1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include "lib/cache/impl.h"
#include "lib/dnssec/ta.h"
#include "lib/layer/iterate.h"
/* The whole file only exports peek_nosync().
* Forwards for larger chunks of code: */
static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
uint8_t lowest_rank);
static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
struct kr_query *qry, bool only_NS, bool is_DS);
static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl);
static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
uint16_t type, uint8_t lowest_rank,
const struct kr_query *qry, struct kr_cache *cache);
static int peek_encloser(
struct key *k, struct answer *ans, int sname_labels,
uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache);
static int nsec_p_init(struct nsec_p *nsec_p, knot_db_val_t nsec_p_entry, bool with_knot)
{
const size_t stamp_len = sizeof(uint32_t);
if (nsec_p_entry.len <= stamp_len) { /* plain NSEC if equal */
nsec_p->raw = NULL;
nsec_p->hash = 0;
return kr_ok();
}
nsec_p->raw = (uint8_t *)nsec_p_entry.data + stamp_len;
nsec_p->hash = nsec_p_mkHash(nsec_p->raw);
if (!with_knot) return kr_ok();
/* Convert NSEC3 params to another format. */
const dnssec_binary_t rdata = {
.size = nsec_p_rdlen(nsec_p->raw),
.data = (uint8_t *)/*const-cast*/nsec_p->raw,
};
int ret = dnssec_nsec3_params_from_rdata(&nsec_p->libknot, &rdata);
return ret == DNSSEC_EOK ? kr_ok() : kr_error(ret);
}
static void nsec_p_cleanup(struct nsec_p *nsec_p)
{
dnssec_binary_free(&nsec_p->libknot.salt);
/* We don't really need to clear it, but it's not large. (`salt` zeroed above) */
memset(nsec_p, 0, sizeof(*nsec_p));
}
/** Compute new TTL for nsec_p entry, using SOA serial arith.
* \param new_ttl (optionally) write the new TTL (even if negative)
* \return error code, e.g. kr_error(ESTALE) */
static int nsec_p_ttl(knot_db_val_t entry, const uint32_t timestamp, int32_t *new_ttl)
{
if (kr_fails_assert(entry.data))
return kr_error(EINVAL);
uint32_t stamp;
if (!entry.len)
return kr_error(ENOENT);
if (kr_fails_assert(entry.len >= sizeof(stamp)))
return kr_error(EILSEQ);
memcpy(&stamp, entry.data, sizeof(stamp));
int32_t newttl = stamp - timestamp;
if (new_ttl) *new_ttl = newttl;
return newttl < 0 ? kr_error(ESTALE) : kr_ok();
}
static uint8_t get_lowest_rank(const struct kr_query *qry, const knot_dname_t *name, const uint16_t type)
{
/* Shut up linters. */
kr_require(qry && qry->request);
/* TODO: move rank handling into the iterator (DNSSEC_* flags)? */
const bool allow_unverified =
knot_wire_get_cd(qry->request->qsource.packet->wire) || qry->flags.STUB;
/* in stub mode we don't trust RRs anyway ^^ */
if (qry->flags.NONAUTH) {
return KR_RANK_INITIAL;
/* Note: there's little sense in validation status for non-auth records.
* In case of using NONAUTH to get NS IPs, knowing that you ask correct
* IP doesn't matter much for security; it matters whether you can
* validate the answers from the NS.
*/
} else if (!allow_unverified) {
/* Records not present under any TA don't have their security
* verified at all, so we also accept low ranks in that case. */
const bool ta_covers = kr_ta_closest(qry->request->ctx, name, type);
/* ^ TODO: performance? TODO: stype - call sites */
if (ta_covers) {
return KR_RANK_INSECURE | KR_RANK_AUTH;
} /* else fallthrough */
}
return KR_RANK_INITIAL | KR_RANK_AUTH;
}
/** Almost whole .produce phase for the cache module.
* \note we don't transition to KR_STATE_FAIL even in case of "unexpected errors".
