1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include "kresconfig.h"
#include "daemon/worker.h"
#include <uv.h>
#include <lua.h>
#include <lauxlib.h>
#include <libknot/packet/pkt.h>
#include <libknot/descriptor.h>
#include <contrib/cleanup.h>
#include <contrib/ucw/lib.h>
#include <contrib/ucw/mempool.h>
#if defined(__GLIBC__) && defined(_GNU_SOURCE)
#include <malloc.h>
#endif
#include <sys/types.h>
#include <unistd.h>
#include <gnutls/gnutls.h>
#if ENABLE_XDP
#include <libknot/xdp/xdp.h>
#endif
#include "daemon/bindings/api.h"
#include "daemon/engine.h"
#include "daemon/io.h"
#include "daemon/proxyv2.h"
#include "daemon/session.h"
#include "daemon/tls.h"
#include "daemon/http.h"
#include "daemon/udp_queue.h"
#include "lib/layer.h"
#include "lib/utils.h"
/* Magic defaults for the worker. */
#ifndef MAX_PIPELINED
#define MAX_PIPELINED 100
#endif
#define VERBOSE_MSG(qry, ...) kr_log_q(qry, WORKER, __VA_ARGS__)
/** Client request state. */
struct request_ctx
{
struct kr_request req;
struct worker_ctx *worker;
struct qr_task *task;
struct {
/** NULL if the request didn't come over network. */
struct session *session;
/** Requestor's address; separate because of UDP session "sharing". */
union kr_sockaddr addr;
/** Request communication address; if not from a proxy, same as addr. */
union kr_sockaddr comm_addr;
/** Local address. For AF_XDP we couldn't use session's,
* as the address might be different every time. */
union kr_sockaddr dst_addr;
/** MAC addresses - ours [0] and router's [1], in case of AF_XDP socket. */
uint8_t eth_addrs[2][6];
} source;
};
/** Query resolution task. */
struct qr_task
{
struct request_ctx *ctx;
knot_pkt_t *pktbuf;
qr_tasklist_t waiting;
struct session *pending[MAX_PENDING];
uint16_t pending_count;
uint16_t timeouts;
uint16_t iter_count;
uint32_t refs;
bool finished : 1;
bool leading : 1;
uint64_t creation_time;
uint64_t send_time;
uint64_t recv_time;
struct kr_transport *transport;
};
/* Convenience macros */
#define qr_task_ref(task) \
do { ++(task)->refs; } while(0)
#define qr_task_unref(task) \
do { \
if (task) \
kr_require((task)->refs > 0); \
if ((task) && --(task)->refs == 0) \
qr_task_free((task)); \
} while (0)
/* Forward decls */
static void qr_task_free(struct qr_task *task);
static int qr_task_step(struct qr_task *task,
const struct sockaddr *packet_source,
knot_pkt_t *packet);
static int qr_task_send(struct qr_task *task, struct session *session,
const struct sockaddr *addr, knot_pkt_t *pkt);
static int qr_task_finalize(struct qr_task *task, int state);
static void qr_task_complete(struct qr_task *task);
struct session* worker_find_tcp_connected(struct worker_ctx *worker,
const struct sockaddr *addr);
static int worker_add_tcp_waiting(struct worker_ctx *worker,
const struct sockaddr *addr,
struct session *session);
struct session* worker_find_tcp_waiting(struct worker_ctx *worker,
const struct sockaddr *addr);
static void on_tcp_connect_timeout(uv_timer_t *timer);
static void on_udp_timeout(uv_timer_t *timer);
static void subreq_finalize(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *pkt);
struct worker_ctx the_worker_value; /**< Static allocation is suitable for the singleton. */
struct worker_ctx *the_worker = NULL;
/*! @internal Create a UDP/TCP handle for an outgoing AF_INET* connection.
* socktype is SOCK_* */
static uv_handle_t *ioreq_spawn(struct worker_ctx *worker,
int socktype, sa_family_t family, bool has_tls,
bool has_http)
{
bool precond = (socktype == SOCK_DGRAM || socktype == SOCK_STREAM)
&& (family == AF_INET || family == AF_INET6);
if (kr_fails_assert(precond)) {
kr_log_debug(WORKER, "ioreq_spawn: pre-condition failed\n");
return NULL;
}
/* Create connection for iterative query */
uv_handle_t *handle = malloc(socktype == SOCK_DGRAM
? sizeof(uv_udp_t) : sizeof(uv_tcp_t));
if (!handle) {
return NULL;
}
int ret = io_create(worker->loop, handle, socktype, family, has_tls, has_http);
if (ret) {
if (ret == UV_EMFILE) {
worker->too_many_open = true;
worker->rconcurrent_highwatermark = worker->stats.rconcurrent;
}
free(handle);
return NULL;
}
/* Bind to outgoing address, according to IP v4/v6. */
union kr_sockaddr *addr;
if (family == AF_INET) {
addr = (union kr_sockaddr *)&worker->out_addr4;
} else {
addr = (union kr_sockaddr *)&worker->out_addr6;
}
if (addr->ip.sa_family != AF_UNSPEC) {
if (kr_fails_assert(addr->ip.sa_family == family)) {
io_free(handle);
return NULL;
}
if (socktype == SOCK_DGRAM) {
uv_udp_t *udp = (uv_udp_t *)handle;
ret = uv_udp_bind(udp, &addr->ip, 0);
} else if (socktype == SOCK_STREAM){
uv_tcp_t *tcp = (uv_tcp_t *)handle;
ret = uv_tcp_bind(tcp, &addr->ip, 0);
}
}
if (ret != 0) {
io_free(handle);
return NULL;
}
/* Set current handle as a subrequest type. */
struct session *session = handle->data;
session_flags(session)->outgoing = true;
/* Connect or issue query datagram */
return handle;
}
static void ioreq_kill_pending(struct qr_task *task)
{
for (uint16_t i = 0; i < task->pending_count; ++i) {
session_kill_ioreq(task->pending[i], task);
}
task->pending_count = 0;
}
/** Get a mempool. */
static inline struct mempool *pool_borrow(struct worker_ctx *worker)
{
/* The implementation used to have extra caching layer,
* but it didn't work well. Now it's very simple. */
return mp_new(16 * 1024);
}
/** Return a mempool. */
static inline void pool_release(struct worker_ctx *worker, struct mempool *mp)
{
mp_delete(mp);
}
/** Create a key for an outgoing subrequest: qname, qclass, qtype.
* @param key Destination buffer for key size, MUST be SUBREQ_KEY_LEN or larger.
* @return key length if successful or an error
*/
static const size_t SUBREQ_KEY_LEN = KR_RRKEY_LEN;
static int subreq_key(char *dst, knot_pkt_t *pkt)
{
kr_require(pkt);
return kr_rrkey(dst, knot_pkt_qclass(pkt), knot_pkt_qname(pkt),
knot_pkt_qtype(pkt), knot_pkt_qtype(pkt));
}
#if ENABLE_XDP
static uint8_t *alloc_wire_cb(struct kr_request *req, uint16_t *maxlen)
{
if (kr_fails_assert(maxlen))
return NULL;
struct request_ctx *ctx = (struct request_ctx *)req;
/* We know it's an AF_XDP socket; otherwise this CB isn't assigned. */
uv_handle_t *handle = session_get_handle(ctx->source.session);
if (kr_fails_assert(handle->type == UV_POLL))
return NULL;
xdp_handle_data_t *xhd = handle->data;
knot_xdp_msg_t out;
bool ipv6 = ctx->source.comm_addr.ip.sa_family == AF_INET6;
int ret = knot_xdp_send_alloc(xhd->socket,
#if KNOT_VERSION_HEX >= 0x030100
ipv6 ? KNOT_XDP_MSG_IPV6 : 0, &out);
#else
ipv6, &out, NULL);
#endif
if (ret != KNOT_EOK) {
kr_assert(ret == KNOT_ENOMEM);
*maxlen = 0;
return NULL;
}
*maxlen = MIN(*maxlen, out.payload.iov_len);
#if KNOT_VERSION_HEX < 0x030100
/* It's most convenient to fill the MAC addresses at this point. */
memcpy(out.eth_from, &ctx->source.eth_addrs[0], 6);
memcpy(out.eth_to, &ctx->source.eth_addrs[1], 6);
#endif
return out.payload.iov_base;
}
static void free_wire(const struct request_ctx *ctx)
{
if (kr_fails_assert(ctx->req.alloc_wire_cb == alloc_wire_cb))
return;
knot_pkt_t *ans = ctx->req.answer;
if (unlikely(ans == NULL)) /* dropped */
return;
if (likely(ans->wire == NULL)) /* sent most likely */
return;
/* We know it's an AF_XDP socket; otherwise alloc_wire_cb isn't assigned. */
uv_handle_t *handle = session_get_handle(ctx->source.session);
if (kr_fails_assert(handle->type == UV_POLL))
return;
xdp_handle_data_t *xhd = handle->data;
/* Freeing is done by sending an empty packet (the API won't really send it). */
knot_xdp_msg_t out;
out.payload.iov_base = ans->wire;
out.payload.iov_len = 0;
uint32_t sent = 0;
#if KNOT_VERSION_HEX >= 0x030100
int ret = 0;
knot_xdp_send_free(xhd->socket, &out, 1);
#else
int ret = knot_xdp_send(xhd->socket, &out, 1, &sent);
#endif
kr_assert(ret == KNOT_EOK && sent == 0);
kr_log_debug(XDP, "freed unsent buffer, ret = %d\n", ret);
}
#endif
/* Helper functions for transport selection */
static inline bool is_tls_capable(struct sockaddr *address) {
tls_client_param_t *tls_entry = tls_client_param_get(the_worker->engine->net.tls_client_params, address);
return tls_entry;
}
static inline bool is_tcp_connected(struct sockaddr *address) {
return worker_find_tcp_connected(the_worker, address);
}
static inline bool is_tcp_waiting(struct sockaddr *address) {
return worker_find_tcp_waiting(the_worker, address);
}
/** Create and initialize a request_ctx (on a fresh mempool).
