1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of NSEC (1) handling. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "lib/dnssec/nsec.h"
#include "lib/layer/iterate.h"
/** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN).
* \return kr_ok() or error code (<0). */
static int dname_wire_reconstruct(knot_dname_t *buf, const struct key *k,
knot_db_val_t kwz)
{
/* Reconstruct from key: first the ending, then zone name. */
int ret = knot_dname_lf2wire(buf, kwz.len, kwz.data);
if (kr_fails_assert(ret >= 0)) {
VERBOSE_MSG(NULL, "=> NSEC: LF2wire ret = %d\n", ret);
return ret;
}
/* The last written byte is the zero label for root -> overwrite. */
knot_dname_t *zone_start = buf + ret - 1;
if (kr_fails_assert(*zone_start == '\0'))
return kr_error(EFAULT);
ret = knot_dname_to_wire(zone_start, k->zname, KNOT_DNAME_MAXLEN - kwz.len);
if (kr_fails_assert(ret == k->zlf_len + 1))
return ret < 0 ? ret : kr_error(EILSEQ);
return kr_ok();
}
knot_db_val_t key_NSEC1(struct key *k, const knot_dname_t *name, bool add_wildcard)
{
/* we basically need dname_lf with two bytes added
* on a correct place within the name (the cut) */
int ret;
const bool ok = k && name
&& !(ret = kr_dname_lf(k->buf, name, add_wildcard));
if (kr_fails_assert(ok))
return (knot_db_val_t){ NULL, 0 };
uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */
uint8_t *end = k->buf + 1 + k->buf[0]; /* we don't use the final zero in key,
* but move it anyway */
if (kr_fails_assert(end >= begin))
return (knot_db_val_t){ NULL, 0 };
int key_len;
if (end > begin) {
memmove(begin + 2, begin, end - begin);
key_len = k->buf[0] + 1;
} else {
key_len = k->buf[0] + 2;
}
/* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '1' + dname_lf
* of the name within the zone without the final 0. Iff the latter is empty,
* there's no zero to cut and thus the key_len difference.
*/
begin[0] = 0;
begin[1] = '1'; /* tag for NSEC1 */
k->type = KNOT_RRTYPE_NSEC;
/*
VERBOSE_MSG(NULL, "<> key_NSEC1; name: ");
kr_dname_print(name, add_wildcard ? "*." : "" , " ");
kr_log_debug(CACHE, "(zone name LF length: %d; total key length: %d)\n",
k->zlf_len, key_len);
*/
return (knot_db_val_t){ k->buf + 1, key_len };
}
/** Assuming that k1 < k4, find where k2 is. (Considers DNS wrap-around.)
*
* \return Intuition: position of k2 among kX.
* 0: k2 < k1; 1: k1 == k2; 2: k1 is a prefix of k2 < k4;
* 3: k1 < k2 < k4 (and not 2); 4: k2 == k4; 5: k2 > k4
* \note k1.data may be NULL, meaning assumption that k1 < k2 and not a prefix
* (i.e. return code will be > 2)
*/
static int kwz_between(knot_db_val_t k1, knot_db_val_t k2, knot_db_val_t k4)
{
kr_require(k2.data && k4.data);
/* CACHE_KEY_DEF; we need to beware of one key being a prefix of another */
int ret_maybe; /**< result, assuming we confirm k2 < k4 */
if (k1.data) {
const int cmp12 = memcmp(k1.data, k2.data, MIN(k1.len, k2.len));
if (cmp12 == 0 && k1.len == k2.len) /* iff k1 == k2 */
return 1;
if (cmp12 > 0 || (cmp12 == 0 && k1.len > k2.len)) /* iff k1 > k2 */
return 0;
ret_maybe = cmp12 == 0 ? 2 : 3;
} else {
ret_maybe = 3;
}
if (k4.len == 0) { /* wrap-around */
return k2.len > 0 ? ret_maybe : 4;
} else {
const int cmp24 = memcmp(k2.data, k4.data, MIN(k2.len, k4.len));
if (cmp24 == 0 && k2.len == k4.len) /* iff k2 == k4 */
return 4;
if (cmp24 > 0 || (cmp24 == 0 && k2.len > k4.len)) /* iff k2 > k4 */
return 5;
return ret_maybe;
}
}
/** NSEC1 range search.
*
* \param key Pass output of key_NSEC1(k, ...)
