1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of chaining in struct entry_h. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "lib/utils.h"
static int entry_h_len(knot_db_val_t val);
void entry_list_memcpy(struct entry_apex *ea, entry_list_t list)
{
if (kr_fails_assert(ea))
return;
memset(ea, 0, offsetof(struct entry_apex, data));
ea->has_ns = list[EL_NS ].len;
ea->has_cname = list[EL_CNAME ].len;
ea->has_dname = list[EL_DNAME ].len;
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
ea->nsecs[i] = list[i].len == 0 ? 0 :
(list[i].len == 4 ? 1 : 3);
}
uint8_t *it = ea->data;
for (int i = 0; i < EL_LENGTH; ++i) {
if (list[i].data) {
memcpy(it, list[i].data, list[i].len);
/* LATER(optim.): coalesce consecutive writes? */
} else {
list[i].data = it;
}
it += to_even(list[i].len);
}
}
int entry_list_parse(const knot_db_val_t val, entry_list_t list)
{
if (kr_fails_assert(val.data && val.len && list))
return kr_error(EINVAL);
/* Parse the apex itself (nsec parameters). */
const struct entry_apex *ea = entry_apex_consistent(val);
if (!ea) {
return kr_error(EILSEQ);
}
const uint8_t *it = ea->data,
*it_bound = knot_db_val_bound(val);
for (int i = 0; i < ENTRY_APEX_NSECS_CNT; ++i) {
if (it > it_bound) {
return kr_error(EILSEQ);
}
list[i].data = (void *)it;
switch (ea->nsecs[i]) {
case 0:
list[i].len = 0;
break;
case 1:
list[i].len = sizeof(uint32_t); /* just timestamp */
break;
case 3: { /* timestamp + NSEC3PARAM wire */
if (it + sizeof(uint32_t) + 4 > it_bound) {
return kr_error(EILSEQ);
}
list[i].len = sizeof(uint32_t)
+ nsec_p_rdlen(it + sizeof(uint32_t));
break;
}
default:
return kr_error(EILSEQ);
};
it += to_even(list[i].len);
}
/* Parse every entry_h. */
for (int i = ENTRY_APEX_NSECS_CNT; i < EL_LENGTH; ++i) {
list[i].data = (void *)it;
bool has_type;
switch (i) {
case EL_NS: has_type = ea->has_ns; break;
case EL_CNAME: has_type = ea->has_cname; break;
case EL_DNAME: has_type = ea->has_dname; break;
default:
kr_assert(!EINVAL);
return kr_error(EINVAL); /* something very bad */
}
if (!has_type) {
list[i].len = 0;
continue;
}
if (kr_fails_assert(it < it_bound))
return kr_error(EILSEQ);
const int len = entry_h_len(
(knot_db_val_t){ .data = (void *)it, .len = it_bound - it });
if (kr_fails_assert(len >= 0))
return kr_error(len);
list[i].len = len;
it += to_even(len);
}
if (kr_fails_assert(it == it_bound)) /* better not use it; might be "damaged" */
return kr_error(EILSEQ);
return kr_ok();
}
/** Given a valid entry header, find its length (i.e. offset of the next entry).
* \param val The beginning of the data and the bound (read only).
*/
static int entry_h_len(const knot_db_val_t val)
{
const bool ok = val.data && ((ssize_t)val.len) > 0;
if (!ok) return kr_error(EINVAL);
const struct entry_h *eh = val.data;
const uint8_t *d = eh->data; /* iterates over the data in entry */
const uint8_t *data_bound = knot_db_val_bound(val);
if (d >= data_bound) return kr_error(EILSEQ);
if (!eh->is_packet) { /* Positive RRset + its RRsig set (may be empty). */
int sets = 2;
while (sets-- > 0) {
d += KR_CACHE_RR_COUNT_SIZE + rdataset_dematerialized_size(d, NULL);
if (kr_fails_assert(d <= data_bound))
return kr_error(EILSEQ);
}
} else { /* A "packet" (opaque ATM). */
uint16_t len;
if (d + sizeof(len) > data_bound) return kr_error(EILSEQ);
memcpy(&len, d, sizeof(len));
d += 2 + to_even(len);
}
if (kr_fails_assert(d <= data_bound))
return kr_error(EILSEQ);
return d - (uint8_t *)val.data;
}
struct entry_apex * entry_apex_consistent(knot_db_val_t val)
{
//XXX: check lengths, etc.
return val.data;
}
/* See the header file. */
int entry_h_seek(knot_db_val_t *val, uint16_t type)
{
int i = -1;
switch (type) {
case KNOT_RRTYPE_NS: i = EL_NS; break;
case KNOT_RRTYPE_CNAME: i = EL_CNAME; break;
case KNOT_RRTYPE_DNAME: i = EL_DNAME; break;
default: return kr_ok();
}
entry_list_t el;
int ret = entry_list_parse(*val, el);
if (ret) return ret;
*val = el[i];
return val->len ? kr_ok() : kr_error(ENOENT);
}
static int cache_write_or_clear(struct kr_cache *cache, const knot_db_val_t *key,
knot_db_val_t *val, const struct kr_query *qry)
{
static uint64_t ignoring_errors_until = 0; /// zero or a timestamp
int ret = cache_op(cache, write, key, val, 1);
if (!ret) {
ignoring_errors_until = 0;
return kr_ok();
}
VERBOSE_MSG(qry, "=> failed backend write, ret = %d\n", ret);
if (ret == kr_error(ENOSPC) && cache->api->usage_percent(cache->db) > 90) {
// Cache seems overfull. Maybe kres-cache-gc service doesn't work.
goto recovery;
}
/* If we get ENOSPC with usage < 90% (especially just above 80% when GC fires),
* it most likely isn't real overfull state but some LMDB bug related
* to transactions. Upstream seems unlikely to address it:
https://lists.openldap.org/hyperkitty/list/openldap-technical@openldap.org/thread/QHOTE2Y3WZ6E7J27OOKI44P344ETUOSF/
*
* In real life we see all processes getting a LMDB failure
* but it should recover after the transactions get reopened.