*/
int peek_nosync(kr_layer_t *ctx, knot_pkt_t *pkt)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
struct kr_cache *cache = &req->ctx->cache;
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, qry->sname, false);
if (kr_fails_assert(ret == 0))
return ctx->state;
const uint8_t lowest_rank = get_lowest_rank(qry, qry->sname, qry->stype);
/**** 1. find the name or the closest (available) zone, not considering wildcards
**** 1a. exact name+type match (can be negative, mainly in insecure zones) */
{
knot_db_val_t key = key_exact_type_maypkt(k, qry->stype);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
if (!ret) {
/* found an entry: test conditions, materialize into pkt, etc. */
ret = found_exact_hit(ctx, pkt, val, lowest_rank);
}
}
if (!ret) {
return KR_STATE_DONE;
} else if (kr_fails_assert(ret == kr_error(ENOENT))) {
VERBOSE_MSG(qry, "=> exact hit error: %d %s\n", ret, kr_strerror(ret));
return ctx->state;
}
/* Avoid aggressive answers in STUB mode.
* As STUB mode doesn't validate, it wouldn't save the necessary records.
* Moreover, this special case avoids unintentional NXDOMAIN on grafted subtrees. */
if (qry->flags.STUB)
return ctx->state;
/**** 1b. otherwise, find the longest prefix zone/xNAME (with OK time+rank). [...] */
k->zname = qry->sname;
ret = kr_dname_lf(k->buf, k->zname, false); /* LATER(optim.): probably remove */
if (kr_fails_assert(ret == 0))
return ctx->state;
entry_list_t el;
ret = closest_NS(cache, k, el, qry, false, qry->stype == KNOT_RRTYPE_DS);
if (ret) {
if (kr_fails_assert(ret == kr_error(ENOENT)) || !el[0].len) {
return ctx->state;
}
}
switch (k->type) {
case KNOT_RRTYPE_CNAME: {
const knot_db_val_t v = el[EL_CNAME];
if (kr_fails_assert(v.data && v.len))
return ctx->state;
const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
ret = answer_simple_hit(ctx, pkt, KNOT_RRTYPE_CNAME, v.data,
knot_db_val_bound(v), new_ttl);
return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
}
case KNOT_RRTYPE_DNAME: {
const knot_db_val_t v = el[EL_DNAME];
if (kr_fails_assert(v.data && v.len))
return ctx->state;
/* TTL: for simplicity, we just ask for TTL of the generated CNAME. */
const int32_t new_ttl = get_new_ttl(v.data, qry, qry->sname,
KNOT_RRTYPE_CNAME, qry->timestamp.tv_sec);
ret = answer_dname_hit(ctx, pkt, k->zname, v.data,
knot_db_val_bound(v), new_ttl);
return ret == kr_ok() ? KR_STATE_DONE : ctx->state;
}
}
/* We have to try proving from NSEC*. */
auto_free char *log_zname = NULL;
WITH_VERBOSE(qry) {
log_zname = kr_dname_text(k->zname);
if (!el[0].len) {
VERBOSE_MSG(qry, "=> no NSEC* cached for zone: %s\n", log_zname);
}
}
#if 0
if (!eh) { /* fall back to root hints? */
ret = kr_zonecut_set_sbelt(req->ctx, &qry->zone_cut);
if (ret) return ctx->state;
kr_assert(!qry->zone_cut.parent);
//VERBOSE_MSG(qry, "=> using root hints\n");
//qry->flags.AWAIT_CUT = false;
return ctx->state;
}
/* Now `eh` points to the closest NS record that we've found,
* and that's the only place to start - we may either find
* a negative proof or we may query upstream from that point. */
kr_zonecut_set(&qry->zone_cut, k->zname);
ret = kr_make_query(qry, pkt); // TODO: probably not yet - qname minimization
if (ret) return ctx->state;
#endif
/** Structure for collecting multiple NSEC* + RRSIG records,
* in preparation for the answer, and for tracking the progress. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
const int sname_labels = knot_dname_labels(qry->sname, NULL);
/* Try the NSEC* parameters in order, until success.
