1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of packet-caching. Prototypes in ./impl.h
*
* The packet is stashed in entry_h::data as uint16_t length + full packet wire format.
*/
#include "lib/utils.h"
#include "lib/layer/iterate.h" /* kr_response_classify */
#include "lib/cache/impl.h"
/** Compute TTL for a packet. It's minimum TTL or zero. (You can apply limits.) */
KR_EXPORT
uint32_t packet_ttl(const knot_pkt_t *pkt)
{
bool has_ttl = false;
uint32_t ttl = TTL_MAX_MAX;
for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
for (unsigned k = 0; k < sec->count; ++k) {
const knot_rrset_t *rr = knot_pkt_rr(sec, k);
ttl = MIN(ttl, rr->ttl);
has_ttl = true;
}
}
return has_ttl ? ttl : 0;
}
void stash_pkt(const knot_pkt_t *pkt, const struct kr_query *qry,
const struct kr_request *req, const bool needs_pkt)
{
/* In some cases, stash also the packet. */
const bool is_negative = kr_response_classify(pkt)
& (PKT_NODATA|PKT_NXDOMAIN);
const struct kr_qflags * const qf = &qry->flags;
const bool want_negative = qf->DNSSEC_INSECURE || !qf->DNSSEC_WANT;
const bool want_pkt = qf->DNSSEC_BOGUS /*< useful for +cd answers */
|| (is_negative && want_negative) || needs_pkt;
if (!want_pkt || !knot_wire_get_aa(pkt->wire)
|| pkt->parsed != pkt->size /*< malformed packet; still can't detect KNOT_EFEWDATA */
) {
return;
}
/* Compute rank. If cd bit is set or we got answer via non-validated
* forwarding, make the rank bad; otherwise it depends on flags.
* TODO: probably make validator attempt validation even with +cd. */
uint8_t rank = KR_RANK_AUTH;
const bool risky_vldr = is_negative && qf->FORWARD && qf->CNAME;
/* ^^ CNAME'ed NXDOMAIN answer in forwarding mode can contain
* unvalidated records; original commit: d6e22f476. */
if (knot_wire_get_cd(req->qsource.packet->wire) || qf->STUB || risky_vldr) {
kr_rank_set(&rank, KR_RANK_OMIT);
} else {
if (qf->DNSSEC_BOGUS) {
kr_rank_set(&rank, KR_RANK_BOGUS);
} else if (qf->DNSSEC_INSECURE) {
kr_rank_set(&rank, KR_RANK_INSECURE);
} else if (!qf->DNSSEC_WANT) {
/* no TAs at all, leave _RANK_AUTH */
} else if (needs_pkt) {
/* All bad cases should be filtered above,
* at least the same way as pktcache in kresd 1.5.x. */
kr_rank_set(&rank, KR_RANK_SECURE);
} else kr_assert(false);
}
const uint16_t pkt_type = knot_pkt_qtype(pkt);
const knot_dname_t *owner = knot_pkt_qname(pkt); /* qname can't be compressed */
// LATER: nothing exists under NXDOMAIN. Implement that (optionally)?
