1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <errno.h>
#include <limits.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/errcode.h>
#include <libknot/rrtype/rrsig.h>
#include <uv.h>
#include "contrib/base32hex.h"
#include "contrib/cleanup.h"
#include "contrib/ucw/lib.h"
#include "lib/cache/api.h"
#include "lib/cache/cdb_lmdb.h"
#include "lib/defines.h"
#include "lib/dnssec/nsec3.h"
#include "lib/generic/trie.h"
#include "lib/resolve.h"
#include "lib/rplan.h"
#include "lib/utils.h"
#include "lib/cache/impl.h"
/* TODO:
* - Reconsider when RRSIGs are put in and retrieved from the cache.
* Currently it's always done, which _might_ be spurious, depending
* on how kresd will use the returned result.
* There's also the "problem" that kresd ATM does _not_ ask upstream
* with DO bit in some cases.
*/
/** Cache version */
static const uint16_t CACHE_VERSION = 7;
/** Key size */
#define KEY_HSIZE (sizeof(uint8_t) + sizeof(uint16_t))
#define KEY_SIZE (KEY_HSIZE + KNOT_DNAME_MAXLEN)
/** @internal Forward declarations of the implementation details
* \param needs_pkt[out] optionally set *needs_pkt = true;
* We do that when some RRset wasn't stashed to aggressive cache,
* even though it might have taken part in a successful DNSSEC proof:
* 1. any opt-out NSEC3, as they typically aren't much use aggressively anyway
* 2. some kinds of minimal NSEC* ranges, as they'd seem more trouble than worth:
* - extremely short range of covered names limits the benefits severely
* - the type-set is often a lie, either a working lie, e.g. CloudFlare's
* black lies, or even a non-working lie, e.g. DVE-2018-0003
* 3. some kinds of "weird" RRsets, to get at least some caching on them
*/
static ssize_t stash_rrset(struct kr_cache *cache, const struct kr_query *qry,
const knot_rrset_t *rr, const knot_rrset_t *rr_sigs, uint32_t timestamp,
uint8_t rank, trie_t *nsec_pmap, knot_mm_t *pool, bool *needs_pkt);
/** Preliminary checks before stash_rrset(). Don't call if returns <= 0. */
static int stash_rrset_precond(const knot_rrset_t *rr, const struct kr_query *qry/*logs*/);
/** @internal Ensure the cache version is right, possibly by clearing it. */
static int assert_right_version(struct kr_cache *cache)
{
/* Check cache ABI version. */
/* CACHE_KEY_DEF: to avoid collisions with kr_cache_match(). */
uint8_t key_str[4] = "VERS";
knot_db_val_t key = { .data = key_str, .len = sizeof(key_str) };
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read, &key, &val, 1);
if (ret == 0 && val.len == sizeof(CACHE_VERSION)
&& memcmp(val.data, &CACHE_VERSION, sizeof(CACHE_VERSION)) == 0) {
ret = kr_ok();
} else {
int oldret = ret;
/* Version doesn't match or we were unable to read it, possibly because DB is empty.
* Recreate cache and write version key. */
ret = cache_op(cache, count);
if (ret != 0) { /* Log for non-empty cache to limit noise on fresh start. */
kr_log_info(CACHE, "incompatible cache database detected, purging\n");
if (oldret) {
kr_log_debug(CACHE, "reading version returned: %d\n", oldret);
} else if (val.len != sizeof(CACHE_VERSION)) {
kr_log_debug(CACHE, "version has bad length: %d\n", (int)val.len);
} else {
uint16_t ver;
memcpy(&ver, val.data, sizeof(ver));
kr_log_debug(CACHE, "version has bad value: %d instead of %d\n",
(int)ver, (int)CACHE_VERSION);
}
}
ret = cache_op(cache, clear);
}
/* Rewrite the entry even if it isn't needed. Because of cache-size-changing
* possibility it's good to always perform some write during opening of cache. */
if (ret == 0) {
/* Key/Val is invalidated by cache purge, recreate it */
val.data = /*const-cast*/(void *)&CACHE_VERSION;
val.len = sizeof(CACHE_VERSION);
ret = cache_op(cache, write, &key, &val, 1);
}
kr_cache_commit(cache);
return ret;
}
int kr_cache_open(struct kr_cache *cache, const struct kr_cdb_api *api, struct kr_cdb_opts *opts, knot_mm_t *mm)
{
if (kr_fails_assert(cache))
return kr_error(EINVAL);
memset(cache, 0, sizeof(*cache));
/* Open cache */
if (!api)
api = kr_cdb_lmdb();
cache->api = api;
int ret = cache->api->open(&cache->db, &cache->stats, opts, mm);
if (ret == 0) {
ret = assert_right_version(cache);
// The included write also committed maxsize increase to the file.
}
if (ret == 0 && opts->maxsize) {
/* If some maxsize is requested and it's smaller than in-file maxsize,
* LMDB only restricts our env without changing the in-file maxsize.
