menuchoice>
					<guimenu>View</guimenu>
					<guimenuitem>Fit Widget to Trigonometric Functions</guimenuitem>
				</menuchoice>
			</term>
			<listitem><para>The scale will be adapted to trigonometric functions. This works both for radians and degrees.</para></listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>View</guimenu><guimenuitem>Reset View</guimenuitem>
				</menuchoice></term>
			<listitem><para>Resets the view.
				</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>View</guimenu><guimenuitem>Coordinate System...</guimenuitem>
				</menuchoice></term>
			<listitem><para>Displays the <guilabel>Coordinate System</guilabel> dialog box. See <xref linkend="coords-config"/>.
				</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>View</guimenu>
					<guimenuitem>Show Sliders</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para><action>Toggles</action> the visibility of the slider dialog.
				In the dialog move a slider to change the parameter of the function plot connected to it.</para>
				<para>Enable this on the Function tab and select one of the sliders to change the parameter value dynamically. The values vary from 0 (left) to 10 (right) by default, but can be changed in the slider dialog.</para>
				<para>For a small tutorial see <ulink url="http://userbase.kde.org/KmPlot/Using_Sliders">Using Sliders</ulink>.</para>
				<!--http://forum.kde.org/viewtopic.php?f=21&t=90183 kmplot slider examples
				KmPlot supports only one parameter. Feature request on bugs.kde.org: https://bugs.kde.org/show_bug.cgi?id=139097-->
			</listitem>
		</varlistentry>

	</variablelist>
</sect2>

<sect2 id="a-tools-menu">
	<title>The Tools Menu</title>

	<para>This menu contains some tools for the functions that can be useful:</para>

	<variablelist>

		<varlistentry>
			<term><menuchoice><guimenu>Tools</guimenu>
					<guimenuitem>Calculator</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Opens the <guilabel>Calculator</guilabel> dialog.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>Tools</guimenu>
					<guimenuitem>Plot Area...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Select a graph and the values of the horizontal axis in the new dialog that appears.
					Calculates the integral and draws the area between the graph and the horizontal axis in the
					range of the selected values in the color of the graph.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>Tools</guimenu>
					<guimenuitem>Find Minimum...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Find the minimum value of the graph in a specified range.</para>
			</listitem>
		</varlistentry>

		<varlistentry>
			<term><menuchoice><guimenu>Tools</guimenu>
					<guimenuitem>Find Maximum...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Find the maximum value of the graph in a specified range.</para>
			</listitem>
		</varlistentry>

	</variablelist>
</sect2>

<sect2 id="a-help-menu">
	<title>The Help Menu</title>

	<para>&kmplot; has a standard &kde; <guimenu>Help</guimenu> with one addition:</para>

	<variablelist>
		<varlistentry>
			<term><menuchoice><guimenu>Help</guimenu>
					<guimenuitem>Predefined Math Functions...</guimenuitem>
				</menuchoice></term>
			<listitem>
				<para>Opens this handbook with a list of the predefined function names and constants
					that &kmplot; knows.</para>
			</listitem>
		</varlistentry>
	</variablelist>