*
* Fortunately the kresd cache can afford to be slightly lossy,
* so we ignore this and other errors for a short while.
*/
const uint64_t now = kr_now();
if (!ignoring_errors_until) { // First error after a success.
kr_log_info(CACHE, "LMDB refusing writes (ignored for 5-9s): %s\n",
kr_strerror(ret));
ignoring_errors_until = now + 5000 + kr_rand_bytes(2)/16;
return kr_error(ret);
}
if (now < ignoring_errors_until)
return kr_error(ret);
// We've lost patience with cache writes not working continuously.
recovery: // Try to recover by clearing cache.
ret = kr_cache_clear(cache);
switch (ret) {
default:
kr_log_crit(CACHE, "CRITICAL: clearing cache failed: %s; fatal error, aborting\n",
kr_strerror(ret));
abort();
case 0:
kr_log_info(CACHE, "stuck cache cleared\n");
ignoring_errors_until = 0;
case -EAGAIN: // fall-through; krcachelock race -> retry later
return kr_error(ENOSPC);
}
}
/* See the header file. */
int entry_h_splice(
knot_db_val_t *val_new_entry, uint8_t rank,
const knot_db_val_t key, const uint16_t ktype, const uint16_t type,
const knot_dname_t *owner/*log only*/,
const struct kr_query *qry, struct kr_cache *cache, uint32_t timestamp)
{
//TODO: another review, perhaps including the API
if (kr_fails_assert(val_new_entry && val_new_entry->len > 0))
return kr_error(EINVAL);
int i_type;
switch (type) {
case KNOT_RRTYPE_NS: i_type = EL_NS; break;
case KNOT_RRTYPE_CNAME: i_type = EL_CNAME; break;
case KNOT_RRTYPE_DNAME: i_type = EL_DNAME; break;
default: i_type = 0;
}
/* Get eh_orig (original entry), and also el list if multi-entry case. */
const struct entry_h *eh_orig = NULL;
entry_list_t el;
int ret = -1;
if (!kr_rank_test(rank, KR_RANK_SECURE) || ktype == KNOT_RRTYPE_NS) {
knot_db_val_t val;
ret = cache_op(cache, read, &key, &val, 1);
if (i_type) {
if (!ret) ret = entry_list_parse(val, el);
if (ret) memset(el, 0, sizeof(el));
val = el[i_type];
}
/* val is on the entry, in either case (or error) */
if (!ret) {
eh_orig = entry_h_consistent_E(val, type);
}
} else {
/* We want to fully overwrite the entry, so don't even read it. */
memset(el, 0, sizeof(el));
}
if (!kr_rank_test(rank, KR_RANK_SECURE) && eh_orig) {
/* If equal rank was accepted, spoofing a *single* answer would be
* enough to e.g. override NS record in AUTHORITY section.
* This way they would have to hit the first answer
* (whenever TTL nears expiration).
* Stale-serving is NOT considered, but TTL 1 would be considered
* as expiring anyway, ... */
int32_t old_ttl = get_new_ttl(eh_orig, qry, NULL, 0, timestamp);
if (old_ttl > 0 && !is_expiring(eh_orig->ttl, old_ttl)
&& rank <= eh_orig->rank) {
WITH_VERBOSE(qry) {
auto_free char *type_str = kr_rrtype_text(type),
*owner_str = kr_dname_text(owner);
VERBOSE_MSG(qry, "=> not overwriting %s %s\n",
type_str, owner_str);
}
return kr_error(EEXIST);
}
}
if (!i_type) {
/* The non-list types are trivial now. */
return cache_write_or_clear(cache, &key, val_new_entry, qry);
}
/* Now we're in trouble. In some cases, parts of data to be written
* is an lmdb entry that may be invalidated by our write request.
* (lmdb does even in-place updates!) Therefore we copy all into a buffer.
* LATER(optim.): do this only when necessary, or perhaps another approach.
* This is also complicated by the fact that the val_new_entry part
* is to be written *afterwards* by the caller.
*/
el[i_type] = (knot_db_val_t){
.len = val_new_entry->len,
.data = NULL, /* perhaps unclear in the entry_h_splice() API */
};
knot_db_val_t val = {
.len = entry_list_serial_size(el),
.data = NULL,
};
uint8_t buf[val.len];
entry_list_memcpy((struct entry_apex *)buf, el);
ret = cache_write_or_clear(cache, &key, &val, qry);
if (ret) return kr_error(ret);
memcpy(val.data, buf, val.len); /* we also copy the "empty" space, but well... */
val_new_entry->data = (uint8_t *)val.data
+ ((uint8_t *)el[i_type].data - buf);
return kr_ok();
}
|