* That is worked around by reopening (found no other reliable way). */
cache->api->close(cache->db, &cache->stats);
struct kr_cdb_opts opts2;
memcpy(&opts2, opts, sizeof(opts2));
opts2.maxsize = 0;
ret = cache->api->open(&cache->db, &cache->stats, &opts2, mm);
}
char *fpath = kr_absolutize_path(opts->path, "data.mdb");
if (kr_fails_assert(fpath)) {
/* non-critical, but still */
fpath = "<ENOMEM>";
} else {
kr_cache_emergency_file_to_remove = fpath;
}
if (ret == 0 && opts->maxsize) {
size_t maxsize = cache->api->get_maxsize(cache->db);
if (maxsize > opts->maxsize) kr_log_warning(CACHE,
"Warning: real cache size is %zu instead of the requested %zu bytes."
" To reduce the size you need to remove the file '%s' by hand.\n",
maxsize, opts->maxsize, fpath);
}
if (ret != 0)
return ret;
cache->ttl_min = KR_CACHE_DEFAULT_TTL_MIN;
cache->ttl_max = KR_CACHE_DEFAULT_TTL_MAX;
kr_cache_make_checkpoint(cache);
return 0;
}
const char *kr_cache_emergency_file_to_remove = NULL;
#define cache_isvalid(cache) ((cache) && (cache)->api && (cache)->db)
void kr_cache_close(struct kr_cache *cache)
{
kr_cache_check_health(cache, -1);
if (cache_isvalid(cache)) {
cache_op(cache, close);
cache->db = NULL;
}
free(/*const-cast*/(char*)kr_cache_emergency_file_to_remove);
kr_cache_emergency_file_to_remove = NULL;
}
int kr_cache_commit(struct kr_cache *cache)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (cache->api->commit) {
return cache_op(cache, commit);
}
return kr_ok();
}
int kr_cache_clear(struct kr_cache *cache)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
int ret = cache_op(cache, clear);
if (ret == 0) {
kr_cache_make_checkpoint(cache);
ret = assert_right_version(cache);
}
return ret;
}
/* When going stricter, BEWARE of breaking entry_h_consistent_NSEC() */
struct entry_h * entry_h_consistent_E(knot_db_val_t data, uint16_t type)
{
(void) type; /* unused, for now */
if (!data.data) return NULL;
/* Length checks. */
if (data.len < offsetof(struct entry_h, data))
return NULL;
const struct entry_h *eh = data.data;
if (eh->is_packet) {
uint16_t pkt_len;
if (data.len < offsetof(struct entry_h, data) + sizeof(pkt_len)) {
return NULL;
}
memcpy(&pkt_len, eh->data, sizeof(pkt_len));
if (data.len < offsetof(struct entry_h, data) + sizeof(pkt_len)
+ pkt_len) {
return NULL;
}
}
bool ok = true;
ok = ok && kr_rank_check(eh->rank);
ok = ok && (!kr_rank_test(eh->rank, KR_RANK_BOGUS)
|| eh->is_packet);
ok = ok && (eh->is_packet || !eh->has_optout);
return ok ? /*const-cast*/(struct entry_h *)eh : NULL;
}
int32_t get_new_ttl(const struct entry_h *entry, const struct kr_query *qry,
const knot_dname_t *owner, uint16_t type, uint32_t now)
{
int32_t diff = now - entry->time;
if (diff < 0) {
/* We may have obtained the record *after* the request started. */
diff = 0;
}
int32_t res = entry->ttl - diff;
if (res < 0 && owner && qry && qry->stale_cb) {
/* Stale-serving decision, delegated to a callback. */
int res_stale = qry->stale_cb(res, owner, type, qry);
if (res_stale >= 0) {
VERBOSE_MSG(qry, "responding with stale answer\n");
/* LATER: Perhaps we could use a more specific Stale
* NXDOMAIN Answer code for applicable responses. */
kr_request_set_extended_error(qry->request, KNOT_EDNS_EDE_STALE, "6Q6X");
return res_stale;
}
}
return res;
}
int32_t kr_cache_ttl(const struct kr_cache_p *peek, const struct kr_query *qry,
const knot_dname_t *name, uint16_t type)
{
const struct entry_h *eh = peek->raw_data;
return get_new_ttl(eh, qry, name, type, qry->timestamp.tv_sec);
}
/** Check that no label contains a zero character, incl. a log trace.
*
* We refuse to work with those, as LF and our cache keys might become ambiguous.
* Assuming uncompressed name, as usual.