* Let's not mix different parameters for NSEC* RRs in a single proof. */
for (int i = 0; ;) {
int32_t log_new_ttl = -123456789; /* visually recognizable value */
ret = nsec_p_ttl(el[i], qry->timestamp.tv_sec, &log_new_ttl);
if (!ret || kr_log_is_debug_qry(CACHE, qry)) {
nsec_p_init(&ans.nsec_p, el[i], !ret);
}
if (ret) {
VERBOSE_MSG(qry, "=> skipping zone: %s, %s, hash %x;"
"new TTL %d, ret %d\n",
log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
(unsigned)ans.nsec_p.hash, (int)log_new_ttl, ret);
/* no need for nsec_p_cleanup() in this case */
goto cont;
}
VERBOSE_MSG(qry, "=> trying zone: %s, %s, hash %x\n",
log_zname, (ans.nsec_p.raw ? "NSEC3" : "NSEC"),
(unsigned)ans.nsec_p.hash);
/**** 2. and 3. inside */
ret = peek_encloser(k, &ans, sname_labels,
lowest_rank, qry, cache);
nsec_p_cleanup(&ans.nsec_p);
if (!ret) break;
if (ret < 0) return ctx->state;
cont:
/* Otherwise we try another nsec_p, if available. */
if (++i == ENTRY_APEX_NSECS_CNT) return ctx->state;
/* clear possible partial answers in `ans` (no need to deallocate) */
ans.rcode = 0;
memset(&ans.rrsets, 0, sizeof(ans.rrsets));
}
/**** 4. add SOA iff needed */
if (ans.rcode != PKT_NOERROR) {
/* Assuming k->buf still starts with zone's prefix,
* look up the SOA in cache. */
k->buf[0] = k->zlf_len;
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_SOA);
knot_db_val_t val = { NULL, 0 };
ret = cache_op(cache, read, &key, &val, 1);
const struct entry_h *eh;
if (ret || !(eh = entry_h_consistent_E(val, KNOT_RRTYPE_SOA))) {
kr_assert(ret); /* only want to catch `eh` failures */
VERBOSE_MSG(qry, "=> SOA missed\n");
return ctx->state;
}
/* Check if the record is OK. */
int32_t new_ttl = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_SOA,
qry->timestamp.tv_sec);
if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
VERBOSE_MSG(qry, "=> SOA unfit %s: rank 0%.2o, new TTL %d\n",
(eh->is_packet ? "packet" : "RR"),
eh->rank, new_ttl);
return ctx->state;
}
/* Add the SOA into the answer. */
ret = entry2answer(&ans, AR_SOA, eh, knot_db_val_bound(val),
k->zname, KNOT_RRTYPE_SOA, new_ttl);
if (ret) return ctx->state;
}
/* Find our target RCODE. */
int real_rcode;
switch (ans.rcode) {
case PKT_NODATA:
case PKT_NOERROR: /* positive wildcarded response */
real_rcode = KNOT_RCODE_NOERROR;
break;
case PKT_NXDOMAIN:
real_rcode = KNOT_RCODE_NXDOMAIN;
break;
default:
kr_assert(false);
case 0: /* i.e. nothing was found */
/* LATER(optim.): zone cut? */
VERBOSE_MSG(qry, "=> cache miss\n");
return ctx->state;
}
if (pkt_renew(pkt, qry->sname, qry->stype)
|| knot_pkt_begin(pkt, KNOT_ANSWER)
) {
kr_assert(false);
return ctx->state;
}
knot_wire_set_rcode(pkt->wire, real_rcode);
bool expiring = false; // TODO
for (int i = 0; i < sizeof(ans.rrsets) / sizeof(ans.rrsets[0]); ++i) {
if (i == 1) knot_pkt_begin(pkt, KNOT_AUTHORITY);
if (!ans.rrsets[i].set.rr) continue;
expiring = expiring || ans.rrsets[i].set.expiring;
ret = pkt_append(pkt, &ans.rrsets[i], ans.rrsets[i].set.rank);
if (kr_fails_assert(ret == 0))
return ctx->state;
}
/* Finishing touches. */
struct kr_qflags * const qf = &qry->flags;
qf->EXPIRING = expiring;
qf->CACHED = true;
qf->NO_MINIMIZE = true;
return KR_STATE_DONE;
}
/**
* This is where the high-level "business logic" of aggressive cache is.
* \return 0: success (may need SOA); >0: try other nsec_p; <0: exit cache immediately.
