1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of NSEC3 handling. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "contrib/base32hex.h"
#include "lib/dnssec/nsec.h"
#include "lib/dnssec/nsec3.h"
#include "lib/layer/iterate.h"
#include <libknot/rrtype/nsec3.h>
static const knot_db_val_t VAL_EMPTY = { NULL, 0 };
/** Common part: write all but the NSEC3 hash. */
static knot_db_val_t key_NSEC3_common(struct key *k, const knot_dname_t *zname,
const nsec_p_hash_t nsec_p_hash)
{
if (kr_fails_assert(k && zname && !kr_dname_lf(k->buf, zname, false)))
return VAL_EMPTY;
/* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '3' + nsec_p hash (4B)
* + NSEC3 hash (20B == NSEC3_HASH_LEN binary!)
* LATER(optim.) nsec_p hash: perhaps 2B would give a sufficient probability
* of avoiding collisions.
*/
uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */
begin[0] = 0;
begin[1] = '3'; /* tag for NSEC3 */
k->type = KNOT_RRTYPE_NSEC3;
memcpy(begin + 2, &nsec_p_hash, sizeof(nsec_p_hash));
return (knot_db_val_t){
.data = k->buf + 1,
.len = begin + 2 + sizeof(nsec_p_hash) - (k->buf + 1),
};
}
knot_db_val_t key_NSEC3(struct key *k, const knot_dname_t *nsec3_name,
const nsec_p_hash_t nsec_p_hash)
{
knot_db_val_t val = key_NSEC3_common(k, nsec3_name /*only zname required*/,
nsec_p_hash);
if (!val.data) return val;
int len = base32hex_decode(nsec3_name + 1, nsec3_name[0],
knot_db_val_bound(val), KR_CACHE_KEY_MAXLEN - val.len);
if (len != NSEC3_HASH_LEN) {
return VAL_EMPTY;
}
val.len += len;
return val;
}
/** Construct a string key for for NSEC3 predecessor-search, from an non-NSEC3 name.
* \note k->zlf_len and k->zname are assumed to have been correctly set */
static knot_db_val_t key_NSEC3_name(struct key *k, const knot_dname_t *name,
const bool add_wildcard, const struct nsec_p *nsec_p)
{
bool ok = k && name && nsec_p && nsec_p->raw;
if (!ok) return VAL_EMPTY;
knot_db_val_t val = key_NSEC3_common(k, k->zname, nsec_p->hash);
if (!val.data) return val;
/* Make `name` point to correctly wildcarded owner name. */
uint8_t buf[KNOT_DNAME_MAXLEN];
int name_len;
if (add_wildcard) {
buf[0] = '\1';
buf[1] = '*';
name_len = knot_dname_to_wire(buf + 2, name, sizeof(buf) - 2);
if (name_len < 0) return VAL_EMPTY; /* wants wildcard but doesn't fit */
name = buf;
name_len += 2;
} else {
name_len = knot_dname_size(name);
}
/* Append the NSEC3 hash. */
const dnssec_binary_t dname = {
.size = name_len,
.data = (uint8_t *)/*const-cast*/name,
};
if (kr_fails_assert(!kr_nsec3_limited_params(&nsec_p->libknot))) {
/* This is mainly defensive; it shouldn't happen thanks to downgrades. */
return VAL_EMPTY;
}
#if 0 // LATER(optim.): this requires a patched libdnssec - tries to realloc()
dnssec_binary_t hash = {
.size = KR_CACHE_KEY_MAXLEN - val.len,
.data = val.data + val.len,
};
int ret = dnssec_nsec3_hash(&dname, &nsec_p->libknot, &hash);
if (ret != DNSSEC_EOK) return VAL_EMPTY;
if (kr_fails_assert(hash.size == NSEC3_HASH_LEN))
return VAL_EMPTY;
#else
dnssec_binary_t hash = { .size = 0, .data = NULL };
int ret = dnssec_nsec3_hash(&dname, &nsec_p->libknot, &hash);
if (ret != DNSSEC_EOK) return VAL_EMPTY;
if (kr_fails_assert(hash.size == NSEC3_HASH_LEN && hash.data))
return VAL_EMPTY;
memcpy(knot_db_val_bound(val), hash.data, NSEC3_HASH_LEN);
free(hash.data);
#endif
val.len += hash.size;
return val;
}
/** Return h1 < h2, semantically on NSEC3 hashes. */
static inline bool nsec3_hash_ordered(const uint8_t *h1, const uint8_t *h2)
{
return memcmp(h1, h2, NSEC3_HASH_LEN) < 0;
}
/** NSEC3 range search.