* CACHE_KEY_DEF
*/
static bool check_dname_for_lf(const knot_dname_t *n, const struct kr_query *qry/*logging*/)
{
const bool ret = knot_dname_size(n) == strlen((const char *)n) + 1;
if (!ret && kr_log_is_debug_qry(CACHE, qry)) {
auto_free char *n_str = kr_dname_text(n);
VERBOSE_MSG(qry, "=> skipping zero-containing name %s\n", n_str);
}
return ret;
}
/** Return false on types to be ignored. Meant both for sname and direct cache requests. */
static bool check_rrtype(uint16_t type, const struct kr_query *qry/*logging*/)
{
const bool ret = !knot_rrtype_is_metatype(type)
&& type != KNOT_RRTYPE_RRSIG;
if (!ret && kr_log_is_debug_qry(CACHE, qry)) {
auto_free char *type_str = kr_rrtype_text(type);
VERBOSE_MSG(qry, "=> skipping RR type %s\n", type_str);
}
return ret;
}
/** Like key_exact_type() but omits a couple checks not holding for pkt cache. */
knot_db_val_t key_exact_type_maypkt(struct key *k, uint16_t type)
{
if (kr_fails_assert(check_rrtype(type, NULL)))
return (knot_db_val_t){ NULL, 0 };
switch (type) {
case KNOT_RRTYPE_RRSIG: /* no RRSIG query caching, at least for now */
kr_assert(false);
return (knot_db_val_t){ NULL, 0 };
/* xNAME lumped into NS. */
case KNOT_RRTYPE_CNAME:
case KNOT_RRTYPE_DNAME:
type = KNOT_RRTYPE_NS;
default:
break;
}
int name_len = k->buf[0];
k->buf[name_len + 1] = 0; /* make sure different names can never match */
k->buf[name_len + 2] = 'E'; /* tag for exact name+type matches */
memcpy(k->buf + name_len + 3, &type, 2);
k->type = type;
/* CACHE_KEY_DEF: key == dname_lf + '\0' + 'E' + RRTYPE */
return (knot_db_val_t){ k->buf + 1, name_len + 4 };
}
/** The inside for cache_peek(); implementation separated to ./peek.c */
int peek_nosync(kr_layer_t *ctx, knot_pkt_t *pkt);
/** function for .produce phase */
int cache_peek(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* We first check various exit-conditions and then call the _real function. */
if (!kr_cache_is_open(&req->ctx->cache)
|| ctx->state & (KR_STATE_FAIL|KR_STATE_DONE) || qry->flags.NO_CACHE
|| (qry->flags.CACHE_TRIED && !qry->stale_cb)
|| !check_rrtype(qry->stype, qry) /* LATER: some other behavior for some of these? */
|| qry->sclass != KNOT_CLASS_IN) {
return ctx->state; /* Already resolved/failed or already tried, etc. */
}
/* ATM cache only peeks for qry->sname and that would be useless
* to repeat on every iteration, so disable it from now on.
* LATER(optim.): assist with more precise QNAME minimization. */
qry->flags.CACHE_TRIED = true;
if (qry->stype == KNOT_RRTYPE_NSEC) {
VERBOSE_MSG(qry, "=> skipping stype NSEC\n");
return ctx->state;
}
if (!check_dname_for_lf(qry->sname, qry)) {
return ctx->state;
}
int ret = peek_nosync(ctx, pkt);
kr_cache_commit(&req->ctx->cache);
return ret;
}
/** It's simply inside of cycle taken out to decrease indentation. \return error code. */
static int stash_rrarray_entry(ranked_rr_array_t *arr, int arr_i,
const struct kr_query *qry, struct kr_cache *cache,
int *unauth_cnt, trie_t *nsec_pmap, bool *needs_pkt);
/** Stash a single nsec_p. \return 0 (errors are ignored). */
static int stash_nsec_p(const knot_dname_t *dname, const char *nsec_p_v,
struct kr_cache *cache, uint32_t timestamp, knot_mm_t *pool,
const struct kr_query *qry/*logging*/);
/** The whole .consume phase for the cache module. */
int cache_stash(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
struct kr_cache *cache = &req->ctx->cache;
/* Note: we cache even in KR_STATE_FAIL. For example,
* BOGUS answer can go to +cd cache even without +cd request. */
if (!kr_cache_is_open(cache) || !qry
|| qry->flags.CACHED || !check_rrtype(knot_pkt_qtype(pkt), qry)
|| qry->sclass != KNOT_CLASS_IN) {
return ctx->state;
}
/* Do not cache truncated answers, at least for now. LATER */