*/
static int peek_encloser(
struct key *k, struct answer *ans, const int sname_labels,
uint8_t lowest_rank, const struct kr_query *qry, struct kr_cache *cache)
{
/** Start of NSEC* covering the sname;
* it's part of key - the one within zone (read only) */
knot_db_val_t cover_low_kwz = { NULL, 0 };
knot_dname_t cover_hi_storage[KNOT_DNAME_MAXLEN];
/** End of NSEC* covering the sname. */
knot_db_val_t cover_hi_kwz = {
.data = cover_hi_storage,
.len = sizeof(cover_hi_storage),
};
/**** 2. Find a closest (provable) encloser (of sname). */
int clencl_labels = -1;
bool clencl_is_tentative = false;
if (!ans->nsec_p.raw) { /* NSEC */
int ret = nsec1_encloser(k, ans, sname_labels, &clencl_labels,
&cover_low_kwz, &cover_hi_kwz, qry, cache);
if (ret) return ret;
} else {
int ret = nsec3_encloser(k, ans, sname_labels, &clencl_labels,
qry, cache);
clencl_is_tentative = ret == ABS(ENOENT) && clencl_labels >= 0;
/* ^^ Last chance: *positive* wildcard record under this clencl. */
if (ret && !clencl_is_tentative) return ret;
}
/* We should have either a match or a cover at this point. */
if (kr_fails_assert(ans->rcode == PKT_NODATA || ans->rcode == PKT_NXDOMAIN))
return kr_error(EINVAL);
const bool ncloser_covered = ans->rcode == PKT_NXDOMAIN;
/** Name of the closest (provable) encloser. */
const knot_dname_t *clencl_name = qry->sname;
for (int l = sname_labels; l > clencl_labels; --l)
clencl_name = knot_wire_next_label(clencl_name, NULL);
/**** 3. source of synthesis checks, in case the next closer name was covered.
**** 3a. We want to query for NSEC* of source of synthesis (SS) or its
* predecessor, providing us with a proof of its existence or non-existence. */
if (ncloser_covered && !ans->nsec_p.raw) {
int ret = nsec1_src_synth(k, ans, clencl_name,
cover_low_kwz, cover_hi_kwz, qry, cache);
if (ret == AR_SOA) return 0;
kr_assert(ret <= 0);
if (ret) return ret;
} else if (ncloser_covered && ans->nsec_p.raw && !clencl_is_tentative) {
int ret = nsec3_src_synth(k, ans, clencl_name, qry, cache);
if (ret == AR_SOA) return 0;
kr_assert(ret <= 0);
if (ret) return ret;
} /* else (!ncloser_covered) so no wildcard checks needed,
* as we proved that sname exists. */
/**** 3b. find wildcarded answer, if next closer name was covered
* and we don't have a full proof yet. (common for NSEC*) */
if (!ncloser_covered)
return kr_ok(); /* decrease indentation */
/* Construct key for exact qry->stype + source of synthesis. */
int ret = kr_dname_lf(k->buf, clencl_name, true);
if (kr_fails_assert(ret == 0))
return kr_error(ret);
const uint16_t types[] = { qry->stype, KNOT_RRTYPE_CNAME };
for (int i = 0; i < (2 - (qry->stype == KNOT_RRTYPE_CNAME)); ++i) {
ret = try_wild(k, ans, clencl_name, types[i],
lowest_rank, qry, cache);
if (ret == kr_ok()) {
return kr_ok();
} else if (kr_fails_assert(ret == kr_error(ENOENT) || ret == kr_error(ESTALE))) {
return kr_error(ret);
}
/* else continue */
}
/* Neither attempt succeeded, but the NSEC* proofs were found,
* so skip trying other parameters, as it seems very unlikely
* to turn out differently than by the same wildcard search. */
return kr_error(ENOENT);
}
static void answer_simple_qflags(struct kr_qflags *qf, const struct entry_h *eh,
uint32_t new_ttl)
{
/* Finishing touches. */
qf->EXPIRING = is_expiring(eh->ttl, new_ttl);
qf->CACHED = true;
qf->NO_MINIMIZE = true;
qf->DNSSEC_INSECURE = kr_rank_test(eh->rank, KR_RANK_INSECURE);
if (qf->DNSSEC_INSECURE) {
qf->DNSSEC_WANT = false;
}
}
#define CHECK_RET(ret) do { \
if (kr_fails_assert((ret) >= 0)) return kr_error((ret)); \
} while (false)
static int answer_simple_hit(kr_layer_t *ctx, knot_pkt_t *pkt, uint16_t type,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* All OK, so start constructing the (pseudo-)packet. */
int ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