* \param value[out] The raw data of the NSEC cache record (optional; consistency checked).
* \param exact_match[out] Whether the key was matched exactly or just covered (optional).
* \param kwz_low[out] Output the low end of covering NSEC, pointing within DB (optional).
* \param kwz_high[in,out] Storage for the high end of covering NSEC (optional).
* It's only set if !exact_match.
* \param new_ttl[out] New TTL of the NSEC (optional).
* \return Error message or NULL.
* \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4.
*/
static const char * find_leq_NSEC1(struct kr_cache *cache, const struct kr_query *qry,
const knot_db_val_t key, const struct key *k, knot_db_val_t *value,
bool *exact_match, knot_db_val_t *kwz_low, knot_db_val_t *kwz_high,
uint32_t *new_ttl)
{
/* Do the cache operation. */
const size_t nwz_off = key_nwz_off(k);
if (kr_fails_assert(key.data && key.len >= nwz_off))
return "range search ERROR";
knot_db_val_t key_nsec = key;
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read_leq, &key_nsec, &val);
if (ret < 0) {
if (kr_fails_assert(ret == kr_error(ENOENT))) {
return "range search ERROR";
} else {
return "range search miss";
}
}
if (value) {
*value = val;
}
/* Check consistency, TTL, rank. */
const bool is_exact = (ret == 0);
if (exact_match) {
*exact_match = is_exact;
}
const struct entry_h *eh = entry_h_consistent_NSEC(val);
if (!eh) {
/* This might be just finding something else than NSEC1 entry,
* in case we searched before the very first one in the zone. */
return "range search found inconsistent entry";
}
/* Passing just zone name instead of owner, as we don't
* have it reconstructed at this point. */
int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC,
qry->timestamp.tv_sec);
if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) {
return "range search found stale or insecure entry";
/* TODO: remove the stale record *and* retry,
* in case we haven't run off. Perhaps start by in_zone check. */
}
if (new_ttl) {
*new_ttl = new_ttl_;
}
if (kwz_low) {
*kwz_low = (knot_db_val_t){
.data = (uint8_t *)key_nsec.data + nwz_off,
.len = key_nsec.len - nwz_off,
}; /* CACHE_KEY_DEF */
}
if (is_exact) {
/* Nothing else to do. */
return NULL;
}
/* The NSEC starts strictly before our target name;
* now check that it still belongs into that zone. */
const bool nsec_in_zone = key_nsec.len >= nwz_off
/* CACHE_KEY_DEF */
&& memcmp(key.data, key_nsec.data, nwz_off) == 0;
if (!nsec_in_zone) {
return "range search miss (!nsec_in_zone)";
}
/* We know it starts before sname, so let's check the other end.
* 1. construct the key for the next name - kwz_hi. */
/* it's *full* name ATM */
/* Technical complication: memcpy is safe for unaligned case (on non-x86) */
__typeof__(((knot_rdata_t *)NULL)->len) next_len;
const uint8_t *next_data;
{ /* next points to knot_rdata_t but possibly unaligned */
const uint8_t *next = eh->data + KR_CACHE_RR_COUNT_SIZE;
memcpy(&next_len, next + offsetof(knot_rdata_t, len), sizeof(next_len));
next_data = next + offsetof(knot_rdata_t, data);
}
if (kr_fails_assert(KR_CACHE_RR_COUNT_SIZE == 2 && get_uint16(eh->data) != 0)) {
return "ERROR"; /* TODO: more checks? */
}
/*
WITH_VERBOSE {
VERBOSE_MSG(qry, "=> NSEC: next name: ");
kr_dname_print(next, "", "\n");
}
*/
knot_dname_t ch_buf[KNOT_DNAME_MAXLEN];
knot_dname_t *chs = kwz_high ? kwz_high->data : ch_buf;
if (kr_fails_assert(chs))
return "EINVAL";
{
/* Lower-case chs; see also RFC 6840 5.1.