*
* \param key Pass output of key_NSEC3(k, ...)
* \param nsec_p Restrict to this NSEC3 parameter-set.
* \param value[out] The raw data of the NSEC3 cache record (optional; consistency checked).
* \param exact_match[out] Whether the key was matched exactly or just covered (optional).
* \param hash_low[out] Output the low end hash of covering NSEC3, pointing within DB (optional).
* \param new_ttl[out] New TTL of the NSEC3 (optional).
* \return Error message or NULL.
* \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4.
*/
static const char * find_leq_NSEC3(struct kr_cache *cache, const struct kr_query *qry,
const knot_db_val_t key, const struct key *k, const struct nsec_p *nsec_p,
knot_db_val_t *value, bool *exact_match, const uint8_t **hash_low,
uint32_t *new_ttl)
{
/* Do the cache operation. */
const size_t hash_off = key_nsec3_hash_off(k);
if (kr_fails_assert(key.data && key.len >= hash_off))
return "range search ERROR";
knot_db_val_t key_found = key;
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read_leq, &key_found, &val);
/* ^^ LATER(optim.): incrementing key and doing less-than search
* would probably be slightly more efficient with LMDB,
* but the code complexity would grow considerably. */
if (ret < 0) {
if (kr_fails_assert(ret == kr_error(ENOENT))) {
return "range search ERROR";
} else {
return "range search miss";
}
}
if (value) {
*value = val;
}
/* Check consistency, TTL, rank. */
const bool is_exact = (ret == 0);
if (exact_match) {
*exact_match = is_exact;
}
const struct entry_h *eh = entry_h_consistent_NSEC(val);
if (!eh) {
/* This might be just finding something else than NSEC3 entry,
* in case we searched before the very first one in the zone. */
return "range search found inconsistent entry";
}
/* Passing just zone name instead of owner. */
int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC3,
qry->timestamp.tv_sec);
if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) {
return "range search found stale or insecure entry";
/* TODO: remove the stale record *and* retry,
* in case we haven't run off. Perhaps start by in_zone check. */
}
if (new_ttl) {
*new_ttl = new_ttl_;
}
if (hash_low) {
*hash_low = (uint8_t *)key_found.data + hash_off;
}
if (is_exact) {
/* Nothing else to do. */
return NULL;
}
/* The NSEC3 starts strictly before our target name;
* now check that it still belongs into that zone and chain. */
const uint8_t *nsec_p_raw = eh->data + KR_CACHE_RR_COUNT_SIZE
+ 2 /* RDLENGTH from rfc1034 */;
const int nsec_p_len = nsec_p_rdlen(nsec_p_raw);
const bool same_chain = key_found.len == hash_off + NSEC3_HASH_LEN
/* CACHE_KEY_DEF */
&& memcmp(key.data, key_found.data, hash_off) == 0
/* exact comparison of NSEC3 parameters */
&& nsec_p_len == nsec_p_rdlen(nsec_p->raw)
&& memcmp(nsec_p_raw, nsec_p->raw, nsec_p_len) == 0;
if (!same_chain) {
return "range search miss (!same_chain)";
}
/* We know it starts before sname, so let's check the other end.