</sect2>
</sect1>

</chapter>

<chapter id="dbus">
	<title>Scripting &kmplot;</title>
	<para>You can write scripts for &kmplot; using &DBus;. For example, if you want to define a new function <userinput>f(x)=2sin x+3cos
x</userinput>, set its line width to 20 and then draw it, you type in a console:</para>
	<para><command>qdbus org.kde.kmplot-PID /parser org.kde.kmplot.Parser.addFunction "f(x)=2sin x+3cos x" ""</command>
		As a result, the new function's id number will be returned, or -1 if the function could not be defined.</para>
	<para><command>qdbus org.kde.kmplot-PID /parser org.kde.kmplot.Parser.setFunctionFLineWidth ID 20</command>
		This command sets the function with the id number ID the line width to 20.</para>
	<para><command>qdbus org.kde.kmplot-PID /view org.kde.kmplot.View.drawPlot</command>
	This command repaints the window so that the function get visible.</para>
<para>
	A list of the available functions:
	<variablelist>
		<varlistentry>
			<term>
				/kmplot org.kde.kmplot.KmPlot.fileOpen url
			</term>
			<listitem>
				<para>Load the file <parameter>url</parameter>.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.isModified
			</term>
			<listitem>
				<para>Returns true if any changes are done.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.checkModified
			</term>
			<listitem>
				<para>If there are any unsaved changes, a dialog appears to save, discard or cancel the plots.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.editAxes
			</term>
			<listitem>
				<para>Opens the coordinate system edit dialog.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.toggleShowSlider
			</term>
			<listitem>
				<para>Shows/hides parameter slider window.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotSave
			</term>
			<listitem>
				<para>Saves the functions (opens the save dialog if it is a new file).</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotSaveas
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>File</guimenu><guimenuitem>Save As</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotPrint
			</term>
			<listitem>
				<para>Opens the print dialog.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotResetView
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>View</guimenu><guimenuitem>Reset View</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotExport
			</term>
			<listitem>
				<para>Opens the export dialog.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotSettings
			</term>
			<listitem>
				<para>Opens the settings dialog.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.slotNames
			</term>
			<listitem>
				<para>Shows the predefined math functions in the handbook.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.findMinimumValue
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>Tools</guimenu><guimenuitem>Minimum Value...</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.findMaximumValue
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>Tools</guimenu><guimenuitem>Maximum Value...</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.graphArea
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>Tools</guimenu><guimenuitem>Plot Area</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/maindlg org.kde.kmplot.MainDlg.calculator
			</term>
			<listitem>
				<para>The same as choosing <menuchoice><guimenu>Tools</guimenu><guimenuitem>Calculator</guimenuitem></menuchoice> in the menu.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/parser org.kde.kmplot.Parser.addFunction f_str0 f_fstr1
			</term>
			<listitem>
				<para>Adds a new function with the expressions <parameter>f_str0</parameter> and <parameter>f_str1</parameter>. If the expression does not contain a function name, it will be auto-generated. The id number of the new function is returned, or -1 if the function could not be defined.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/parser org.kde.kmplot.Parser.removeFunction id
			</term>
			<listitem>
				<para>Removes the function with the id number <parameter>id</parameter>. If the function could not be deleted, false is returned, otherwise true.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/parser org.kde.kmplot.Parser.setFunctionExpression id eq f_str
			</term>
			<listitem>
				<para>Sets the expression for the function with the id number <parameter>id</parameter> to <parameter>f_str</parameter>. Returns true if it succeed, otherwise false.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
				/parser org.kde.kmplot.Parser.countFunctions
			</term>
			<listitem>
				<para>Returns the number of functions (parametric functions are calculated as two).</para>
			</listitem>
		</varlistentry>
<!-- method double org.kde.kmplot.Parser.fkt(uint id, uint eq, double eq) what is this?-->
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.listFunctionNames
		  </term>
		  <listitem>
		    <para>Returns a list with all functions.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.fnameToID f_str
		  </term>
		  <listitem>
		    <para>Returns the id number of <parameter>f_str</parameter> or -1 if the function name <parameter>f_str</parameter> was not found.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionFVisible id
		  </term>
		  <listitem>
		    <para>Returns true if the function with the ID <parameter>id</parameter> is visible, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionF1Visible id
		  </term>
		  <listitem>
		    <para>Returns true if the first derivative of the function with the ID <parameter>id</parameter> is visible, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionF2Visible id
		  </term>
		  <listitem>
		    <para>Returns true if the second derivative of the function with the ID <parameter>id</parameter> is visible, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionIntVisible id
		  </term>
		  <listitem>
		    <para>Returns true if the integral of the function with the ID <parameter>id</parameter> is visible, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionFVisible id visible
		  </term>
		  <listitem>
		    <para>Shows the function with the ID <parameter>id</parameter> if <parameter>visible</parameter> is true. If <parameter>visible</parameter> is false, the function will be hidden. True is returned if the function exists, otherwise false</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionF1Visible id visible
		  </term>
		  <listitem>
		    <para>Shows the first derivative of the function with the ID <parameter>id</parameter> if <parameter>visible</parameter> is true. If <parameter>visible</parameter> is false, the function will be hidden. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionF2Visible id visible
		  </term>
		  <listitem>
		    <para>Shows the second derivative of the function with the ID <parameter>id</parameter> if <parameter>visible</parameter> is true. If <parameter>visible</parameter> is false, the function will be hidden. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionIntVisible id visible
		  </term>
		  <listitem>
		    <para>Shows the integral of the function with the ID <parameter>id</parameter> if <parameter>visible</parameter> is true. If <parameter>visible</parameter> is false, the function will be hidden. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionStr id eq <!-- what is eq?-->
		  </term>
		  <listitem>
		    <para>Returns the function expression of the function with the ID <parameter>id</parameter>. If the function not exists, an empty string is returned instead.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionFLineWidth id
		  </term>
		  <listitem>
		    <para>Returns the line width of the function with the ID <parameter>id</parameter>. If the function not exists, 0 is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionF1LineWidth id
		  </term>
		  <listitem>
		    <para>Returns the line width of the first derivative of the function with the ID <parameter>id</parameter>. If the function not exists, 0 is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionF2LineWidth id
		  </term>
		  <listitem>
		    <para>Returns the line width of the second derivative of the function with the ID <parameter>id</parameter>. If the function not exists, 0 is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionIntLineWidth id
		  </term>
		  <listitem>
		    <para>Returns the line width of the integral of the function with the ID <parameter>id</parameter>. If the function not exists, 0 is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionFLineWidth id linewidth
		  </term>
		  <listitem>
		    <para>Sets the line width of the function with the ID <parameter>id</parameter> to <parameter>linewidth</parameter>. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionF1LineWidth id linewidth
		  </term>
		  <listitem>
		    <para>Sets the line width of the first derivative of the function with the ID <parameter>id</parameter> to <parameter>linewidth</parameter>. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionF2LineWidth id linewidth
		  </term>
		  <listitem>
		    <para>Sets the line width of the second derivative of the function with the ID <parameter>id</parameter> to <parameter>linewidth</parameter>. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionIntLineWidth id linewidth
		  </term>
		  <listitem>
		    <para>Sets the line width of the integral of the function with the ID <parameter>id</parameter> to <parameter>linewidth</parameter>. True is returned if the function exists, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionParameterList id
		  </term>
		  <listitem>
		    <para>Returns a list with all the parameter values for the function with the ID <parameter>id</parameter>.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionAddParameter id new_parameter
		  </term>
		  <listitem>
		    <para>Adds the parameter value  <parameter>new_parameter</parameter> to the function with the ID <parameter>id</parameter>. True is returned if the operation succeed, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionRemoveParameter id remove_parameter
		  </term>
		  <listitem>
		    <para>Removes the parameter value <parameter>remove_parameter</parameter> from the function with the ID <parameter>id</parameter>. True is returned if the operation succeed, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionMinValue id
		  </term>
		  <listitem>
		    <para>Returns the minimum plot range value of the function with the ID <parameter>id</parameter>. If the function not exists or if the minimum value is not defined, an empty string is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionMaxValue id
		  </term>
		  <listitem>
		    <para>Returns the maximum plot range value of the function with the ID <parameter>id</parameter>. If the function not exists or if the maximum value is not defined, an empty string is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionMinValue id min
		  </term>
		  <listitem>
		    <para>Sets the minimum plot range value of the function with the ID <parameter>id</parameter> to <parameter>min</parameter>. True is returned if the function exists and the expression is valid, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionMaxValue id max
		  </term>
		  <listitem>
		    <para>Sets the maximum plot range value of the function with the ID <parameter>id</parameter> to <parameter>max</parameter>. True is returned if the function exists and the expression is valid, otherwise false.</para>
		  </listitem>
		</varlistentry>