/* Materialize the sets for the answer in (pseudo-)packet. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
qry->sname, type, new_ttl);
CHECK_RET(ret);
/* Put links to the materialized data into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
CHECK_RET(ret);
answer_simple_qflags(&qry->flags, eh, new_ttl);
VERBOSE_MSG(qry, "=> satisfied by exact %s: rank 0%.2o, new TTL %d\n",
(type == KNOT_RRTYPE_CNAME ? "CNAME" : "RRset"),
eh->rank, new_ttl);
return kr_ok();
}
static int answer_dname_hit(kr_layer_t *ctx, knot_pkt_t *pkt, const knot_dname_t *dname_owner,
const struct entry_h *eh, const void *eh_bound, uint32_t new_ttl)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
/* All OK, so start constructing the (pseudo-)packet. */
int ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
/* Materialize the DNAME for the answer in (pseudo-)packet. */
struct answer ans;
memset(&ans, 0, sizeof(ans));
ans.mm = &pkt->mm;
ret = entry2answer(&ans, AR_ANSWER, eh, eh_bound,
dname_owner, KNOT_RRTYPE_DNAME, new_ttl);
CHECK_RET(ret);
/* Put link to the RRset into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_ANSWER], eh->rank);
CHECK_RET(ret);
const knot_dname_t *dname_target =
knot_dname_target(ans.rrsets[AR_ANSWER].set.rr->rrs.rdata);
/* Generate CNAME RRset for the answer in (pseudo-)packet. */
const int AR_CNAME = AR_SOA;
knot_rrset_t *rr = ans.rrsets[AR_CNAME].set.rr
= knot_rrset_new(qry->sname, KNOT_RRTYPE_CNAME, KNOT_CLASS_IN,
new_ttl, ans.mm);
CHECK_RET(rr ? kr_ok() : -ENOMEM);
const knot_dname_t *cname_target = knot_dname_replace_suffix(qry->sname,
knot_dname_labels(dname_owner, NULL), dname_target, ans.mm);
CHECK_RET(cname_target ? kr_ok() : -ENOMEM);
const int rdata_len = knot_dname_size(cname_target);
if (rdata_len <= KNOT_DNAME_MAXLEN
&& knot_dname_labels(cname_target, NULL) <= KNOT_DNAME_MAXLABELS) {
/* Normal case: the target name fits. */
rr->rrs.count = 1;
rr->rrs.size = knot_rdata_size(rdata_len);
rr->rrs.rdata = mm_alloc(ans.mm, rr->rrs.size);
CHECK_RET(rr->rrs.rdata ? kr_ok() : -ENOMEM);
knot_rdata_init(rr->rrs.rdata, rdata_len, cname_target);
/* Put link to the RRset into the pkt. */
ret = pkt_append(pkt, &ans.rrsets[AR_CNAME], eh->rank);
CHECK_RET(ret);
} else {
/* Note that it's basically a successful answer; name just doesn't fit. */
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_YXDOMAIN);
}
answer_simple_qflags(&qry->flags, eh, new_ttl);
VERBOSE_MSG(qry, "=> satisfied by DNAME+CNAME: rank 0%.2o, new TTL %d\n",
eh->rank, new_ttl);
return kr_ok();
}
#undef CHECK_RET
/** TODO: description; see the single call site for now. */
static int found_exact_hit(kr_layer_t *ctx, knot_pkt_t *pkt, knot_db_val_t val,
uint8_t lowest_rank)
{
struct kr_request *req = ctx->req;
struct kr_query *qry = req->current_query;
int ret = entry_h_seek(&val, qry->stype);
if (ret) return ret;
const struct entry_h *eh = entry_h_consistent_E(val, qry->stype);
if (kr_fails_assert(eh))
return kr_error(ENOENT);
// LATER: recovery in case of error, perhaps via removing the entry?
// LATER(optim): perhaps optimize the zone cut search
int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, qry->stype,
qry->timestamp.tv_sec);
if (new_ttl < 0 || eh->rank < lowest_rank) {
/* Positive record with stale TTL or bad rank.
* LATER(optim.): It's unlikely that we find a negative one,
* so we might theoretically skip all the cache code. */
VERBOSE_MSG(qry, "=> skipping exact %s: rank 0%.2o (min. 0%.2o), new TTL %d\n",
eh->is_packet ? "packet" : "RR", eh->rank, lowest_rank, new_ttl);
return kr_error(ENOENT);
}
const uint8_t *eh_bound = knot_db_val_bound(val);
if (eh->is_packet) {
/* Note: we answer here immediately, even if it's (theoretically)
* possible that we could generate a higher-security negative proof.