*
* session and addr point to the source of the request, and they are NULL
* in case the request didn't come from network.
*/
static struct request_ctx *request_create(struct worker_ctx *worker,
struct session *session,
struct io_comm_data *comm,
const uint8_t *eth_from,
const uint8_t *eth_to,
uint32_t uid)
{
knot_mm_t pool = {
.ctx = pool_borrow(worker),
.alloc = (knot_mm_alloc_t) mp_alloc
};
/* Create request context */
struct request_ctx *ctx = mm_calloc(&pool, 1, sizeof(*ctx));
if (!ctx) {
pool_release(worker, pool.ctx);
return NULL;
}
/* TODO Relocate pool to struct request */
ctx->worker = worker;
if (session && kr_fails_assert(session_flags(session)->outgoing == false)) {
pool_release(worker, pool.ctx);
return NULL;
}
ctx->source.session = session;
if (kr_fails_assert(!!eth_to == !!eth_from)) {
pool_release(worker, pool.ctx);
return NULL;
}
const bool is_xdp = eth_to != NULL;
if (is_xdp) {
#if ENABLE_XDP
if (kr_fails_assert(session)) {
pool_release(worker, pool.ctx);
return NULL;
}
memcpy(&ctx->source.eth_addrs[0], eth_to, sizeof(ctx->source.eth_addrs[0]));
memcpy(&ctx->source.eth_addrs[1], eth_from, sizeof(ctx->source.eth_addrs[1]));
ctx->req.alloc_wire_cb = alloc_wire_cb;
#else
kr_assert(!EINVAL);
pool_release(worker, pool.ctx);
return NULL;
#endif
}
struct kr_request *req = &ctx->req;
req->pool = pool;
req->vars_ref = LUA_NOREF;
req->uid = uid;
req->qsource.comm_flags.xdp = is_xdp;
kr_request_set_extended_error(req, KNOT_EDNS_EDE_NONE, NULL);
array_init(req->qsource.headers);
if (session) {
kr_require(comm);
const struct sockaddr *src_addr = comm->src_addr;
const struct sockaddr *comm_addr = comm->comm_addr;
const struct sockaddr *dst_addr = comm->dst_addr;
const struct proxy_result *proxy = comm->proxy;
req->qsource.comm_flags.tcp = session_get_handle(session)->type == UV_TCP;
req->qsource.comm_flags.tls = session_flags(session)->has_tls;
req->qsource.comm_flags.http = session_flags(session)->has_http;
req->qsource.flags = req->qsource.comm_flags;
if (proxy) {
req->qsource.flags.tcp = proxy->protocol == SOCK_STREAM;
req->qsource.flags.tls = proxy->has_tls;
}
req->qsource.stream_id = -1;
#if ENABLE_DOH2
if (req->qsource.comm_flags.http) {
struct http_ctx *http_ctx = session_http_get_server_ctx(session);
struct http_stream stream = queue_head(http_ctx->streams);
req->qsource.stream_id = stream.id;
if (stream.headers) {
req->qsource.headers = *stream.headers;
free(stream.headers);
stream.headers = NULL;
}
}
#endif
/* We need to store a copy of peer address. */
memcpy(&ctx->source.addr.ip, src_addr, kr_sockaddr_len(src_addr));
req->qsource.addr = &ctx->source.addr.ip;
if (!comm_addr)
comm_addr = src_addr;
memcpy(&ctx->source.comm_addr.ip, comm_addr, kr_sockaddr_len(comm_addr));
req->qsource.comm_addr = &ctx->source.comm_addr.ip;
if (!dst_addr) /* We wouldn't have to copy in this case, but for consistency. */
dst_addr = session_get_sockname(session);
memcpy(&ctx->source.dst_addr.ip, dst_addr, kr_sockaddr_len(dst_addr));
req->qsource.dst_addr = &ctx->source.dst_addr.ip;
}
req->selection_context.is_tls_capable = is_tls_capable;
req->selection_context.is_tcp_connected = is_tcp_connected;
req->selection_context.is_tcp_waiting = is_tcp_waiting;
array_init(req->selection_context.forwarding_targets);
array_reserve_mm(req->selection_context.forwarding_targets, 1, kr_memreserve, &req->pool);
worker->stats.rconcurrent += 1;
return ctx;
}
/** More initialization, related to the particular incoming query/packet. */
static int request_start(struct request_ctx *ctx, knot_pkt_t *query)
{
if (kr_fails_assert(query && ctx))
return kr_error(EINVAL);
struct kr_request *req = &ctx->req;
req->qsource.size = query->size;
if (knot_pkt_has_tsig(query)) {
req->qsource.size += query->tsig_wire.len;
}
knot_pkt_t *pkt = knot_pkt_new(NULL, req->qsource.size, &req->pool);
if (!pkt) {
return kr_error(ENOMEM);
}
int ret = knot_pkt_copy(pkt, query);
if (ret != KNOT_EOK && ret != KNOT_ETRAIL) {
return kr_error(ENOMEM);
}
req->qsource.packet = pkt;
/* Start resolution */
struct worker_ctx *worker = ctx->worker;
struct engine *engine = worker->engine;
kr_resolve_begin(req, &engine->resolver);
worker->stats.queries += 1;
return kr_ok();
}
static void request_free(struct request_ctx *ctx)
{
struct worker_ctx *worker = ctx->worker;
/* Dereference any Lua vars table if exists */
if (ctx->req.vars_ref != LUA_NOREF) {
lua_State *L = worker->engine->L;
/* Get worker variables table */
lua_rawgeti(L, LUA_REGISTRYINDEX, worker->vars_table_ref);
/* Get next free element (position 0) and store it under current reference (forming a list) */
lua_rawgeti(L, -1, 0);
lua_rawseti(L, -2, ctx->req.vars_ref);
/* Set current reference as the next free element */
lua_pushinteger(L, ctx->req.vars_ref);
lua_rawseti(L, -2, 0);
lua_pop(L, 1);
ctx->req.vars_ref = LUA_NOREF;
}
/* Free HTTP/2 headers for DoH requests. */
for(int i = 0; i < ctx->req.qsource.headers.len; i++) {
free(ctx->req.qsource.headers.at[i].name);
free(ctx->req.qsource.headers.at[i].value);
}
array_clear(ctx->req.qsource.headers);
/* Make sure to free XDP buffer in case it wasn't sent. */
if (ctx->req.alloc_wire_cb) {
#if ENABLE_XDP
free_wire(ctx);
#else
kr_assert(!EINVAL);
#endif
}
/* Return mempool to ring or free it if it's full */
pool_release(worker, ctx->req.pool.ctx);
/* @note The 'task' is invalidated from now on. */
worker->stats.rconcurrent -= 1;
}
static struct qr_task *qr_task_create(struct request_ctx *ctx)
{
/* Choose (initial) pktbuf size. As it is now, pktbuf can be used
* for UDP answers from upstream *and* from cache
* and for sending queries upstream */
uint16_t pktbuf_max = KR_EDNS_PAYLOAD;
const knot_rrset_t *opt_our = ctx->worker->engine->resolver.upstream_opt_rr;
if (opt_our) {
pktbuf_max = MAX(pktbuf_max, knot_edns_get_payload(opt_our));
}
/* Create resolution task */
struct qr_task *task = mm_calloc(&ctx->req.pool, 1, sizeof(*task));
if (!task) {
return NULL;
}
/* Create packet buffers for answer and subrequests */
knot_pkt_t *pktbuf = knot_pkt_new(NULL, pktbuf_max, &ctx->req.pool);
if (!pktbuf) {
mm_free(&ctx->req.pool, task);
return NULL;
}
pktbuf->size = 0;
task->ctx = ctx;
task->pktbuf = pktbuf;
array_init(task->waiting);
task->refs = 0;
kr_assert(ctx->task == NULL);
ctx->task = task;
/* Make the primary reference to task. */
qr_task_ref(task);
task->creation_time = kr_now();
ctx->worker->stats.concurrent += 1;
return task;
}
/* This is called when the task refcount is zero, free memory. */
static void qr_task_free(struct qr_task *task)
{
struct request_ctx *ctx = task->ctx;
if (kr_fails_assert(ctx))
return;
struct worker_ctx *worker = ctx->worker;
if (ctx->task == NULL) {
request_free(ctx);
}
/* Update stats */
worker->stats.concurrent -= 1;
}
/*@ Register new qr_task within session. */
static int qr_task_register(struct qr_task *task, struct session *session)
{
if (kr_fails_assert(!session_flags(session)->outgoing && session_get_handle(session)->type == UV_TCP))
return kr_error(EINVAL);
session_tasklist_add(session, task);
struct request_ctx *ctx = task->ctx;
if (kr_fails_assert(ctx && (ctx->source.session == NULL || ctx->source.session == session)))
return kr_error(EINVAL);
ctx->source.session = session;
/* Soft-limit on parallel queries, there is no "slow down" RCODE
* that we could use to signalize to client, but we can stop reading,
* an in effect shrink TCP window size. To get more precise throttling,
* we would need to copy remainder of the unread buffer and reassemble
* when resuming reading. This is NYI. */
if (session_tasklist_get_len(session) >= task->ctx->worker->tcp_pipeline_max &&
!session_flags(session)->throttled && !session_flags(session)->closing) {
session_stop_read(session);
session_flags(session)->throttled = true;
}
return 0;
}
static void qr_task_complete(struct qr_task *task)
{
struct request_ctx *ctx = task->ctx;