if (knot_wire_get_tc(pkt->wire)) {
return ctx->state;
}
int unauth_cnt = 0;
bool needs_pkt = false;
if (qry->flags.STUB) {
needs_pkt = true;
goto stash_packet;
}
/* Stash individual records. */
ranked_rr_array_t *selected[] = kr_request_selected(req);
trie_t *nsec_pmap = trie_create(&req->pool);
if (kr_fails_assert(nsec_pmap))
goto finally;
for (int psec = KNOT_ANSWER; psec <= KNOT_ADDITIONAL; ++psec) {
ranked_rr_array_t *arr = selected[psec];
/* uncached entries are located at the end */
for (ssize_t i = arr->len - 1; i >= 0; --i) {
ranked_rr_array_entry_t *entry = arr->at[i];
if (entry->qry_uid != qry->uid || entry->dont_cache) {
continue;
/* TODO: probably safe to break on uid mismatch but maybe not worth it */
}
int ret = stash_rrarray_entry(
arr, i, qry, cache, &unauth_cnt, nsec_pmap,
/* ADDITIONAL RRs are considered non-essential
* in our (resolver) answers */
(psec == KNOT_ADDITIONAL ? NULL : &needs_pkt));
if (ret) {
VERBOSE_MSG(qry, "=> stashing RRs errored out\n");
goto finally;
}
/* LATER(optim.): maybe filter out some type-rank combinations
* that won't be useful as separate RRsets. */
}
}
trie_it_t *it;
for (it = trie_it_begin(nsec_pmap); !trie_it_finished(it); trie_it_next(it)) {
stash_nsec_p((const knot_dname_t *)trie_it_key(it, NULL),
(const char *)*trie_it_val(it),
cache, qry->timestamp.tv_sec, &req->pool, req->current_query);
}
trie_it_free(it);
/* LATER(optim.): typically we also have corresponding NS record in the list,
* so we might save a cache operation. */
stash_packet:
if (qry->flags.PKT_IS_SANE && check_dname_for_lf(knot_pkt_qname(pkt), qry)) {
stash_pkt(pkt, qry, req, needs_pkt);
}
finally:
if (unauth_cnt) {
VERBOSE_MSG(qry, "=> stashed also %d nonauth RRsets\n", unauth_cnt);
};
kr_cache_commit(cache);
return ctx->state; /* we ignore cache-stashing errors */
}
/** Preliminary checks before stash_rrset(). Don't call if returns <= 0. */
static int stash_rrset_precond(const knot_rrset_t *rr, const struct kr_query *qry/*logs*/)
{
if (kr_fails_assert(rr && rr->rclass == KNOT_CLASS_IN))
return kr_error(EINVAL);
if (!check_rrtype(rr->type, qry))
return kr_ok();
if (!check_dname_for_lf(rr->owner, qry))
return kr_ok();
return 1/*proceed*/;
}
/** Return true on some cases of NSEC* RRsets covering minimal ranges.
* Also include some abnormal RR cases; qry is just for logging. */
static bool rrset_has_min_range_or_weird(const knot_rrset_t *rr, const struct kr_query *qry)
{
if (rr->rrs.count != 1) {
kr_assert(rr->rrs.count > 0);
if (rr->type == KNOT_RRTYPE_NSEC || rr->type == KNOT_RRTYPE_NSEC3
|| rr->rrs.count == 0) {
return true; /*< weird */
}
}
bool ret; /**< NOT used for the weird cases */
if (rr->type == KNOT_RRTYPE_NSEC) {
if (!check_dname_for_lf(rr->owner, qry))
return true; /*< weird, probably filtered even before this point */
ret = !check_dname_for_lf(knot_nsec_next(rr->rrs.rdata), qry);
/* ^^ Zero inside the next-name label means it's probably a minimal range,
* and anyway it's problematic for our aggressive cache (comparisons).
* Real-life examples covered:
* NSEC: name -> \000.name (e.g. typical foobar.CloudFlare.net)
* NSEC: name -> name\000 (CloudFlare on delegations)
*/
} else if (rr->type == KNOT_RRTYPE_NSEC3) {
if (knot_nsec3_next_len(rr->rrs.rdata) != NSEC3_HASH_LEN
|| *rr->owner != NSEC3_HASH_TXT_LEN) {
return true; /*< weird */
}
/* Let's work on the binary hashes. Find if they "differ by one",
* by constructing the owner hash incremented by one and comparing. */
uint8_t owner_hash[NSEC3_HASH_LEN];
if (base32hex_decode(rr->owner + 1, NSEC3_HASH_TXT_LEN,
owner_hash, NSEC3_HASH_LEN) != NSEC3_HASH_LEN) {
return true; /*< weird */
}
for (int i = NSEC3_HASH_LEN - 1; i >= 0; --i) {
if (++owner_hash[i] != 0) break;
}