* LATER(optim.): we do lots of copying etc. */
knot_dname_t lower_buf[KNOT_DNAME_MAXLEN];
ret = knot_dname_to_wire(lower_buf, next_data,
MIN(next_len, KNOT_DNAME_MAXLEN));
if (ret < 0) { /* _ESPACE */
return "range search found record with incorrect contents";
}
knot_dname_to_lower(lower_buf);
ret = kr_dname_lf(chs, lower_buf, false);
}
if (kr_fails_assert(ret == 0))
return "ERROR";
knot_db_val_t kwz_hi = { /* skip the zone name */
.data = chs + 1 + k->zlf_len,
.len = chs[0] - k->zlf_len,
};
if (kr_fails_assert((ssize_t)(kwz_hi.len) >= 0))
return "ERROR";
/* 2. do the actual range check. */
const knot_db_val_t kwz_sname = {
.data = (void *)/*const-cast*/(k->buf + 1 + nwz_off),
.len = k->buf[0] - k->zlf_len,
};
if (kr_fails_assert((ssize_t)(kwz_sname.len) >= 0))
return "ERROR";
bool covers = /* we know for sure that the low end is before kwz_sname */
3 == kwz_between((knot_db_val_t){ NULL, 0 }, kwz_sname, kwz_hi);
if (!covers) {
return "range search miss (!covers)";
}
if (kwz_high) {
*kwz_high = kwz_hi;
}
return NULL;
}
int nsec1_encloser(struct key *k, struct answer *ans,
const int sname_labels, int *clencl_labels,
knot_db_val_t *cover_low_kwz, knot_db_val_t *cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
static const int ESKIP = ABS(ENOENT);
/* Basic sanity check. */
const bool ok = k && ans && clencl_labels && cover_low_kwz && cover_hi_kwz
&& qry && cache;
if (kr_fails_assert(ok))
return kr_error(EINVAL);
/* Find a previous-or-equal name+NSEC in cache covering the QNAME,
* checking TTL etc. */
knot_db_val_t key = key_NSEC1(k, qry->sname, false);
knot_db_val_t val = { NULL, 0 };
bool exact_match;
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, cover_low_kwz, cover_hi_kwz, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC sname: %s\n", err);
return ESKIP;
}
/* Get owner name of the record. */
const knot_dname_t *owner;
knot_dname_t owner_buf[KNOT_DNAME_MAXLEN];
if (exact_match) {
owner = qry->sname;
} else {
int ret = dname_wire_reconstruct(owner_buf, k, *cover_low_kwz);
if (unlikely(ret)) return ESKIP;
owner = owner_buf;
}
/* Basic checks OK -> materialize data. */
{
const struct entry_h *nsec_eh = val.data;
int ret = entry2answer(ans, AR_NSEC, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
}
/* Final checks, split for matching vs. covering our sname. */
const knot_rrset_t *nsec_rr = ans->rrsets[AR_NSEC].set.rr;
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
if (kr_fails_assert(bm))
return kr_error(EFAULT);
if (exact_match) {
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) != 0) {
VERBOSE_MSG(qry,
"=> NSEC sname: match but failed type check\n");
return ESKIP;
}
/* NODATA proven; just need to add SOA+RRSIG later */
VERBOSE_MSG(qry, "=> NSEC sname: match proved NODATA, new TTL %d\n",
new_ttl);
ans->rcode = PKT_NODATA;
return kr_ok();
} /* else */
/* Inexact match. First check if sname is delegated by that NSEC. */
const int nsec_matched = knot_dname_matched_labels(nsec_rr->owner, qry->sname);
const bool is_sub = nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry, "=> NSEC sname: covered but delegated (or error)\n");
return ESKIP;
}
/* NXDOMAIN proven *except* for wildcards. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC sname: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, new_ttl);
}
/* Find label count of the closest encloser.
* Both endpoints in an NSEC do exist (though possibly in a child zone)
* and any prefixes of those names as well (empty non-terminals),
* but nothing else exists inside this "triangle".
*
* Note that we have to lower-case the next name for comparison,
* even though we have canonicalized NSEC already; see RFC 6840 5.1.
* LATER(optim.): it might be faster to use the LFs we already have.