/* Kill pending I/O requests */
ioreq_kill_pending(task);
kr_require(task->waiting.len == 0);
kr_require(task->leading == false);
struct session *s = ctx->source.session;
if (s) {
kr_require(!session_flags(s)->outgoing && session_waitinglist_is_empty(s));
ctx->source.session = NULL;
session_tasklist_del(s, task);
}
/* Release primary reference to task. */
if (ctx->task == task) {
ctx->task = NULL;
qr_task_unref(task);
}
}
/* This is called when we send subrequest / answer */
int qr_task_on_send(struct qr_task *task, const uv_handle_t *handle, int status)
{
if (task->finished) {
kr_require(task->leading == false);
qr_task_complete(task);
}
if (!handle || kr_fails_assert(handle->data))
return status;
struct session* s = handle->data;
if (handle->type == UV_UDP && session_flags(s)->outgoing) {
// This should ensure that we are only dealing with our question to upstream
if (kr_fails_assert(!knot_wire_get_qr(task->pktbuf->wire)))
return status;
// start the timer
struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
if (kr_fails_assert(qry && task->transport))
return status;
size_t timeout = task->transport->timeout;
int ret = session_timer_start(s, on_udp_timeout, timeout, 0);
/* Start next step with timeout, fatal if can't start a timer. */
if (ret != 0) {
subreq_finalize(task, &task->transport->address.ip, task->pktbuf);
qr_task_finalize(task, KR_STATE_FAIL);
}
}
if (handle->type == UV_TCP) {
if (status != 0) { // session probably not usable anymore; typically: ECONNRESET
const struct kr_request *req = &task->ctx->req;
if (kr_log_is_debug(WORKER, req)) {
const char *peer_str = NULL;
if (!session_flags(s)->outgoing) {
peer_str = "hidden"; // avoid logging downstream IPs
} else if (task->transport) {
peer_str = kr_straddr(&task->transport->address.ip);
}
if (!peer_str)
peer_str = "unknown"; // probably shouldn't happen
kr_log_req(req, 0, 0, WORKER,
"=> disconnected from '%s': %s\n",
peer_str, uv_strerror(status));
}
worker_end_tcp(s);
return status;
}
if (session_flags(s)->outgoing || session_flags(s)->closing)
return status;
struct worker_ctx *worker = task->ctx->worker;
if (session_flags(s)->throttled &&
session_tasklist_get_len(s) < worker->tcp_pipeline_max/2) {
/* Start reading again if the session is throttled and
* the number of outgoing requests is below watermark. */
session_start_read(s);
session_flags(s)->throttled = false;
}
}
return status;
}
static void on_send(uv_udp_send_t *req, int status)
{
struct qr_task *task = req->data;
uv_handle_t *h = (uv_handle_t *)req->handle;
qr_task_on_send(task, h, status);
qr_task_unref(task);
free(req);
}
static void on_write(uv_write_t *req, int status)
{
struct qr_task *task = req->data;
uv_handle_t *h = (uv_handle_t *)req->handle;
qr_task_on_send(task, h, status);
qr_task_unref(task);
free(req);
}
static int qr_task_send(struct qr_task *task, struct session *session,
const struct sockaddr *addr, knot_pkt_t *pkt)
{
if (!session)
return qr_task_on_send(task, NULL, kr_error(EIO));
int ret = 0;
struct request_ctx *ctx = task->ctx;
uv_handle_t *handle = session_get_handle(session);
if (kr_fails_assert(handle && handle->data == session))
return qr_task_on_send(task, NULL, kr_error(EINVAL));
const bool is_stream = handle->type == UV_TCP;
kr_require(is_stream || handle->type == UV_UDP);
if (addr == NULL)
addr = session_get_peer(session);
if (pkt == NULL)
pkt = worker_task_get_pktbuf(task);
if (session_flags(session)->outgoing && handle->type == UV_TCP) {
size_t try_limit = session_tasklist_get_len(session) + 1;
uint16_t msg_id = knot_wire_get_id(pkt->wire);
size_t try_count = 0;
while (session_tasklist_find_msgid(session, msg_id) &&
try_count <= try_limit) {
++msg_id;
++try_count;
}
if (try_count > try_limit)
return kr_error(ENOENT);
worker_task_pkt_set_msgid(task, msg_id);
}
struct worker_ctx *worker = ctx->worker;
/* Note time for upstream RTT */
task->send_time = kr_now();
task->recv_time = 0; // task structure is being reused so we have to zero this out here
/* Send using given protocol */
if (kr_fails_assert(!session_flags(session)->closing))
return qr_task_on_send(task, NULL, kr_error(EIO));
uv_handle_t *ioreq = malloc(is_stream ? sizeof(uv_write_t) : sizeof(uv_udp_send_t));
if (!ioreq)
return qr_task_on_send(task, handle, kr_error(ENOMEM));
/* Pending ioreq on current task */
qr_task_ref(task);
if (session_flags(session)->has_http) {
#if ENABLE_DOH2
uv_write_t *write_req = (uv_write_t *)ioreq;
write_req->data = task;
ret = http_write(write_req, handle, pkt, ctx->req.qsource.stream_id, &on_write);
#else
ret = kr_error(ENOPROTOOPT);
#endif
} else if (session_flags(session)->has_tls) {
uv_write_t *write_req = (uv_write_t *)ioreq;
write_req->data = task;
ret = tls_write(write_req, handle, pkt, &on_write);
} else if (handle->type == UV_UDP) {
uv_udp_send_t *send_req = (uv_udp_send_t *)ioreq;
uv_buf_t buf = { (char *)pkt->wire, pkt->size };
send_req->data = task;
ret = uv_udp_send(send_req, (uv_udp_t *)handle, &buf, 1, addr, &on_send);
} else if (handle->type == UV_TCP) {
uv_write_t *write_req = (uv_write_t *)ioreq;
/* We need to write message length in native byte order,
* but we don't have a convenient place to store those bytes.
* The problem is that all memory referenced from buf[] MUST retain
* its contents at least until on_write() is called, and I currently
* can't see any convenient place outside the `pkt` structure.
* So we use directly the *individual* bytes in pkt->size.
* The call to htonl() and the condition will probably be inlinable. */
int lsbi, slsbi; /* (second) least significant byte index */
if (htonl(1) == 1) { /* big endian */
lsbi = sizeof(pkt->size) - 1;
slsbi = sizeof(pkt->size) - 2;
} else {
lsbi = 0;
slsbi = 1;
}
uv_buf_t buf[3] = {
{ (char *)&pkt->size + slsbi, 1 },
{ (char *)&pkt->size + lsbi, 1 },
{ (char *)pkt->wire, pkt->size },
};
write_req->data = task;
ret = uv_write(write_req, (uv_stream_t *)handle, buf, 3, &on_write);
} else {
kr_assert(false);
}
if (ret == 0) {
session_touch(session);
if (session_flags(session)->outgoing) {
session_tasklist_add(session, task);
}
if (worker->too_many_open &&
worker->stats.rconcurrent <
worker->rconcurrent_highwatermark - 10) {
worker->too_many_open = false;
}
} else {
free(ioreq);
qr_task_unref(task);
if (ret == UV_EMFILE) {
worker->too_many_open = true;
worker->rconcurrent_highwatermark = worker->stats.rconcurrent;
ret = kr_error(UV_EMFILE);
}
if (session_flags(session)->has_http)
worker->stats.err_http += 1;
else if (session_flags(session)->has_tls)
worker->stats.err_tls += 1;
else if (handle->type == UV_UDP)
worker->stats.err_udp += 1;
else
worker->stats.err_tcp += 1;
}
/* Update outgoing query statistics */
if (session_flags(session)->outgoing && addr) {
if (session_flags(session)->has_tls)
worker->stats.tls += 1;
else if (handle->type == UV_UDP)
worker->stats.udp += 1;
else
worker->stats.tcp += 1;
if (addr->sa_family == AF_INET6)
worker->stats.ipv6 += 1;
else if (addr->sa_family == AF_INET)
worker->stats.ipv4 += 1;
}
return ret;
}
static struct kr_query *task_get_last_pending_query(struct qr_task *task)
{
if (!task || task->ctx->req.rplan.pending.len == 0) {
return NULL;
}
return array_tail(task->ctx->req.rplan.pending);
}
static int session_tls_hs_cb(struct session *session, int status)
{
if (kr_fails_assert(session_flags(session)->outgoing))
return kr_error(EINVAL);
struct sockaddr *peer = session_get_peer(session);
int deletion_res = worker_del_tcp_waiting(the_worker, peer);
int ret = kr_ok();
if (status) {
struct qr_task *task = session_waitinglist_get(session);
if (task) {
// TLS handshake failed, report it to server selection
struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
qry->server_selection.error(qry, task->transport, KR_SELECTION_TLS_HANDSHAKE_FAILED);
}
#ifndef NDEBUG
else {
/* Task isn't in the list of tasks
* waiting for connection to upstream.