const uint8_t *next_hash = knot_nsec3_next(rr->rrs.rdata);
ret = memcmp(owner_hash, next_hash, NSEC3_HASH_LEN) == 0;
} else {
return false;
}
if (ret) VERBOSE_MSG(qry, "=> minimized NSEC* range detected\n");
return ret;
}
static ssize_t stash_rrset(struct kr_cache *cache, const struct kr_query *qry,
const knot_rrset_t *rr, const knot_rrset_t *rr_sigs, uint32_t timestamp,
uint8_t rank, trie_t *nsec_pmap, knot_mm_t *pool, bool *needs_pkt)
{
if (kr_rank_test(rank, KR_RANK_BOGUS)) {
WITH_VERBOSE(qry) {
auto_free char *type_str = kr_rrtype_text(rr->type);
VERBOSE_MSG(qry, "=> skipping bogus RR set %s\n", type_str);
}
return kr_ok();
}
if (rr->type == KNOT_RRTYPE_NSEC3 && rr->rrs.count
&& kr_nsec3_limited_rdata(rr->rrs.rdata)) {
/* This shouldn't happen often, thanks to downgrades during validation. */
VERBOSE_MSG(qry, "=> skipping NSEC3 with too many iterations\n");
return kr_ok();
}
if (kr_fails_assert(cache && stash_rrset_precond(rr, qry) > 0))
return kr_error(EINVAL);
int ret = kr_ok();
if (rrset_has_min_range_or_weird(rr, qry))
goto return_needs_pkt;
const int wild_labels = rr_sigs == NULL ? 0 :
knot_dname_labels(rr->owner, NULL) - knot_rrsig_labels(rr_sigs->rrs.rdata);
if (wild_labels < 0)
goto return_needs_pkt;
const knot_dname_t *encloser = rr->owner; /**< the closest encloser name */
for (int i = 0; i < wild_labels; ++i) {
encloser = knot_wire_next_label(encloser, NULL);
}
/* Construct the key under which RRs will be stored,
* and add corresponding nsec_pmap item (if necessary). */
struct key k_storage, *k = &k_storage;
knot_db_val_t key;
switch (rr->type) {
case KNOT_RRTYPE_NSEC3:
/* Skip opt-out NSEC3 sets. */
if (KNOT_NSEC3_FLAG_OPT_OUT & knot_nsec3_flags(rr->rrs.rdata))
goto return_needs_pkt;
/* fall through */
case KNOT_RRTYPE_NSEC:
/* Skip any NSEC*s that aren't validated or are suspicious. */
if (!kr_rank_test(rank, KR_RANK_SECURE) || rr->rrs.count != 1)
goto return_needs_pkt;
if (kr_fails_assert(rr_sigs && rr_sigs->rrs.count && rr_sigs->rrs.rdata)) {
ret = kr_error(EINVAL);
goto return_needs_pkt;
}
const knot_dname_t *signer = knot_rrsig_signer_name(rr_sigs->rrs.rdata);
const int signer_size = knot_dname_size(signer);
k->zlf_len = signer_size - 1;
void **npp = NULL;
if (nsec_pmap) {
npp = trie_get_ins(nsec_pmap, (const char *)signer, signer_size);
if (kr_fails_assert(npp))
return kr_error(ENOMEM);
}
if (rr->type == KNOT_RRTYPE_NSEC) {
key = key_NSEC1(k, encloser, wild_labels);
break;
}
kr_require(rr->type == KNOT_RRTYPE_NSEC3);
const knot_rdata_t * const rdata = rr->rrs.rdata;
if (rdata->len <= 4) {
ret = kr_error(EILSEQ); /*< data from outside; less trust */
goto return_needs_pkt;
}
const int np_dlen = nsec_p_rdlen(rdata->data);
if (np_dlen > rdata->len) {
ret = kr_error(EILSEQ);
goto return_needs_pkt;
}
key = key_NSEC3(k, encloser, nsec_p_mkHash(rdata->data));
if (npp && !*npp) {
*npp = mm_alloc(pool, np_dlen);
if (kr_fails_assert(*npp))
break;
memcpy(*npp, rdata->data, np_dlen);
}
break;
default:
ret = kr_dname_lf(k->buf, encloser, wild_labels);
if (kr_fails_assert(ret == 0))
goto return_needs_pkt;
key = key_exact_type(k, rr->type);
}
/* Compute in-cache size for the new data. */
const knot_rdataset_t *rds_sigs = rr_sigs ? &rr_sigs->rrs : NULL;
const int rr_ssize = rdataset_dematerialize_size(&rr->rrs);
if (kr_fails_assert(rr_ssize == to_even(rr_ssize)))
return kr_error(EINVAL);
knot_db_val_t val_new_entry = {
.data = NULL,
.len = offsetof(struct entry_h, data) + rr_ssize
+ rdataset_dematerialize_size(rds_sigs),
};
/* Prepare raw memory for the new entry. */
ret = entry_h_splice(&val_new_entry, rank, key, k->type, rr->type,
rr->owner, qry, cache, timestamp);
if (ret) return kr_ok(); /* some aren't really errors */
if (kr_fails_assert(val_new_entry.data))