*/
knot_dname_t next[KNOT_DNAME_MAXLEN];
int ret = knot_dname_to_wire(next, knot_nsec_next(nsec_rr->rrs.rdata), sizeof(next));
if (kr_fails_assert(ret >= 0))
return kr_error(ret);
knot_dname_to_lower(next);
*clencl_labels = MAX(
nsec_matched,
knot_dname_matched_labels(qry->sname, next)
);
/* Empty non-terminals don't need to have
* a matching NSEC record. */
if (sname_labels == *clencl_labels) {
ans->rcode = PKT_NODATA;
VERBOSE_MSG(qry,
"=> NSEC sname: empty non-terminal by the same RR\n");
} else {
ans->rcode = PKT_NXDOMAIN;
}
return kr_ok();
}
/** Verify non-existence after kwz_between() call. */
static bool nonexistence_ok(int cmp, const knot_rrset_t *rrs)
{
if (cmp == 3) {
return true;
}
if (cmp != 2) {
return false;
}
const uint8_t *bm = knot_nsec_bitmap(rrs->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(rrs->rrs.rdata);
return kr_nsec_children_in_zone_check(bm, bm_size) != 0;
}
int nsec1_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
knot_db_val_t cover_low_kwz, knot_db_val_t cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
/* Construct key for the source of synthesis. */
knot_db_val_t key = key_NSEC1(k, clencl_name, true);
const size_t nwz_off = key_nwz_off(k);
if (kr_fails_assert(key.data && key.len >= nwz_off))
return kr_error(1);
/* Check if our sname-covering NSEC also covers/matches SS. */
knot_db_val_t kwz = {
.data = (uint8_t *)key.data + nwz_off,
.len = key.len - nwz_off,
};
if (kr_fails_assert((ssize_t)(kwz.len) >= 0))
return kr_error(EINVAL);
const int cmp = kwz_between(cover_low_kwz, kwz, cover_hi_kwz);
if (nonexistence_ok(cmp, ans->rrsets[AR_NSEC].set.rr)) {
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by the same RR\n");
return AR_SOA;
}
const knot_rrset_t *nsec_rr = NULL; /**< the wildcard proof NSEC */
bool exact_match; /**< whether it matches the source of synthesis */
if (cmp == 1) {
exact_match = true;
nsec_rr = ans->rrsets[AR_NSEC].set.rr;
} else {
/* Try to find the NSEC for SS. */
knot_db_val_t val = { NULL, 0 };
knot_db_val_t wild_low_kwz = { NULL, 0 };
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, &wild_low_kwz, NULL, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC wildcard: %s\n", err);
return kr_ok();
}
/* Materialize the record into answer (speculatively). */
knot_dname_t owner[KNOT_DNAME_MAXLEN];
int ret = dname_wire_reconstruct(owner, k, wild_low_kwz);
if (ret) return kr_error(ret);
const struct entry_h *nsec_eh = val.data;
ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
nsec_rr = ans->rrsets[AR_WILD].set.rr;
}
if (kr_fails_assert(nsec_rr))
return kr_error(EFAULT);
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
int ret;
struct answer_rrset * const arw = &ans->rrsets[AR_WILD];
if (kr_fails_assert(bm)) {
ret = kr_error(EFAULT);
goto clean_wild;
}
if (!exact_match) {
/* Finish verification that the source of synthesis doesn't exist. */
const int nsec_matched =
knot_dname_matched_labels(nsec_rr->owner, clencl_name);
/* we don't need to use the full source of synthesis ^ */
const bool is_sub =
nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry,
"=> NSEC wildcard: covered but delegated (or error)\n");
ret = kr_ok();
goto clean_wild;
}
/* We have a record proving wildcard non-existence. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, nsec_rr->ttl);
}
return AR_SOA;
}
/* The wildcard exists. Find if it's NODATA - check type bitmap. */
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) {
/* NODATA proven; just need to add SOA+RRSIG later */
WITH_VERBOSE(qry) {
const char *msg_start = "=> NSEC wildcard: match proved NODATA";
if (arw->set.rr) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner);
VERBOSE_MSG(qry, "%s: %s, new TTL %d\n",
msg_start, owner_str, nsec_rr->ttl);
} else {
/* don't repeat the RR if it's the same */
VERBOSE_MSG(qry, "%s, by the same RR\n", msg_start);
}
}
ans->rcode = PKT_NODATA;
return AR_SOA;
} /* else */
/* The data probably exists -> don't add this NSEC
* and (later) try to find the real wildcard data */
VERBOSE_MSG(qry, "=> NSEC wildcard: should exist (or error)\n");
ans->rcode = PKT_NOERROR;
ret = kr_ok();
clean_wild:
if (arw->set.rr) { /* we may have matched AR_NSEC */
knot_rrset_free(arw->set.rr, ans->mm);
arw->set.rr = NULL;
knot_rdataset_clear(&arw->sig_rds, ans->mm);
}
return ret;
}
|