* So that it MUST be unsuccessful rehandshake.
* Check it. */
kr_require(deletion_res != 0);
struct kr_sockaddr_key_storage key;
ssize_t keylen = kr_sockaddr_key(&key, peer);
if (keylen < 0)
return keylen;
trie_val_t *val;
kr_require((val = trie_get_try(the_worker->tcp_connected, key.bytes, keylen)) && *val);
}
#endif
return ret;
}
/* handshake was completed successfully */
struct tls_client_ctx *tls_client_ctx = session_tls_get_client_ctx(session);
tls_client_param_t *tls_params = tls_client_ctx->params;
gnutls_session_t tls_session = tls_client_ctx->c.tls_session;
if (gnutls_session_is_resumed(tls_session) != 0) {
kr_log_debug(TLSCLIENT, "TLS session has resumed\n");
} else {
kr_log_debug(TLSCLIENT, "TLS session has not resumed\n");
/* session wasn't resumed, delete old session data ... */
if (tls_params->session_data.data != NULL) {
gnutls_free(tls_params->session_data.data);
tls_params->session_data.data = NULL;
tls_params->session_data.size = 0;
}
/* ... and get the new session data */
gnutls_datum_t tls_session_data = { NULL, 0 };
ret = gnutls_session_get_data2(tls_session, &tls_session_data);
if (ret == 0) {
tls_params->session_data = tls_session_data;
}
}
struct session *s = worker_find_tcp_connected(the_worker, peer);
ret = kr_ok();
if (deletion_res == kr_ok()) {
/* peer was in the waiting list, add to the connected list. */
if (s) {
/* Something went wrong,
* peer already is in the connected list. */
ret = kr_error(EINVAL);
} else {
ret = worker_add_tcp_connected(the_worker, peer, session);
}
} else {
/* peer wasn't in the waiting list.
* It can be
* 1) either successful rehandshake; in this case peer
* must be already in the connected list.
* 2) or successful handshake with session, which was timed out
* by on_tcp_connect_timeout(); after successful tcp connection;
* in this case peer isn't in the connected list.
**/
if (!s || s != session) {
ret = kr_error(EINVAL);
}
}
if (ret == kr_ok()) {
while (!session_waitinglist_is_empty(session)) {
struct qr_task *t = session_waitinglist_get(session);
ret = qr_task_send(t, session, NULL, NULL);
if (ret != 0) {
break;
}
session_waitinglist_pop(session, true);
}
} else {
ret = kr_error(EINVAL);
}
if (ret != kr_ok()) {
/* Something went wrong.
* Either addition to the list of connected sessions
* or write to upstream failed. */
worker_del_tcp_connected(the_worker, peer);
session_waitinglist_finalize(session, KR_STATE_FAIL);
session_tasklist_finalize(session, KR_STATE_FAIL);
session_close(session);
} else {
session_timer_stop(session);
session_timer_start(session, tcp_timeout_trigger,
MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY);
}
return kr_ok();
}
static int send_waiting(struct session *session)
{
int ret = 0;
while (!session_waitinglist_is_empty(session)) {
struct qr_task *t = session_waitinglist_get(session);
ret = qr_task_send(t, session, NULL, NULL);
if (ret != 0) {
struct worker_ctx *worker = t->ctx->worker;
struct sockaddr *peer = session_get_peer(session);
session_waitinglist_finalize(session, KR_STATE_FAIL);
session_tasklist_finalize(session, KR_STATE_FAIL);
worker_del_tcp_connected(worker, peer);
session_close(session);
break;
}
session_waitinglist_pop(session, true);
}
return ret;
}
static void on_connect(uv_connect_t *req, int status)
{
struct worker_ctx *worker = the_worker;
kr_require(worker);
uv_stream_t *handle = req->handle;
struct session *session = handle->data;
struct sockaddr *peer = session_get_peer(session);
free(req);
if (kr_fails_assert(session_flags(session)->outgoing))
return;
if (session_flags(session)->closing) {
worker_del_tcp_waiting(worker, peer);
kr_assert(session_is_empty(session));
return;
}
const bool log_debug = kr_log_is_debug(WORKER, NULL);
/* Check if the connection is in the waiting list.
* If no, most likely this is timed out connection
* which was removed from waiting list by
* on_tcp_connect_timeout() callback. */
struct session *s = worker_find_tcp_waiting(worker, peer);
if (!s || s != session) {
/* session isn't on the waiting list.
* it's timed out session. */
if (log_debug) {
const char *peer_str = kr_straddr(peer);
kr_log_debug(WORKER, "=> connected to '%s', but session "
"is already timed out, close\n",
peer_str ? peer_str : "");
}
kr_assert(session_tasklist_is_empty(session));
session_waitinglist_retry(session, false);
session_close(session);
return;
}
s = worker_find_tcp_connected(worker, peer);
if (s) {
/* session already in the connected list.
* Something went wrong, it can be due to races when kresd has tried
* to reconnect to upstream after unsuccessful attempt. */
if (log_debug) {
const char *peer_str = kr_straddr(peer);
kr_log_debug(WORKER, "=> connected to '%s', but peer "
"is already connected, close\n",
peer_str ? peer_str : "");
}
kr_assert(session_tasklist_is_empty(session));
session_waitinglist_retry(session, false);
session_close(session);
return;
}
if (status != 0) {
if (log_debug) {
const char *peer_str = kr_straddr(peer);
kr_log_debug(WORKER, "=> connection to '%s' failed (%s), flagged as 'bad'\n",
peer_str ? peer_str : "", uv_strerror(status));
}
worker_del_tcp_waiting(worker, peer);
struct qr_task *task = session_waitinglist_get(session);
if (task && status != UV_ETIMEDOUT) {
/* Penalize upstream.
* In case of UV_ETIMEDOUT upstream has been
* already penalized in on_tcp_connect_timeout() */
struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
qry->server_selection.error(qry, task->transport, KR_SELECTION_TCP_CONNECT_FAILED);
}
kr_assert(session_tasklist_is_empty(session));
session_waitinglist_retry(session, false);
session_close(session);
return;
}
if (!session_flags(session)->has_tls) {
/* if there is a TLS, session still waiting for handshake,
* otherwise remove it from waiting list */
if (worker_del_tcp_waiting(worker, peer) != 0) {
/* session isn't in list of waiting queries, *
* something gone wrong */
session_waitinglist_finalize(session, KR_STATE_FAIL);
kr_assert(session_tasklist_is_empty(session));
session_close(session);
return;
}
}
if (log_debug) {
const char *peer_str = kr_straddr(peer);
kr_log_debug(WORKER, "=> connected to '%s'\n", peer_str ? peer_str : "");
}
session_flags(session)->connected = true;
session_start_read(session);
int ret = kr_ok();
if (session_flags(session)->has_tls) {
struct tls_client_ctx *tls_ctx = session_tls_get_client_ctx(session);
ret = tls_client_connect_start(tls_ctx, session, session_tls_hs_cb);
if (ret == kr_error(EAGAIN)) {
session_timer_stop(session);
session_timer_start(session, tcp_timeout_trigger,
MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY);
return;
}
} else {
worker_add_tcp_connected(worker, peer, session);
}
ret = send_waiting(session);
if (ret != 0) {
return;
}
session_timer_stop(session);
session_timer_start(session, tcp_timeout_trigger,
MAX_TCP_INACTIVITY, MAX_TCP_INACTIVITY);
}
static void on_tcp_connect_timeout(uv_timer_t *timer)
{
struct session *session = timer->data;
uv_timer_stop(timer);
struct worker_ctx *worker = the_worker;
kr_require(worker);
kr_assert(session_tasklist_is_empty(session));
struct sockaddr *peer = session_get_peer(session);
worker_del_tcp_waiting(worker, peer);
struct qr_task *task = session_waitinglist_get(session);
if (!task) {
/* Normally shouldn't happen. */
const char *peer_str = kr_straddr(peer);
VERBOSE_MSG(NULL, "=> connection to '%s' failed (internal timeout), empty waitinglist\n",
peer_str ? peer_str : "");
return;
}
struct kr_query *qry = task_get_last_pending_query(task);
if (kr_log_is_debug_qry(WORKER, qry)) {
const char *peer_str = kr_straddr(peer);
VERBOSE_MSG(qry, "=> connection to '%s' failed (internal timeout)\n",
peer_str ? peer_str : "");
}
qry->server_selection.error(qry, task->transport, KR_SELECTION_TCP_CONNECT_TIMEOUT);
worker->stats.timeout += session_waitinglist_get_len(session);
session_waitinglist_retry(session, true);
kr_assert(session_tasklist_is_empty(session));
/* uv_cancel() doesn't support uv_connect_t request,
* so that we can't cancel it.