#if 0
if (knot_wire_get_rcode(pkt->wire) == KNOT_RCODE_NXDOMAIN
/* && !qf->DNSSEC_INSECURE */ ) {
pkt_type = KNOT_RRTYPE_NS;
}
#endif
/* Construct the key under which the pkt will be stored. */
struct key k_storage, *k = &k_storage;
knot_db_val_t key;
int ret = kr_dname_lf(k->buf, owner, false);
if (ret) {
/* A server might (incorrectly) reply with QDCOUNT=0. */
kr_assert(owner == NULL);
return;
}
key = key_exact_type_maypkt(k, pkt_type);
/* For now we stash the full packet byte-exactly as it came from upstream. */
const uint16_t pkt_size = pkt->size;
knot_db_val_t val_new_entry = {
.data = NULL,
.len = offsetof(struct entry_h, data) + sizeof(pkt_size) + pkt->size,
};
/* Prepare raw memory for the new entry and fill it. */
struct kr_cache *cache = &req->ctx->cache;
ret = entry_h_splice(&val_new_entry, rank, key, k->type, pkt_type,
owner, qry, cache, qry->timestamp.tv_sec);
if (ret || kr_fails_assert(val_new_entry.data)) return; /* some aren't really errors */
struct entry_h *eh = val_new_entry.data;
memset(eh, 0, offsetof(struct entry_h, data));
eh->time = qry->timestamp.tv_sec;
eh->ttl = MAX(MIN(packet_ttl(pkt), cache->ttl_max), cache->ttl_min);
eh->rank = rank;
eh->is_packet = true;
eh->has_optout = qf->DNSSEC_OPTOUT;
memcpy(eh->data, &pkt_size, sizeof(pkt_size));
memcpy(eh->data + sizeof(pkt_size), pkt->wire, pkt_size);
WITH_VERBOSE(qry) {
auto_free char *type_str = kr_rrtype_text(pkt_type),
*owner_str = kr_dname_text(owner);
VERBOSE_MSG(qry, "=> stashed packet: rank 0%.2o, TTL %d, "
"%s %s (%d B)\n",
eh->rank, eh->ttl,
type_str, owner_str, (int)val_new_entry.len);
}
}
int answer_from_pkt(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
const uint16_t msgid = knot_wire_get_id(pkt->wire);
/* Ensure the wire buffer is large enough. Strategy: fit and at least double. */
uint16_t pkt_len;
memcpy(&pkt_len, eh->data, sizeof(pkt_len));
if (pkt_len > pkt->max_size) {
pkt->max_size = MIN(KNOT_WIRE_MAX_PKTSIZE,
MAX(pkt->max_size * 2, pkt_len));
mm_free(&ctx->req->pool, pkt->wire); /* no-op, but... */
pkt->wire = mm_alloc(&ctx->req->pool, pkt->max_size);
pkt->compr.wire = pkt->wire;
/* TODO: ^^ nicer way how to replace knot_pkt_t::wire ? */
}
kr_require(pkt->max_size >= pkt_len);
/* Copy answer and reparse it, but keep the original message id. */
knot_pkt_clear(pkt);
memcpy(pkt->wire, eh->data + 2, pkt_len);
pkt->size = pkt_len;
int ret = knot_pkt_parse(pkt, 0);
if (ret == KNOT_EFEWDATA || ret == KNOT_EMALF) {
return kr_error(ENOENT);
/* LATER(opt): try harder to avoid stashing such packets */
}
if (kr_fails_assert(ret == KNOT_EOK))
return kr_error(ret);
knot_wire_set_id(pkt->wire, msgid);
/* Add rank into the additional field. */
for (size_t i = 0; i < pkt->rrset_count; ++i) {
kr_assert(!pkt->rr[i].additional);
uint8_t *rr_rank = mm_alloc(&pkt->mm, sizeof(*rr_rank));
if (!rr_rank) {
return kr_error(ENOMEM);
}
*rr_rank = eh->rank;
pkt->rr[i].additional = rr_rank;
}
/* Adjust TTL in each record. */
const uint32_t drift = eh->ttl - new_ttl;
for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
for (unsigned k = 0; k < sec->count; ++k) {
knot_rrset_t *rrs = // vv FIXME??
/*const-cast*/(knot_rrset_t *)knot_pkt_rr(sec, k);
/* We need to be careful: due to enforcing minimum TTL
* on packet, some records may be below that value.
* We keep those records at TTL 0. */
if (rrs->ttl >= drift) {
rrs->ttl -= drift;
} else {
rrs->ttl = 0;
}
}
}
/* Finishing touches. TODO: perhaps factor out */
struct kr_qflags * const qf = &qry->flags;
qf->EXPIRING = is_expiring(eh->ttl, new_ttl);
qf->CACHED = true;
qf->NO_MINIMIZE = true;
qf->DNSSEC_INSECURE = kr_rank_test(eh->rank, KR_RANK_INSECURE);
qf->DNSSEC_BOGUS = kr_rank_test(eh->rank, KR_RANK_BOGUS);
if (qf->DNSSEC_INSECURE || qf->DNSSEC_BOGUS) {
qf->DNSSEC_WANT = false;
}
qf->DNSSEC_OPTOUT = eh->has_optout;
VERBOSE_MSG(qry, "=> satisfied by exact packet: rank 0%.2o, new TTL %d\n",
eh->rank, new_ttl);
return kr_ok();
}
|