* Rank is high-enough so we take it to save time searching;
* in practice this also helps in some incorrect zones (live-signed). */
return answer_from_pkt (ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
} else {
return answer_simple_hit(ctx, pkt, qry->stype, eh, eh_bound, new_ttl);
}
}
/** Try to satisfy via wildcard (positively). See the single call site. */
static int try_wild(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
const uint16_t type, const uint8_t lowest_rank,
const struct kr_query *qry, struct kr_cache *cache)
{
knot_db_val_t key = key_exact_type(k, type);
/* Find the record. */
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read, &key, &val, 1);
if (!ret) {
ret = entry_h_seek(&val, type);
}
if (ret) {
if (kr_fails_assert(ret == kr_error(ENOENT)))
VERBOSE_MSG(qry, "=> wildcard: hit error %d %s\n",
ret, strerror(abs(ret)));
WITH_VERBOSE(qry) {
auto_free char *clencl_str = kr_dname_text(clencl_name),
*type_str = kr_rrtype_text(type);
VERBOSE_MSG(qry, "=> wildcard: not found: *.%s %s\n",
clencl_str, type_str);
}
return ret;
}
/* Check if the record is OK. */
const struct entry_h *eh = entry_h_consistent_E(val, type);
if (kr_fails_assert(eh))
return kr_error(ret);
// LATER: recovery in case of error, perhaps via removing the entry?
int32_t new_ttl = get_new_ttl(eh, qry, qry->sname, type, qry->timestamp.tv_sec);
/* ^^ here we use the *expanded* wildcard name */
if (new_ttl < 0 || eh->rank < lowest_rank || eh->is_packet) {
/* Wildcard record with stale TTL, bad rank or packet. */
VERBOSE_MSG(qry, "=> wildcard: skipping %s, rank 0%.2o, new TTL %d\n",
eh->is_packet ? "packet" : "RR", eh->rank, new_ttl);
return kr_error(ESTALE);
}
/* Add the RR into the answer. */
ret = entry2answer(ans, AR_ANSWER, eh, knot_db_val_bound(val),
qry->sname, type, new_ttl);
VERBOSE_MSG(qry, "=> wildcard: answer expanded, ret = %d, new TTL %d\n",
ret, (int)new_ttl);
if (ret) return kr_error(ret);
ans->rcode = PKT_NOERROR;
return kr_ok();
}
int kr_cache_closest_apex(struct kr_cache *cache, const knot_dname_t *name, bool is_DS,
knot_dname_t ** apex)
{
if (kr_fails_assert(cache && cache->db && name && apex && *apex == NULL))
return kr_error(EINVAL);
struct key k_storage, *k = &k_storage;
int ret = kr_dname_lf(k->buf, name, false);
if (ret)
return kr_error(ret);
entry_list_t el_;
k->zname = name;
ret = closest_NS(cache, k, el_, NULL, true, is_DS);
if (ret && ret != -abs(ENOENT))
return ret;
*apex = knot_dname_copy(k->zname, NULL);
if (!*apex)
return kr_error(ENOMEM);
return kr_ok();
}
/** \internal for closest_NS. Check suitability of a single entry, setting k->type if OK.
* \return error code, negative iff whole list should be skipped.
*/
static int check_NS_entry(struct key *k, knot_db_val_t entry, int i,
bool exact_match, bool is_DS,
const struct kr_query *qry, uint32_t timestamp);
/**
* Find the longest prefix zone/xNAME (with OK time+rank), starting at k->*.
*
* The found type is returned via k->type; the values are returned in el.
* \note we use k->type = KNOT_RRTYPE_NS also for the nsec_p result.
* \param qry can be NULL (-> gettimeofday(), but you lose the stale-serve hook)
* \param only_NS don't consider xNAMEs
* \return error code
*/
static int closest_NS(struct kr_cache *cache, struct key *k, entry_list_t el,
struct kr_query *qry, const bool only_NS, const bool is_DS)
{
/* get the current timestamp */
uint32_t timestamp;
if (qry) {
timestamp = qry->timestamp.tv_sec;
} else {
struct timeval tv;
if (gettimeofday(&tv, NULL)) return kr_error(errno);
timestamp = tv.tv_sec;
}
int zlf_len = k->buf[0];
// LATER(optim): if stype is NS, we check the same value again
bool exact_match = true;
bool need_zero = true;
/* Inspect the NS/xNAME entries, shortening by a label on each iteration. */
do {
k->buf[0] = zlf_len;
knot_db_val_t key = key_exact_type(k, KNOT_RRTYPE_NS);
knot_db_val_t val;
int ret = cache_op(cache, read, &key, &val, 1);
if (ret == kr_error(ENOENT)) goto next_label;
if (kr_fails_assert(ret == 0)) {
if (need_zero) memset(el, 0, sizeof(entry_list_t));
return kr_error(ret);
}
/* Check consistency, find any type;
* using `goto` for shortening by another label. */
ret = entry_list_parse(val, el);
if (kr_fails_assert(ret == 0)) // do something about it?
goto next_label;
need_zero = false;
/* More types are possible; try in order.