* There still exists possibility of successful connection
* for this request.
* So connection callback (on_connect()) must check
* if connection is in the list of waiting connection.
* If no, most likely this is timed out connection even if
* it was successful. */
}
/* This is called when I/O timeouts */
static void on_udp_timeout(uv_timer_t *timer)
{
struct session *session = timer->data;
kr_assert(session_get_handle(session)->data == session);
kr_assert(session_tasklist_get_len(session) == 1);
kr_assert(session_waitinglist_is_empty(session));
uv_timer_stop(timer);
struct qr_task *task = session_tasklist_get_first(session);
if (!task)
return;
struct worker_ctx *worker = task->ctx->worker;
if (task->leading && task->pending_count > 0) {
struct kr_query *qry = array_tail(task->ctx->req.rplan.pending);
qry->server_selection.error(qry, task->transport, KR_SELECTION_QUERY_TIMEOUT);
}
task->timeouts += 1;
worker->stats.timeout += 1;
qr_task_step(task, NULL, NULL);
}
static uv_handle_t *transmit(struct qr_task *task)
{
uv_handle_t *ret = NULL;
if (task) {
struct kr_transport* transport = task->transport;
struct sockaddr_in6 *choice = (struct sockaddr_in6 *)&transport->address;
if (!choice) {
return ret;
}
if (task->pending_count >= MAX_PENDING) {
return ret;
}
/* Checkout answer before sending it */
struct request_ctx *ctx = task->ctx;
if (kr_resolve_checkout(&ctx->req, NULL, transport, task->pktbuf) != 0) {
return ret;
}
ret = ioreq_spawn(ctx->worker, SOCK_DGRAM, choice->sin6_family, false, false);
if (!ret) {
return ret;
}
struct sockaddr *addr = (struct sockaddr *)choice;
struct session *session = ret->data;
struct sockaddr *peer = session_get_peer(session);
kr_assert(peer->sa_family == AF_UNSPEC && session_flags(session)->outgoing);
kr_require(addr->sa_family == AF_INET || addr->sa_family == AF_INET6);
memcpy(peer, addr, kr_sockaddr_len(addr));
if (qr_task_send(task, session, (struct sockaddr *)choice,
task->pktbuf) != 0) {
session_close(session);
ret = NULL;
} else {
task->pending[task->pending_count] = session;
task->pending_count += 1;
session_start_read(session); /* Start reading answer */
}
}
return ret;
}
static void subreq_finalize(struct qr_task *task, const struct sockaddr *packet_source, knot_pkt_t *pkt)
{
if (!task || task->finished) {
return;
}
/* Close pending timer */
ioreq_kill_pending(task);
/* Clear from outgoing table. */
if (!task->leading)
return;
char key[SUBREQ_KEY_LEN];
const int klen = subreq_key(key, task->pktbuf);
if (klen > 0) {
void *val_deleted;
int ret = trie_del(task->ctx->worker->subreq_out, key, klen, &val_deleted);
kr_assert(ret == KNOT_EOK && val_deleted == task);
}
/* Notify waiting tasks. */
struct kr_query *leader_qry = array_tail(task->ctx->req.rplan.pending);
for (size_t i = task->waiting.len; i > 0; i--) {
struct qr_task *follower = task->waiting.at[i - 1];
/* Reuse MSGID and 0x20 secret */
if (follower->ctx->req.rplan.pending.len > 0) {
struct kr_query *qry = array_tail(follower->ctx->req.rplan.pending);
qry->id = leader_qry->id;
qry->secret = leader_qry->secret;
// Note that this transport may not be present in `leader_qry`'s server selection
follower->transport = task->transport;
if(follower->transport) {
follower->transport->deduplicated = true;
}
leader_qry->secret = 0; /* Next will be already decoded */
}
qr_task_step(follower, packet_source, pkt);
qr_task_unref(follower);
}
task->waiting.len = 0;
task->leading = false;
}
static void subreq_lead(struct qr_task *task)
{
if (kr_fails_assert(task))
return;
char key[SUBREQ_KEY_LEN];
const int klen = subreq_key(key, task->pktbuf);
if (klen < 0)
return;
struct qr_task **tvp = (struct qr_task **)
trie_get_ins(task->ctx->worker->subreq_out, key, klen);
if (unlikely(!tvp))
return; /*ENOMEM*/
if (kr_fails_assert(*tvp == NULL))
return;
*tvp = task;
task->leading = true;
}
static bool subreq_enqueue(struct qr_task *task)
{
if (kr_fails_assert(task))
return false;
char key[SUBREQ_KEY_LEN];
const int klen = subreq_key(key, task->pktbuf);
if (klen < 0)
return false;
struct qr_task **leader = (struct qr_task **)
trie_get_try(task->ctx->worker->subreq_out, key, klen);
if (!leader /*ENOMEM*/ || !*leader)
return false;
/* Enqueue itself to leader for this subrequest. */
int ret = array_push_mm((*leader)->waiting, task,
kr_memreserve, &(*leader)->ctx->req.pool);
if (unlikely(ret < 0)) /*ENOMEM*/
return false;
qr_task_ref(task);
return true;
}
#if ENABLE_XDP
static void xdp_tx_waker(uv_idle_t *handle)
{
int ret = knot_xdp_send_finish(handle->data);
if (ret != KNOT_EAGAIN && ret != KNOT_EOK)
kr_log_error(XDP, "check: ret = %d, %s\n", ret, knot_strerror(ret));
/* Apparently some drivers need many explicit wake-up calls
* even if we push no additional packets (in case they accumulated a lot) */
if (ret != KNOT_EAGAIN)
uv_idle_stop(handle);
knot_xdp_send_prepare(handle->data);
/* LATER(opt.): it _might_ be better for performance to do these two steps
* at different points in time */
}
#endif
/** Send an answer packet over XDP. */
static int xdp_push(struct qr_task *task, const uv_handle_t *src_handle)
{
#if ENABLE_XDP
struct request_ctx *ctx = task->ctx;
xdp_handle_data_t *xhd = src_handle->data;
if (kr_fails_assert(xhd && xhd->socket && xhd->session == ctx->source.session))
return qr_task_on_send(task, src_handle, kr_error(EINVAL));
knot_xdp_msg_t msg;
#if KNOT_VERSION_HEX >= 0x030100
/* We don't have a nice way of preserving the _msg_t from frame allocation,
* so we manually redo all other parts of knot_xdp_send_alloc() */
memset(&msg, 0, sizeof(msg));
bool ipv6 = ctx->source.addr.ip.sa_family == AF_INET6;
msg.flags = ipv6 ? KNOT_XDP_MSG_IPV6 : 0;
memcpy(msg.eth_from, &ctx->source.eth_addrs[0], 6);
memcpy(msg.eth_to, &ctx->source.eth_addrs[1], 6);
#endif
const struct sockaddr *ip_from = &ctx->source.dst_addr.ip;
const struct sockaddr *ip_to = &ctx->source.comm_addr.ip;
memcpy(&msg.ip_from, ip_from, kr_sockaddr_len(ip_from));
memcpy(&msg.ip_to, ip_to, kr_sockaddr_len(ip_to));
msg.payload.iov_base = ctx->req.answer->wire;
msg.payload.iov_len = ctx->req.answer->size;
uint32_t sent;
int ret = knot_xdp_send(xhd->socket, &msg, 1, &sent);
ctx->req.answer->wire = NULL; /* it's been freed */
uv_idle_start(&xhd->tx_waker, xdp_tx_waker);
kr_log_debug(XDP, "pushed a packet, ret = %d\n", ret);
return qr_task_on_send(task, src_handle, ret);
#else
kr_assert(!EINVAL);
return kr_error(EINVAL);
#endif
}
static int qr_task_finalize(struct qr_task *task, int state)
{
kr_require(task && task->leading == false);
if (task->finished) {
return kr_ok();
}
struct request_ctx *ctx = task->ctx;
struct session *source_session = ctx->source.session;
kr_resolve_finish(&ctx->req, state);
task->finished = true;
if (source_session == NULL) {
(void) qr_task_on_send(task, NULL, kr_error(EIO));
return state == KR_STATE_DONE ? kr_ok() : kr_error(EIO);
}
/* meant to be dropped */
if (unlikely(ctx->req.answer == NULL || ctx->req.options.NO_ANSWER)) {
/* For NO_ANSWER, a well-behaved layer should set the state to FAIL */
kr_assert(!ctx->req.options.NO_ANSWER || (ctx->req.state & KR_STATE_FAIL));
(void) qr_task_on_send(task, NULL, kr_ok());
return kr_ok();
}
if (session_flags(source_session)->closing ||
ctx->source.addr.ip.sa_family == AF_UNSPEC)
return kr_error(EINVAL);
/* Reference task as the callback handler can close it */
qr_task_ref(task);
/* Send back answer */
int ret;
const uv_handle_t *src_handle = session_get_handle(source_session);
if (kr_fails_assert(src_handle->type == UV_UDP || src_handle->type == UV_TCP
|| src_handle->type == UV_POLL)) {
ret = kr_error(EINVAL);
} else if (src_handle->type == UV_POLL) {
ret = xdp_push(task, src_handle);
} else if (src_handle->type == UV_UDP && ENABLE_SENDMMSG) {
int fd;
ret = uv_fileno(src_handle, &fd);
if (ret == 0)
udp_queue_push(fd, &ctx->req, task);
else
kr_assert(false);
} else {
ret = qr_task_send(task, source_session, &ctx->source.comm_addr.ip, ctx->req.answer);
}
if (ret != kr_ok()) {
(void) qr_task_on_send(task, NULL, kr_error(EIO));
/* Since source session is erroneous detach all tasks. */
while (!session_tasklist_is_empty(source_session)) {
struct qr_task *t = session_tasklist_del_first(source_session, false);
struct request_ctx *c = t->ctx;
kr_assert(c->source.session == source_session);
c->source.session = NULL;
/* Don't finalize them as there can be other tasks
* waiting for answer to this particular task.