* A. find the next hash and check its length. */
if (kr_fails_assert(KR_CACHE_RR_COUNT_SIZE == 2 && get_uint16(eh->data) != 0))
return "ERROR"; /* TODO: more checks? Also, `next` computation is kinda messy. */
const uint8_t *hash_next = nsec_p_raw + nsec_p_len
+ sizeof(uint8_t) /* hash length from rfc5155 */;
if (hash_next[-1] != NSEC3_HASH_LEN) {
return "unexpected next hash length";
}
/* B. do the actual range check. */
const uint8_t * const hash_searched = (uint8_t *)key.data + hash_off;
bool covers = /* we know for sure that the low end is before the searched name */
nsec3_hash_ordered(hash_searched, hash_next)
/* and the wrap-around case */
|| nsec3_hash_ordered(hash_next, (const uint8_t *)key_found.data + hash_off);
if (!covers) {
return "range search miss (!covers)";
}
return NULL;
}
/** Extract textual representation of NSEC3 hash from a cache key.
* \param text must have length at least NSEC3_HASH_TXT_LEN+1 (will get 0-terminated). */
static void key_NSEC3_hash2text(const knot_db_val_t key, char *text)
{
kr_require(key.data && key.len > NSEC3_HASH_LEN);
const uint8_t *hash_raw = knot_db_val_bound(key) - NSEC3_HASH_LEN;
/* CACHE_KEY_DEF ^^ */
int len = base32hex_encode(hash_raw, NSEC3_HASH_LEN, (uint8_t *)text,
NSEC3_HASH_TXT_LEN);
kr_assert(len == NSEC3_HASH_TXT_LEN);
text[NSEC3_HASH_TXT_LEN] = '\0';
}
/** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN).
* \return kr_ok() or error code (<0). */
static int dname_wire_reconstruct(knot_dname_t *buf, const knot_dname_t *zname,
const uint8_t *hash_raw)
{
int len = base32hex_encode(hash_raw, NSEC3_HASH_LEN, buf + 1, NSEC3_HASH_TXT_LEN);
if (kr_fails_assert(len == NSEC3_HASH_TXT_LEN))
return kr_error(EINVAL);
buf[0] = len;
int ret = knot_dname_to_wire(buf + 1 + len, zname, KNOT_DNAME_MAXLEN - 1 - len);
return ret < 0 ? kr_error(ret) : kr_ok();
}
static void nsec3_hash2text(const knot_dname_t *owner, char *text)
{
kr_require(owner[0] == NSEC3_HASH_TXT_LEN);
memcpy(text, owner + 1, MIN(owner[0], NSEC3_HASH_TXT_LEN));
text[NSEC3_HASH_TXT_LEN] = '\0';
}
int nsec3_encloser(struct key *k, struct answer *ans,
const int sname_labels, int *clencl_labels,
const struct kr_query *qry, struct kr_cache *cache)
{
static const int ESKIP = ABS(ENOENT);
/* Basic sanity check. */
const bool ok = k && k->zname && ans && clencl_labels
&& qry && cache;
if (kr_fails_assert(ok))
return kr_error(EINVAL);
/*** Find the closest encloser - cycle: name starting at sname,
* proceeding while longer than zname, shortening by one label on step.
* We need a pair where a name doesn't exist *and* its parent does. */
/* LATER(optim.): perhaps iterate in the other order - that
* should help significantly against deep queries where we have
* a shallow proof in the cache. We can also optimize by using
* only exact search unless we had a match in the previous iteration. */
const int zname_labels = knot_dname_labels(k->zname, NULL);
int last_nxproven_labels = -1;
const knot_dname_t *name = qry->sname;
/* Avoid doing too much work on SHA1; we might consider that a part of mitigating
* CVE-2023-50868: NSEC3 closest encloser proof can exhaust CPU
* As currently the code iterates from the longest name, we limit that.
* Note that we don't want to limit too much, as the alternative usually includes
* sending more queries upstream, which would come with nontrivial work, too.