return kr_error(EFAULT);
/* Write the entry itself. */
struct entry_h *eh = val_new_entry.data;
memset(eh, 0, offsetof(struct entry_h, data));
eh->time = timestamp;
eh->ttl = rr->ttl;
eh->rank = rank;
rdataset_dematerialize(&rr->rrs, eh->data);
rdataset_dematerialize(rds_sigs, eh->data + rr_ssize);
if (kr_fails_assert(entry_h_consistent_E(val_new_entry, rr->type)))
return kr_error(EINVAL);
#if 0 /* Occasionally useful when debugging some kinds of changes. */
{
kr_cache_commit(cache);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (ret != kr_error(ENOENT)) { // ENOENT might happen in some edge case, I guess
kr_assert(!ret);
entry_list_t el;
entry_list_parse(val, el);
}
}
#endif
/* Verbose-log some not-too-common cases. */
WITH_VERBOSE(qry) { if (kr_rank_test(rank, KR_RANK_AUTH)
|| rr->type == KNOT_RRTYPE_NS) {
auto_free char *type_str = kr_rrtype_text(rr->type),
*encl_str = kr_dname_text(encloser);
VERBOSE_MSG(qry, "=> stashed %s%s %s, rank 0%.2o, "
"%d B total, incl. %d RRSIGs\n",
(wild_labels ? "*." : ""), encl_str, type_str, rank,
(int)val_new_entry.len, (rr_sigs ? rr_sigs->rrs.count : 0)
);
} }
return (ssize_t) val_new_entry.len;
return_needs_pkt:
if (needs_pkt) *needs_pkt = true;
return ret;
}
static int stash_rrarray_entry(ranked_rr_array_t *arr, int arr_i,
const struct kr_query *qry, struct kr_cache *cache,
int *unauth_cnt, trie_t *nsec_pmap, bool *needs_pkt)
{
ranked_rr_array_entry_t *entry = arr->at[arr_i];
if (entry->cached) {
return kr_ok();
}
const knot_rrset_t *rr = entry->rr;
if (rr->type == KNOT_RRTYPE_RRSIG) {
return kr_ok(); /* reduce verbose logging from the following call */
}
int ret = stash_rrset_precond(rr, qry);
if (ret <= 0) {
return ret;
}
/* Try to find corresponding signatures, always. LATER(optim.): speed. */
ranked_rr_array_entry_t *entry_rrsigs = NULL;
const knot_rrset_t *rr_sigs = NULL;
for (ssize_t j = arr->len - 1; j >= 0; --j) {
/* TODO: ATM we assume that some properties are the same
* for all RRSIGs in the set (esp. label count). */
ranked_rr_array_entry_t *e = arr->at[j];
if (kr_fails_assert(!e->in_progress))
return kr_error(EINVAL);
bool ok = e->qry_uid == qry->uid && !e->cached
&& e->rr->type == KNOT_RRTYPE_RRSIG
&& knot_rrsig_type_covered(e->rr->rrs.rdata) == rr->type
&& knot_dname_is_equal(rr->owner, e->rr->owner);
if (!ok) continue;
entry_rrsigs = e;
rr_sigs = e->rr;
break;
}
ssize_t written = stash_rrset(cache, qry, rr, rr_sigs, qry->timestamp.tv_sec,
entry->rank, nsec_pmap, &qry->request->pool, needs_pkt);
if (written < 0) {
kr_log_error(CACHE, "[%05u.%02u] stash failed, ret = %d\n", qry->request->uid,
qry->uid, ret);
return (int) written;
}
if (written > 0) {
/* Mark entry as cached for the rest of the query processing */
entry->cached = true;
if (entry_rrsigs) {
entry_rrsigs->cached = true;
}
if (!kr_rank_test(entry->rank, KR_RANK_AUTH) && rr->type != KNOT_RRTYPE_NS) {
*unauth_cnt += 1;
}
}
return kr_ok();
}
static int stash_nsec_p(const knot_dname_t *dname, const char *nsec_p_v,
struct kr_cache *cache, uint32_t timestamp, knot_mm_t *pool,
const struct kr_query *qry/*logging*/)
{
uint32_t valid_until = timestamp + cache->ttl_max;
/* LATER(optim.): be more precise here ^^ and reduce calls. */
static const int32_t ttl_margin = 3600;
const uint8_t *nsec_p = (const uint8_t *)nsec_p_v;
int data_stride = sizeof(valid_until) + nsec_p_rdlen(nsec_p);
unsigned int log_hash = 0xFeeeFeee; /* this type is simpler for printf args */
auto_free char *log_dname = NULL;
WITH_VERBOSE(qry) {
log_hash = nsec_p_v ? nsec_p_mkHash((const uint8_t *)nsec_p_v) : 0;
log_dname = kr_dname_text(dname);
}
/* Find what's in the cache. */
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, dname, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_NS);