* (ie. task->leading is true) */
worker_task_unref(t);
}
session_close(source_session);
}
qr_task_unref(task);
if (ret != kr_ok() || state != KR_STATE_DONE)
return kr_error(EIO);
return kr_ok();
}
static int udp_task_step(struct qr_task *task,
const struct sockaddr *packet_source, knot_pkt_t *packet)
{
/* If there is already outgoing query, enqueue to it. */
if (subreq_enqueue(task)) {
return kr_ok(); /* Will be notified when outgoing query finishes. */
}
/* Start transmitting */
uv_handle_t *handle = transmit(task);
if (handle == NULL) {
subreq_finalize(task, packet_source, packet);
return qr_task_finalize(task, KR_STATE_FAIL);
}
/* Announce and start subrequest.
* @note Only UDP can lead I/O as it doesn't touch 'task->pktbuf' for reassembly.
*/
subreq_lead(task);
return kr_ok();
}
static int tcp_task_waiting_connection(struct session *session, struct qr_task *task)
{
if (kr_fails_assert(session_flags(session)->outgoing && !session_flags(session)->closing))
return kr_error(EINVAL);
/* Add task to the end of list of waiting tasks.
* It will be notified in on_connect() or qr_task_on_send(). */
int ret = session_waitinglist_push(session, task);
if (ret < 0) {
return kr_error(EINVAL);
}
return kr_ok();
}
static int tcp_task_existing_connection(struct session *session, struct qr_task *task)
{
if (kr_fails_assert(session_flags(session)->outgoing && !session_flags(session)->closing))
return kr_error(EINVAL);
struct request_ctx *ctx = task->ctx;
struct worker_ctx *worker = ctx->worker;
/* If there are any unsent queries, send it first. */
int ret = send_waiting(session);
if (ret != 0) {
return kr_error(EINVAL);
}
/* No unsent queries at that point. */
if (session_tasklist_get_len(session) >= worker->tcp_pipeline_max) {
/* Too many outstanding queries, answer with SERVFAIL, */
return kr_error(EINVAL);
}
/* Send query to upstream. */
ret = qr_task_send(task, session, NULL, NULL);
if (ret != 0) {
/* Error, finalize task with SERVFAIL and
* close connection to upstream. */
session_tasklist_finalize(session, KR_STATE_FAIL);
worker_del_tcp_connected(worker, session_get_peer(session));
session_close(session);
return kr_error(EINVAL);
}
return kr_ok();
}
static int tcp_task_make_connection(struct qr_task *task, const struct sockaddr *addr)
{
struct request_ctx *ctx = task->ctx;
struct worker_ctx *worker = ctx->worker;
/* Check if there must be TLS */
struct tls_client_ctx *tls_ctx = NULL;
struct network *net = &worker->engine->net;
tls_client_param_t *entry = tls_client_param_get(net->tls_client_params, addr);
if (entry) {
/* Address is configured to be used with TLS.
* We need to allocate auxiliary data structure. */
tls_ctx = tls_client_ctx_new(entry, worker);
if (!tls_ctx) {
return kr_error(EINVAL);
}
}
uv_connect_t *conn = malloc(sizeof(uv_connect_t));
if (!conn) {
tls_client_ctx_free(tls_ctx);
return kr_error(EINVAL);
}
bool has_http = false;
bool has_tls = (tls_ctx != NULL);
uv_handle_t *client = ioreq_spawn(worker, SOCK_STREAM, addr->sa_family, has_tls, has_http);
if (!client) {
tls_client_ctx_free(tls_ctx);
free(conn);
return kr_error(EINVAL);
}
struct session *session = client->data;
if (kr_fails_assert(session_flags(session)->has_tls == has_tls)) {
tls_client_ctx_free(tls_ctx);
free(conn);
return kr_error(EINVAL);
}
if (has_tls) {
tls_client_ctx_set_session(tls_ctx, session);
session_tls_set_client_ctx(session, tls_ctx);
}
/* Add address to the waiting list.
* Now it "is waiting to be connected to." */
int ret = worker_add_tcp_waiting(worker, addr, session);
if (ret < 0) {
free(conn);
session_close(session);
return kr_error(EINVAL);
}
conn->data = session;
/* Store peer address for the session. */
struct sockaddr *peer = session_get_peer(session);
memcpy(peer, addr, kr_sockaddr_len(addr));
/* Start watchdog to catch eventual connection timeout. */
ret = session_timer_start(session, on_tcp_connect_timeout,
KR_CONN_RTT_MAX, 0);
if (ret != 0) {
worker_del_tcp_waiting(worker, addr);
free(conn);
session_close(session);
return kr_error(EINVAL);
}
struct kr_query *qry = task_get_last_pending_query(task);
if (kr_log_is_debug_qry(WORKER, qry)) {
const char *peer_str = kr_straddr(peer);
VERBOSE_MSG(qry, "=> connecting to: '%s'\n", peer_str ? peer_str : "");
}
/* Start connection process to upstream. */
ret = uv_tcp_connect(conn, (uv_tcp_t *)client, addr , on_connect);
if (ret != 0) {
session_timer_stop(session);
worker_del_tcp_waiting(worker, addr);
free(conn);
session_close(session);
qry->server_selection.error(qry, task->transport, KR_SELECTION_TCP_CONNECT_FAILED);
return kr_error(EAGAIN);
}
/* Add task to the end of list of waiting tasks.
* Will be notified either in on_connect() or in qr_task_on_send(). */
ret = session_waitinglist_push(session, task);
if (ret < 0) {
session_timer_stop(session);
worker_del_tcp_waiting(worker, addr);
free(conn);
session_close(session);
return kr_error(EINVAL);
}
return kr_ok();
}
static int tcp_task_step(struct qr_task *task,
const struct sockaddr *packet_source, knot_pkt_t *packet)
{
if (kr_fails_assert(task->pending_count == 0)) {
subreq_finalize(task, packet_source, packet);
return qr_task_finalize(task, KR_STATE_FAIL);
}
/* target */
const struct sockaddr *addr = &task->transport->address.ip;
if (addr->sa_family == AF_UNSPEC) {
/* Target isn't defined. Finalize task with SERVFAIL.
* Although task->pending_count is zero, there are can be followers,
* so we need to call subreq_finalize() to handle them properly. */
subreq_finalize(task, packet_source, packet);
return qr_task_finalize(task, KR_STATE_FAIL);
}
/* Checkout task before connecting */
struct request_ctx *ctx = task->ctx;
if (kr_resolve_checkout(&ctx->req, NULL, task->transport, task->pktbuf) != 0) {
subreq_finalize(task, packet_source, packet);
return qr_task_finalize(task, KR_STATE_FAIL);
}
int ret;
struct session* session = NULL;
if ((session = worker_find_tcp_waiting(ctx->worker, addr)) != NULL) {
/* Connection is in the list of waiting connections.