*/
const int max_labels = zname_labels + kr_nsec3_max_depth(&ans->nsec_p.libknot);
if (sname_labels > max_labels)
VERBOSE_MSG(qry, "=> NSEC3 hashing partly skipped due to too long SNAME (CVE-2023-50868)\n");
for (int name_labels = sname_labels; name_labels >= zname_labels;
--name_labels, name += 1 + name[0]) {
if (name_labels > max_labels)
continue; // avoid the hashing
/* Find a previous-or-equal NSEC3 in cache covering the name,
* checking TTL etc. */
const knot_db_val_t key = key_NSEC3_name(k, name, false, &ans->nsec_p);
if (!key.data) continue;
WITH_VERBOSE(qry) {
char hash_txt[NSEC3_HASH_TXT_LEN + 1];
key_NSEC3_hash2text(key, hash_txt);
VERBOSE_MSG(qry, "=> NSEC3 depth %d: hash %s\n",
name_labels - zname_labels, hash_txt);
}
knot_db_val_t val = { NULL, 0 };
bool exact_match;
uint32_t new_ttl;
const uint8_t *hash_low;
const char *err = find_leq_NSEC3(cache, qry, key, k, &ans->nsec_p, &val,
&exact_match, &hash_low, &new_ttl);
if (err) {
WITH_VERBOSE(qry) {
auto_free char *name_str = kr_dname_text(name);
VERBOSE_MSG(qry, "=> NSEC3 encloser error for %s: %s\n",
name_str, err);
}
continue;
}
if (exact_match && name_labels != sname_labels
&& name_labels + 1 != last_nxproven_labels) {
/* This name exists (checked rank and TTL), and it's
* neither of the two interesting cases, so we do not
* keep searching for non-existence above this name. */
VERBOSE_MSG(qry,
"=> NSEC3 encloser: only found existence of an ancestor\n");
return ESKIP;
}
/* Optimization: avoid the rest of the last iteration if pointless. */
if (!exact_match && name_labels == zname_labels
&& last_nxproven_labels != name_labels + 1) {
break;
}
/* Basic checks OK -> materialize data, cleaning any previous
* records on that answer index (unsuccessful attempts). */
knot_dname_t owner[KNOT_DNAME_MAXLEN];
{
int ret = dname_wire_reconstruct(owner, k->zname, hash_low);
if (unlikely(ret)) continue;
}
const int ans_id = (exact_match && name_labels + 1 == last_nxproven_labels)
? AR_CPE : AR_NSEC;
{
const struct entry_h *nsec_eh = val.data;
memset(&ans->rrsets[ans_id], 0, sizeof(ans->rrsets[ans_id]));
int ret = entry2answer(ans, ans_id, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC3, new_ttl);
if (ret) return kr_error(ret);
}
if (!exact_match) {
/* Non-existence proven, but we don't know if `name`
* is the next closer name.
* Note: we don't need to check for the sname being
* delegated away by this record, as with NSEC3 only
* *exact* match on an ancestor could do that. */
last_nxproven_labels = name_labels;
WITH_VERBOSE(qry) {
char hash_low_txt[NSEC3_HASH_TXT_LEN + 1];
nsec3_hash2text(owner, hash_low_txt);
VERBOSE_MSG(qry,
"=> NSEC3 depth %d: covered by %s -> TODO, new TTL %d\n",
name_labels - zname_labels, hash_low_txt, new_ttl);
}
continue;
}
/* Exactly matched NSEC3: two cases, one after another. */
const knot_rrset_t *nsec_rr = ans->rrsets[ans_id].set.rr;
const uint8_t *bm = knot_nsec3_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec3_bitmap_len(nsec_rr->rrs.rdata);
if (kr_fails_assert(bm))
return kr_error(EFAULT);
if (name_labels == sname_labels) {
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype,
nsec_rr->owner) != 0) {
VERBOSE_MSG(qry,
"=> NSEC3 sname: match but failed type check\n");
return ESKIP;
}
/* NODATA proven; just need to add SOA+RRSIG later */
VERBOSE_MSG(qry,
"=> NSEC3 sname: match proved NODATA, new TTL %d\n",
new_ttl);
ans->rcode = PKT_NODATA;
return kr_ok();
} /* else */
if (kr_fails_assert(name_labels + 1 == last_nxproven_labels))
return kr_error(EINVAL);
if (kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry,
"=> NSEC3 encloser: found but delegated (or error)\n");
return ESKIP;
}
/* NXDOMAIN proven *except* for wildcards. */
WITH_VERBOSE(qry) {
auto_free char *name_str = kr_dname_text(name);
VERBOSE_MSG(qry,
"=> NSEC3 encloser: confirmed as %s, new TTL %d\n",
name_str, new_ttl);
}
*clencl_labels = name_labels;
ans->rcode = PKT_NXDOMAIN;
/* Avoid repeated NSEC3 - remove either if the hashes match.