knot_db_val_t val_orig = { NULL, 0 };
ret = cache_op(cache, read, &key, &val_orig, 1);
if (ret && ret != -ABS(ENOENT)) {
VERBOSE_MSG(qry, "=> EL read failed (ret: %d)\n", ret);
return kr_ok();
}
/* Prepare new entry_list_t so we can just write at el[0]. */
entry_list_t el;
int log_refresh_by = 0;
if (ret == -ABS(ENOENT)) {
memset(el, 0, sizeof(el));
} else {
ret = entry_list_parse(val_orig, el);
if (ret) {
VERBOSE_MSG(qry, "=> EL parse failed (ret: %d)\n", ret);
return kr_error(0);
}
/* Find the index to replace. */
int i_replace = ENTRY_APEX_NSECS_CNT - 1;
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
if (el[i].len != data_stride) continue;
if (nsec_p && memcmp(nsec_p, (uint8_t *)el[i].data + sizeof(uint32_t),
data_stride - sizeof(uint32_t)) != 0) {
continue;
}
/* Save a cache operation if TTL extended only a little. */
uint32_t valid_orig;
memcpy(&valid_orig, el[i].data, sizeof(valid_orig));
const int32_t ttl_extended_by = valid_until - valid_orig;
if (ttl_extended_by < ttl_margin) {
VERBOSE_MSG(qry,
"=> nsec_p stash for %s skipped (extra TTL: %d, hash: %x)\n",
log_dname, ttl_extended_by, log_hash);
return kr_ok();
}
i_replace = i;
log_refresh_by = ttl_extended_by;
break;
}
/* Shift the other indices: move the first `i_replace` blocks
* by one position. */
if (i_replace) {
memmove(&el[1], &el[0], sizeof(el[0]) * i_replace);
}
}
/* Prepare old data into a buffer. See entry_h_splice() for why. LATER(optim.) */
el[0].len = data_stride;
el[0].data = NULL;
knot_db_val_t val;
val.len = entry_list_serial_size(el),
val.data = mm_alloc(pool, val.len),
entry_list_memcpy(val.data, el);
/* Prepare the new data chunk */
memcpy(el[0].data, &valid_until, sizeof(valid_until));
if (nsec_p) {
memcpy((uint8_t *)el[0].data + sizeof(valid_until), nsec_p,
data_stride - sizeof(valid_until));
}
/* Write it all to the cache */
ret = cache_op(cache, write, &key, &val, 1);
mm_free(pool, val.data);
if (ret || !val.data) {
VERBOSE_MSG(qry, "=> EL write failed (ret: %d)\n", ret);
return kr_ok();
}
if (log_refresh_by) {
VERBOSE_MSG(qry, "=> nsec_p stashed for %s (refresh by %d, hash: %x)\n",
log_dname, log_refresh_by, log_hash);
} else {
VERBOSE_MSG(qry, "=> nsec_p stashed for %s (new, hash: %x)\n",
log_dname, log_hash);
}
return kr_ok();
}
int kr_cache_insert_rr(struct kr_cache *cache,
const knot_rrset_t *rr, const knot_rrset_t *rrsig,
uint8_t rank, uint32_t timestamp, bool ins_nsec_p)
{
int err = stash_rrset_precond(rr, NULL);
if (err <= 0) {
return kr_ok();
}
trie_t *nsec_pmap = NULL;
knot_mm_t *pool = NULL;
if (ins_nsec_p && (rr->type == KNOT_RRTYPE_NSEC || rr->type == KNOT_RRTYPE_NSEC3)) {
pool = mm_ctx_mempool2(4096);
nsec_pmap = trie_create(pool);
kr_assert(pool && nsec_pmap);
}
ssize_t written = stash_rrset(cache, NULL, rr, rrsig, timestamp, rank,
nsec_pmap, pool, NULL);
if (nsec_pmap) {
trie_it_t *it;
for (it = trie_it_begin(nsec_pmap); !trie_it_finished(it); trie_it_next(it)) {
stash_nsec_p((const knot_dname_t *)trie_it_key(it, NULL),
(const char *)*trie_it_val(it),
cache, timestamp, pool, NULL);
}
trie_it_free(it);
mm_ctx_delete(pool);
}
if (written >= 0) {
return kr_ok();
}
return (int) written;
}
static int peek_exact_real(struct kr_cache *cache, const knot_dname_t *name, uint16_t type,
struct kr_cache_p *peek)
{
if (!check_rrtype(type, NULL) || !check_dname_for_lf(name, NULL)) {
return kr_error(ENOTSUP);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, type);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (!ret) ret = entry_h_seek(&val, type);
if (ret) return kr_error(ret);
const struct entry_h *eh = entry_h_consistent_E(val, type);
if (!eh || eh->is_packet) {
// TODO: no packets, but better get rid of whole kr_cache_peek_exact().