* It means that connection establishing is coming right now. */
ret = tcp_task_waiting_connection(session, task);
} else if ((session = worker_find_tcp_connected(ctx->worker, addr)) != NULL) {
/* Connection has been already established. */
ret = tcp_task_existing_connection(session, task);
} else {
/* Make connection. */
ret = tcp_task_make_connection(task, addr);
}
if (ret != kr_ok()) {
subreq_finalize(task, addr, packet);
if (ret == kr_error(EAGAIN)) {
ret = qr_task_step(task, addr, NULL);
} else {
ret = qr_task_finalize(task, KR_STATE_FAIL);
}
}
return ret;
}
static int qr_task_step(struct qr_task *task,
const struct sockaddr *packet_source, knot_pkt_t *packet)
{
/* No more steps after we're finished. */
if (!task || task->finished) {
return kr_error(ESTALE);
}
/* Close pending I/O requests */
subreq_finalize(task, packet_source, packet);
if ((kr_now() - worker_task_creation_time(task)) >= KR_RESOLVE_TIME_LIMIT) {
struct kr_request *req = worker_task_request(task);
if (!kr_fails_assert(req))
kr_query_inform_timeout(req, req->current_query);
return qr_task_finalize(task, KR_STATE_FAIL);
}
/* Consume input and produce next query */
struct request_ctx *ctx = task->ctx;
if (kr_fails_assert(ctx))
return qr_task_finalize(task, KR_STATE_FAIL);
struct kr_request *req = &ctx->req;
struct worker_ctx *worker = ctx->worker;
if (worker->too_many_open) {
/* */
struct kr_rplan *rplan = &req->rplan;
if (worker->stats.rconcurrent <
worker->rconcurrent_highwatermark - 10) {
worker->too_many_open = false;
} else {
if (packet && kr_rplan_empty(rplan)) {
/* new query; TODO - make this detection more obvious */
kr_resolve_consume(req, &task->transport, packet);
}
return qr_task_finalize(task, KR_STATE_FAIL);
}
}
// Report network RTT back to server selection
if (packet && task->send_time && task->recv_time) {
struct kr_query *qry = array_tail(req->rplan.pending);
qry->server_selection.update_rtt(qry, task->transport, task->recv_time - task->send_time);
}
int state = kr_resolve_consume(req, &task->transport, packet);
task->transport = NULL;
while (state == KR_STATE_PRODUCE) {
state = kr_resolve_produce(req, &task->transport, task->pktbuf);
if (unlikely(++task->iter_count > KR_ITER_LIMIT ||
task->timeouts >= KR_TIMEOUT_LIMIT)) {
struct kr_rplan *rplan = &req->rplan;
struct kr_query *last = kr_rplan_last(rplan);
if (task->iter_count > KR_ITER_LIMIT) {
char *msg = "cancelling query due to exceeded iteration count limit";
VERBOSE_MSG(last, "%s of %d\n", msg, KR_ITER_LIMIT);
kr_request_set_extended_error(req, KNOT_EDNS_EDE_OTHER,
"OGHD: exceeded iteration count limit");
}
if (task->timeouts >= KR_TIMEOUT_LIMIT) {
char *msg = "cancelling query due to exceeded timeout retries limit";
VERBOSE_MSG(last, "%s of %d\n", msg, KR_TIMEOUT_LIMIT);
kr_request_set_extended_error(req, KNOT_EDNS_EDE_NREACH_AUTH, "QLPL");
}
return qr_task_finalize(task, KR_STATE_FAIL);
}
}
/* We're done, no more iterations needed */
if (state & (KR_STATE_DONE|KR_STATE_FAIL)) {
return qr_task_finalize(task, state);
} else if (!task->transport || !task->transport->protocol) {
return qr_task_step(task, NULL, NULL);
}
switch (task->transport->protocol)
{
case KR_TRANSPORT_UDP:
return udp_task_step(task, packet_source, packet);
case KR_TRANSPORT_TCP: // fall through
case KR_TRANSPORT_TLS:
return tcp_task_step(task, packet_source, packet);
default:
kr_assert(!EINVAL);
return kr_error(EINVAL);
}
}
int worker_submit(struct session *session, struct io_comm_data *comm,
const uint8_t *eth_from, const uint8_t *eth_to, knot_pkt_t *pkt)
{
if (!session || !pkt)
return kr_error(EINVAL);
uv_handle_t *handle = session_get_handle(session);
if (!handle || !handle->loop->data)
return kr_error(EINVAL);
const bool is_query = pkt->size > KNOT_WIRE_OFFSET_FLAGS1
&& knot_wire_get_qr(pkt->wire) == 0;
const bool is_outgoing = session_flags(session)->outgoing;
int ret = 0;
if (is_query == is_outgoing)
ret = KNOT_ENOENT;
// For responses from upstream, try to find associated task and query.
// In case of errors, at least try to guess.
struct qr_task *task = NULL;
bool task_matched_id = false;
if (is_outgoing && pkt->size >= 2) {
const uint16_t id = knot_wire_get_id(pkt->wire);
task = session_tasklist_del_msgid(session, id);
task_matched_id = task != NULL;
if (task_matched_id) // Note receive time for RTT calculation
task->recv_time = kr_now();
if (!task_matched_id) {
ret = KNOT_ENOENT;
VERBOSE_MSG(NULL, "=> DNS message with mismatching ID %d\n",
(int)id);
}
}
if (!task && is_outgoing && handle->type == UV_TCP) {
// Source address of the reply got somewhat validated,
// so we try to at least guess which query, for error reporting.
task = session_tasklist_get_first(session);
}
struct kr_query *qry = NULL;
if (task)
qry = array_tail(task->ctx->req.rplan.pending);
// Parse the packet, unless it's useless anyway.
if (ret == 0) {
ret = knot_pkt_parse(pkt, 0);
if (ret == KNOT_ETRAIL && is_outgoing
&& !kr_fails_assert(pkt->parsed < pkt->size)) {
// We deal with this later, so that RCODE takes priority.
ret = 0;
}
if (ret && kr_log_is_debug_qry(WORKER, qry)) {
VERBOSE_MSG(qry, "=> DNS message failed to parse, %s\n",
knot_strerror(ret));
}
}
struct http_ctx *http_ctx = NULL;
#if ENABLE_DOH2
http_ctx = session_http_get_server_ctx(session);
/* Badly formed query when using DoH leads to a Bad Request */
if (http_ctx && !is_outgoing && ret) {
http_send_status(session, HTTP_STATUS_BAD_REQUEST);
return kr_error(ret);
}
#endif
if (!is_outgoing && http_ctx && queue_len(http_ctx->streams) <= 0)
return kr_error(ENOENT);
const struct sockaddr *addr = comm ? comm->src_addr : NULL;
/* Ignore badly formed queries. */
if (ret) {
if (is_outgoing && qry) // unusuable response from somewhat validated IP
qry->server_selection.error(qry, task->transport, KR_SELECTION_MALFORMED);
if (!is_outgoing)
the_worker->stats.dropped += 1;
if (task_matched_id) // notify task that answer won't be coming anymore
qr_task_step(task, addr, NULL);
return kr_error(EILSEQ);
}
/* Start new task on listening sockets,
* or resume if this is subrequest */
if (!is_outgoing) { /* request from a client */
struct request_ctx *ctx =
request_create(the_worker, session, comm, eth_from,
eth_to, knot_wire_get_id(pkt->wire));
if (http_ctx)
queue_pop(http_ctx->streams);
if (!ctx)
return kr_error(ENOMEM);
ret = request_start(ctx, pkt);
if (ret != 0) {
request_free(ctx);
return kr_error(ENOMEM);
}
task = qr_task_create(ctx);
if (!task) {
request_free(ctx);
return kr_error(ENOMEM);
}
if (handle->type == UV_TCP && qr_task_register(task, session)) {
return kr_error(ENOMEM);
}
} else { /* response from upstream */
if (task == NULL) {
return kr_error(ENOENT);
}
if (kr_fails_assert(!session_flags(session)->closing))
return kr_error(EINVAL);
}
if (kr_fails_assert(!uv_is_closing(session_get_handle(session))))
return kr_error(EINVAL);
/* Packet was successfully parsed.