* This is very unlikely in larger zones: 1/size (per attempt).
* Well, deduplication would happen anyway when the answer
* from cache is read by kresd (internally). */
if (unlikely(0 == memcmp(ans->rrsets[AR_NSEC].set.rr->owner + 1,
ans->rrsets[AR_CPE ].set.rr->owner + 1,
NSEC3_HASH_LEN))) {
memset(&ans->rrsets[AR_CPE], 0, sizeof(ans->rrsets[AR_CPE]));
/* LATER(optim.): perhaps check this earlier and avoid some work? */
}
return kr_ok();
}
/* We've ran out of options. */
if (last_nxproven_labels > 0) {
/* We didn't manage to prove existence of the closest encloser,
* meaning the only chance left is a *positive* wildcard record. */
*clencl_labels = last_nxproven_labels - 1;
ans->rcode = PKT_NXDOMAIN;
/* FIXME: review */
}
return ESKIP;
}
int nsec3_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
const struct kr_query *qry, struct kr_cache *cache)
{
/* Find a previous-or-equal NSEC3 in cache covering or matching
* the source of synthesis, checking TTL etc. */
const knot_db_val_t key = key_NSEC3_name(k, clencl_name, true, &ans->nsec_p);
if (!key.data) return kr_error(1);
WITH_VERBOSE(qry) {
char hash_txt[NSEC3_HASH_TXT_LEN + 1];
key_NSEC3_hash2text(key, hash_txt);
VERBOSE_MSG(qry, "=> NSEC3 wildcard: hash %s\n", hash_txt);
}
knot_db_val_t val = { NULL, 0 };
bool exact_match;
uint32_t new_ttl;
const uint8_t *hash_low;
const char *err = find_leq_NSEC3(cache, qry, key, k, &ans->nsec_p, &val,
&exact_match, &hash_low, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC3 wildcard: %s\n", err);
return kr_ok();
}
/* LATER(optim.): avoid duplicities in answer. */
/* Basic checks OK -> materialize the data (speculatively). */
knot_dname_t owner[KNOT_DNAME_MAXLEN];
{
int ret = dname_wire_reconstruct(owner, k->zname, hash_low);
if (unlikely(ret)) return kr_ok();
const struct entry_h *nsec_eh = val.data;
ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC3, new_ttl);
if (ret) return kr_error(ret);
}
const knot_rrset_t *nsec_rr = ans->rrsets[AR_WILD].set.rr;
if (!exact_match) {
/* The record proves wildcard non-existence. */
WITH_VERBOSE(qry) {
char hash_low_txt[NSEC3_HASH_TXT_LEN + 1];
nsec3_hash2text(owner, hash_low_txt);
VERBOSE_MSG(qry,
"=> NSEC3 wildcard: covered by %s -> TODO, new TTL %d\n",
hash_low_txt, new_ttl);
}
return AR_SOA;
}
/* The wildcard exists. Find if it's NODATA - check type bitmap. */
const uint8_t *bm = knot_nsec3_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec3_bitmap_len(nsec_rr->rrs.rdata);
if (kr_fails_assert(bm))
return kr_error(EFAULT);
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) {
/* NODATA proven; just need to add SOA+RRSIG later */
VERBOSE_MSG(qry, "=> NSEC3 wildcard: match proved NODATA, new TTL %d\n",
new_ttl);
ans->rcode = PKT_NODATA;
return AR_SOA;
} /* else */
/* The data probably exists -> don't add this NSEC3
* and (later) try to find the real wildcard data */
VERBOSE_MSG(qry, "=> NSEC3 wildcard: should exist (or error)\n");
ans->rcode = PKT_NOERROR;
memset(&ans->rrsets[AR_WILD], 0, sizeof(ans->rrsets[AR_WILD]));
return kr_ok();
}
|