		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionStartXValue id
		  </term>
		  <listitem>
		    <para>Returns the initial x point for the integral of the function with the ID <parameter>id</parameter>. If the function not exists or if the x-point-expression is not defined, an empty string is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.functionStartYValue id
		  </term>
		  <listitem>
		    <para>Returns the initial y point for the integral of the function with the ID <parameter>id</parameter>. If the function not exists or if the y-point-expression is not defined, an empty string is returned.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
		  <term>
		    /parser org.kde.kmplot.Parser.setFunctionStartValue id x y
		  </term>
		  <listitem>
		    <para>Sets the initial x and y point for the integral of the function with the ID <parameter>id</parameter> to <parameter>x</parameter> and  <parameter>y</parameter>. True is returned if the function exists and the expression is valid, otherwise false.</para>
		  </listitem>
		</varlistentry>
		<varlistentry>
			<term>
			/view org.kde.kmplot.View.stopDrawing
			</term>
			<listitem>
				<para>If &kmplot; currently is drawing a function, the procedure will stop.</para>
			</listitem>
		</varlistentry>
		<varlistentry>
			<term>
			/view org.kde.kmplot.View.drawPlot
			</term>
			<listitem>
				<para>Redraws all functions.</para>
			</listitem>
		</varlistentry>
	</variablelist>
</para>
</chapter>

<chapter id="credits">
<title>Credits and License</title>

<para>
&kmplot;
</para>

<para>
Program copyright 2000-2002 Klaus-Dieter M&ouml;ller &Klaus-Dieter.Moeller.mail;
</para>

<itemizedlist>
<title>Contributors</title>
  <listitem>
    <para><acronym>CVS</acronym>: &Robert.Gogolok; <email>mail@robert-gogoloh.de</email></para>
  </listitem>
  <listitem>
    <para>Porting &GUI; to &kde; 3 and Translating: &Matthias.Messmer; &Matthias.Messmer.mail;</para>
  </listitem>
  <listitem>
    <para>Various improvements: Fredrik Edemar <email>f_edemar@linux.se</email></para>
  </listitem>
  <listitem>
	<para>Porting to Qt 4, UI improvements, features: David Saxton <email>david@bluehaze.org</email></para>
  </listitem>
</itemizedlist>

<para>
Documentation copyright 2000--2002 by Klaus-Dieter M&ouml;ller &Klaus-Dieter.Moeller.mail;.
</para>
<para>Documentation extended and updated for &kde; 3.2 by &Philip.Rodrigues; &Philip.Rodrigues.mail;.</para>
<para>Documentation extended and updated for &kde; 3.3 by &Philip.Rodrigues; &Philip.Rodrigues.mail; and Fredrik Edemar <email>f_edemar@linux.se</email>.</para>
<para>Documentation extended and updated for &kde; 3.4 by Fredrik Edemar <email>f_edemar@linux.se</email>.</para>
<para>Documentation extended and updated for &kde; 4.0 by David Saxton <email>david@bluehaze.org</email>.</para>
<!-- TRANS:CREDIT_FOR_TRANSLATORS -->

&underFDL;               <!-- FDL: do not remove. Commercial development should
 -->
&underGPL;        	 <!-- GPL License -->

</chapter>

&documentation.index;
</book>
<!--
Local Variables:
mode: sgml
sgml-minimize-attributes:nil
sgml-general-insert-case:lower
sgml-indent-step:0
sgml-indent-data:nil
End:
-->