* For non-fatal failures just "continue;" to try the next type. */
/* Now a complication - we need to try EL_DNAME before NSEC*
* (Unfortunately that's not easy to write very nicely.) */
if (!only_NS) {
const int i = EL_DNAME;
ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
qry, timestamp);
if (ret < 0) goto next_label; else
if (!ret) {
/* We found our match. */
k->zlf_len = zlf_len;
return kr_ok();
}
}
const int el_count = only_NS ? EL_NS + 1 : EL_LENGTH;
for (int i = 0; i < el_count; ++i) {
if (i == EL_DNAME) continue;
ret = check_NS_entry(k, el[i], i, exact_match, is_DS,
qry, timestamp);
if (ret < 0) goto next_label; else
if (!ret) {
/* We found our match. */
k->zlf_len = zlf_len;
return kr_ok();
}
}
next_label:
/* remove one more label */
exact_match = false;
if (k->zname[0] == 0) {
/* We miss root NS in cache, but let's at least assume it exists. */
k->type = KNOT_RRTYPE_NS;
k->zlf_len = zlf_len;
kr_assert(zlf_len == 0);
if (need_zero) memset(el, 0, sizeof(entry_list_t));
return kr_error(ENOENT);
}
zlf_len -= (k->zname[0] + 1);
k->zname += (k->zname[0] + 1);
k->buf[zlf_len + 1] = 0;
} while (true);
}
static int check_NS_entry(struct key *k, const knot_db_val_t entry, const int i,
const bool exact_match, const bool is_DS,
const struct kr_query *qry, uint32_t timestamp)
{
const int ESKIP = ABS(ENOENT);
if (!entry.len
/* On a zone cut we want DS from the parent zone. */
|| (exact_match && is_DS)
/* CNAME is interesting only if we
* directly hit the name that was asked.
* Note that we want it even in the DS case. */
|| (i == EL_CNAME && !exact_match)
/* DNAME is interesting only if we did NOT
* directly hit the name that was asked. */
|| (i == EL_DNAME && exact_match)
) {
return ESKIP;
}
uint16_t type;
if (i < ENTRY_APEX_NSECS_CNT) {
type = KNOT_RRTYPE_NS;
int32_t log_new_ttl = -123456789; /* visually recognizable value */
const int err = nsec_p_ttl(entry, timestamp, &log_new_ttl);
if (err) {
VERBOSE_MSG(qry,
"=> skipping unfit nsec_p: new TTL %d, error %d\n",
(int)log_new_ttl, err);
return ESKIP;
}
} else {
type = EL2RRTYPE(i);
/* Find the entry for the type, check positivity, TTL */
const struct entry_h *eh = entry_h_consistent_E(entry, type);
if (kr_fails_assert(eh)) {
VERBOSE_MSG(qry, "=> EH not consistent\n");
return kr_error(EILSEQ);
}
const int32_t log_new_ttl = get_new_ttl(eh, qry, k->zname, type, timestamp);
const bool ok = /* Not interested in negative bogus or outdated RRs. */
!eh->is_packet && log_new_ttl >= 0
/* For NS any kr_rank is accepted, as insecure or even nonauth is OK */
&& (type == KNOT_RRTYPE_NS
|| eh->rank >= get_lowest_rank(qry, k->zname, type));
WITH_VERBOSE(qry) { if (!ok) {
auto_free char *type_str = kr_rrtype_text(type);
const char *packet_str = eh->is_packet ? "packet" : "RR";
VERBOSE_MSG(qry,
"=> skipping unfit %s %s: rank 0%.2o, new TTL %d\n",
type_str, packet_str, eh->rank, (int)log_new_ttl);
} }
if (!ok) return ESKIP;
}
k->type = type;
return kr_ok();
}
|