return kr_error(ENOENT);
}
*peek = (struct kr_cache_p){
.time = eh->time,
.ttl = eh->ttl,
.rank = eh->rank,
.raw_data = val.data,
.raw_bound = knot_db_val_bound(val),
};
return kr_ok();
}
int kr_cache_peek_exact(struct kr_cache *cache, const knot_dname_t *name, uint16_t type,
struct kr_cache_p *peek)
{ /* Just wrap with extra verbose logging. */
const int ret = peek_exact_real(cache, name, type, peek);
if (false && kr_log_is_debug(CACHE, NULL)) { /* too noisy for usual --verbose */
auto_free char *type_str = kr_rrtype_text(type),
*name_str = kr_dname_text(name);
const char *result_str = (ret == kr_ok() ? "hit" :
(ret == kr_error(ENOENT) ? "miss" : "error"));
VERBOSE_MSG(NULL, "_peek_exact: %s %s %s (ret: %d)",
type_str, name_str, result_str, ret);
}
return ret;
}
int kr_cache_remove(struct kr_cache *cache, const knot_dname_t *name, uint16_t type)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (!cache->api->remove) {
return kr_error(ENOSYS);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
knot_db_val_t key = key_exact_type(k, type);
return cache_op(cache, remove, &key, 1);
}
int kr_cache_match(struct kr_cache *cache, const knot_dname_t *name,
bool exact_name, knot_db_val_t keyval[][2], int maxcount)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
if (!cache->api->match) {
return kr_error(ENOSYS);
}
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret) return kr_error(ret);
// use a mock type
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_A);
/* CACHE_KEY_DEF */
key.len -= sizeof(uint16_t); /* the type */
if (!exact_name) {
key.len -= 2; /* '\0' 'E' */
if (name[0] == '\0') ++key.len; /* the root name is special ATM */
}
return cache_op(cache, match, &key, keyval, maxcount);
}
int kr_unpack_cache_key(knot_db_val_t key, knot_dname_t *buf, uint16_t *type)
{
if (key.data == NULL || buf == NULL || type == NULL) {
return kr_error(EINVAL);
}
int len = -1;
const char *tag, *key_data = key.data;
for (tag = key_data + 1; tag < key_data + key.len; ++tag) {
/* CACHE_KEY_DEF */
if (tag[-1] == '\0' && (tag == key_data + 1 || tag[-2] == '\0')) {
if (tag[0] != 'E') return kr_error(EINVAL);
len = tag - 1 - key_data;
break;
}
}
if (len == -1 || len > KNOT_DNAME_MAXLEN) {
return kr_error(EINVAL);
}
int ret = knot_dname_lf2wire(buf, len, key.data);
if (ret < 0) {
return kr_error(ret);
}
/* CACHE_KEY_DEF: jump over "\0 E/1" */
memcpy(type, tag + 1, sizeof(uint16_t));
return kr_ok();
}
int kr_cache_remove_subtree(struct kr_cache *cache, const knot_dname_t *name,
bool exact_name, int maxcount)
{
if (!cache_isvalid(cache)) {
return kr_error(EINVAL);
}
knot_db_val_t keyval[maxcount][2], keys[maxcount];
int ret = kr_cache_match(cache, name, exact_name, keyval, maxcount);
if (ret <= 0) { /* ENOENT -> nothing to remove */
return (ret == KNOT_ENOENT) ? 0 : ret;
}
const int count = ret;
/* Duplicate the key strings, as deletion may invalidate the pointers. */
int i;
for (i = 0; i < count; ++i) {
keys[i].len = keyval[i][0].len;
keys[i].data = malloc(keys[i].len);
if (!keys[i].data) {
ret = kr_error(ENOMEM);
goto cleanup;
}
memcpy(keys[i].data, keyval[i][0].data, keys[i].len);
}
ret = cache_op(cache, remove, keys, count);
cleanup:
kr_cache_commit(cache); /* Sync even after just kr_cache_match(). */
/* Free keys */
while (--i >= 0) {
free(keys[i].data);
}
return ret;
}
static void health_timer_cb(uv_timer_t *health_timer)
{
struct kr_cache *cache = health_timer->data;
if (cache)
cache_op(cache, check_health);
/* We don't do anything with the return code. For example, in some situations
* the file may not exist (temporarily), and we just expect to be more lucky
* when the timer fires again. */
}
int kr_cache_check_health(struct kr_cache *cache, int interval)
{
if (interval == 0)
return cache_op(cache, check_health);
if (interval < 0) {
if (!cache->health_timer)
return kr_ok(); // tolerate stopping a "stopped" timer
uv_close((uv_handle_t *)cache->health_timer, (uv_close_cb)free);
cache->health_timer->data = NULL;
cache->health_timer = NULL;
return kr_ok();
}
if (!cache->health_timer) {
/* We avoid depending on daemon's symbols by using uv_default_loop. */
cache->health_timer = malloc(sizeof(*cache->health_timer));
if (!cache->health_timer) return kr_error(ENOMEM);
uv_loop_t *loop = uv_default_loop();
kr_require(loop);
int ret = uv_timer_init(loop, cache->health_timer);
if (ret) {
free(cache->health_timer);
cache->health_timer = NULL;
return kr_error(ret);
}
cache->health_timer->data = cache;
}
kr_assert(cache->health_timer->data);
return kr_error(uv_timer_start(cache->health_timer, health_timer_cb, interval, interval));
}
|