* Task was created (found). */
session_touch(session);
/* Consume input and produce next message */
return qr_task_step(task, addr, pkt);
}
static int trie_add_tcp_session(trie_t *trie, const struct sockaddr *addr,
struct session *session)
{
if (kr_fails_assert(trie && addr))
return kr_error(EINVAL);
struct kr_sockaddr_key_storage key;
ssize_t keylen = kr_sockaddr_key(&key, addr);
if (keylen < 0)
return keylen;
trie_val_t *val = trie_get_ins(trie, key.bytes, keylen);
if (kr_fails_assert(*val == NULL))
return kr_error(EINVAL);
*val = session;
return kr_ok();
}
static int trie_del_tcp_session(trie_t *trie, const struct sockaddr *addr)
{
if (kr_fails_assert(trie && addr))
return kr_error(EINVAL);
struct kr_sockaddr_key_storage key;
ssize_t keylen = kr_sockaddr_key(&key, addr);
if (keylen < 0)
return keylen;
int ret = trie_del(trie, key.bytes, keylen, NULL);
return ret ? kr_error(ENOENT) : kr_ok();
}
static struct session *trie_find_tcp_session(trie_t *trie,
const struct sockaddr *addr)
{
if (kr_fails_assert(trie && addr))
return NULL;
struct kr_sockaddr_key_storage key;
ssize_t keylen = kr_sockaddr_key(&key, addr);
if (keylen < 0)
return NULL;
trie_val_t *val = trie_get_try(trie, key.bytes, keylen);
return val ? *val : NULL;
}
int worker_add_tcp_connected(struct worker_ctx *worker,
const struct sockaddr* addr,
struct session *session)
{
return trie_add_tcp_session(worker->tcp_connected, addr, session);
}
int worker_del_tcp_connected(struct worker_ctx *worker,
const struct sockaddr* addr)
{
return trie_del_tcp_session(worker->tcp_connected, addr);
}
struct session* worker_find_tcp_connected(struct worker_ctx *worker,
const struct sockaddr* addr)
{
return trie_find_tcp_session(worker->tcp_connected, addr);
}
static int worker_add_tcp_waiting(struct worker_ctx *worker,
const struct sockaddr* addr,
struct session *session)
{
return trie_add_tcp_session(worker->tcp_waiting, addr, session);
}
int worker_del_tcp_waiting(struct worker_ctx *worker,
const struct sockaddr* addr)
{
return trie_del_tcp_session(worker->tcp_waiting, addr);
}
struct session* worker_find_tcp_waiting(struct worker_ctx *worker,
const struct sockaddr* addr)
{
return trie_find_tcp_session(worker->tcp_waiting, addr);
}
int worker_end_tcp(struct session *session)
{
if (!session)
return kr_error(EINVAL);
session_timer_stop(session);
struct sockaddr *peer = session_get_peer(session);
worker_del_tcp_waiting(the_worker, peer);
worker_del_tcp_connected(the_worker, peer);
session_flags(session)->connected = false;
struct tls_client_ctx *tls_client_ctx = session_tls_get_client_ctx(session);
if (tls_client_ctx) {
/* Avoid gnutls_bye() call */
tls_set_hs_state(&tls_client_ctx->c, TLS_HS_NOT_STARTED);
}
struct tls_ctx *tls_ctx = session_tls_get_server_ctx(session);
if (tls_ctx) {
/* Avoid gnutls_bye() call */
tls_set_hs_state(&tls_ctx->c, TLS_HS_NOT_STARTED);
}
while (!session_waitinglist_is_empty(session)) {
struct qr_task *task = session_waitinglist_pop(session, false);
kr_assert(task->refs > 1);
session_tasklist_del(session, task);
if (session_flags(session)->outgoing) {
if (task->ctx->req.options.FORWARD) {
/* We are in TCP_FORWARD mode.
* To prevent failing at kr_resolve_consume()
* qry.flags.TCP must be cleared.
* TODO - refactoring is needed. */
struct kr_request *req = &task->ctx->req;
struct kr_rplan *rplan = &req->rplan;
struct kr_query *qry = array_tail(rplan->pending);
qry->flags.TCP = false;
}
qr_task_step(task, NULL, NULL);
} else {
kr_assert(task->ctx->source.session == session);
task->ctx->source.session = NULL;
}
worker_task_unref(task);
}
while (!session_tasklist_is_empty(session)) {
struct qr_task *task = session_tasklist_del_first(session, false);
if (session_flags(session)->outgoing) {
if (task->ctx->req.options.FORWARD) {
struct kr_request *req = &task->ctx->req;
struct kr_rplan *rplan = &req->rplan;
struct kr_query *qry = array_tail(rplan->pending);
qry->flags.TCP = false;
}
qr_task_step(task, NULL, NULL);
} else {
kr_assert(task->ctx->source.session == session);
task->ctx->source.session = NULL;
}
worker_task_unref(task);
}
session_close(session);
return kr_ok();
}
knot_pkt_t *worker_resolve_mk_pkt_dname(knot_dname_t *qname, uint16_t qtype, uint16_t qclass,
const struct kr_qflags *options)
{
knot_pkt_t *pkt = knot_pkt_new(NULL, KNOT_EDNS_MAX_UDP_PAYLOAD, NULL);
if (!pkt)
return NULL;
knot_pkt_put_question(pkt, qname, qclass, qtype);
knot_wire_set_rd(pkt->wire);
knot_wire_set_ad(pkt->wire);
/* Add OPT RR, including wire format so modules can see both representations.
* knot_pkt_put() copies the outside; we need to duplicate the inside manually. */
knot_rrset_t *opt = knot_rrset_copy(the_worker->engine->resolver.downstream_opt_rr, NULL);
if (!opt) {
knot_pkt_free(pkt);
return NULL;
}
if (options->DNSSEC_WANT) {
knot_edns_set_do(opt);
}
knot_pkt_begin(pkt, KNOT_ADDITIONAL);
int ret = knot_pkt_put(pkt, KNOT_COMPR_HINT_NONE, opt, KNOT_PF_FREE);
if (ret == KNOT_EOK) {
free(opt); /* inside is owned by pkt now */
} else {
knot_rrset_free(opt, NULL);
knot_pkt_free(pkt);
return NULL;
}
if (options->DNSSEC_CD) {
knot_wire_set_cd(pkt->wire);
}
return pkt;
}
knot_pkt_t *worker_resolve_mk_pkt(const char *qname_str, uint16_t qtype, uint16_t qclass,
const struct kr_qflags *options)
{
uint8_t qname[KNOT_DNAME_MAXLEN];
if (!knot_dname_from_str(qname, qname_str, sizeof(qname)))
return NULL;
return worker_resolve_mk_pkt_dname(qname, qtype, qclass, options);
}
struct qr_task *worker_resolve_start(knot_pkt_t *query, struct kr_qflags options)
{
struct worker_ctx *worker = the_worker;
if (kr_fails_assert(worker && query))
return NULL;
struct request_ctx *ctx = request_create(worker, NULL, NULL, NULL, NULL,
worker->next_request_uid);
if (!ctx)
return NULL;
/* Create task */
struct qr_task *task = qr_task_create(ctx);
if (!task) {
request_free(ctx);
return NULL;
}
/* Start task */
int ret = request_start(ctx, query);
if (ret != 0) {
/* task is attached to request context,
* so dereference (and deallocate) it first */
ctx->task = NULL;
qr_task_unref(task);
request_free(ctx);
return NULL;
}
worker->next_request_uid += 1;
if (worker->next_request_uid == 0)
worker->next_request_uid = UINT16_MAX + 1;
/* Set options late, as qr_task_start() -> kr_resolve_begin() rewrite it. */
kr_qflags_set(&task->ctx->req.options, options);
return task;
}
int worker_resolve_exec(struct qr_task *task, knot_pkt_t *query)
{
if (!task)
return kr_error(EINVAL);
return qr_task_step(task, NULL, query);
}
int worker_task_numrefs(const struct qr_task *task)
{
return task->refs;
}
struct kr_request *worker_task_request(struct qr_task *task)
{
if (!task || !task->ctx)
return NULL;
return &task->ctx->req;
}
int worker_task_finalize(struct qr_task *task, int state)
{
return qr_task_finalize(task, state);
}
int worker_task_step(struct qr_task *task, const struct sockaddr *packet_source,
knot_pkt_t *packet)
{
return qr_task_step(task, packet_source, packet);
}
void worker_task_complete(struct qr_task *task)
{
qr_task_complete(task);
}
void worker_task_ref(struct qr_task *task)
{
qr_task_ref(task);
}
void worker_task_unref(struct qr_task *task)
{
qr_task_unref(task);
}
void worker_task_timeout_inc(struct qr_task *task)
{
task->timeouts += 1;
}
knot_pkt_t *worker_task_get_pktbuf(const struct qr_task *task)
{
return task->pktbuf;
}
struct request_ctx *worker_task_get_request(struct qr_task *task)
{
return task->ctx;
}
struct kr_transport *worker_task_get_transport(struct qr_task *task)
{
return task->transport;
}
struct session *worker_request_get_source_session(const struct kr_request *req)
{
static_assert(offsetof(struct request_ctx, req) == 0,
"Bad struct request_ctx definition.");
return ((struct request_ctx *)req)->source.session;
}
uint16_t worker_task_pkt_get_msgid(struct qr_task *task)
{
knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
uint16_t msg_id = knot_wire_get_id(pktbuf->wire);
return msg_id;
}
void worker_task_pkt_set_msgid(struct qr_task *task, uint16_t msgid)
{
knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
knot_wire_set_id(pktbuf->wire, msgid);
struct kr_query *q = task_get_last_pending_query(task);
q->id = msgid;
}
uint64_t worker_task_creation_time(struct qr_task *task)
{
return task->creation_time;
}
void worker_task_subreq_finalize(struct qr_task *task)
{
subreq_finalize(task, NULL, NULL);
}
bool worker_task_finished(struct qr_task *task)
{
return task->finished;
}
/** Reserve worker buffers. We assume worker's been zeroed. */
static int worker_reserve(struct worker_ctx *worker)
{
worker->tcp_connected = trie_create(NULL);
worker->tcp_waiting = trie_create(NULL);
worker->subreq_out = trie_create(NULL);
mm_ctx_mempool(&worker->pkt_pool, 4 * sizeof(knot_pkt_t));
return kr_ok();
}
void worker_deinit(void)
{
struct worker_ctx *worker = the_worker;
if (kr_fails_assert(worker))
return;
trie_free(worker->tcp_connected);
trie_free(worker->tcp_waiting);
trie_free(worker->subreq_out);
worker->subreq_out = NULL;
for (int i = 0; i < worker->doh_qry_headers.len; i++)
free((void *)worker->doh_qry_headers.at[i]);
array_clear(worker->doh_qry_headers);
mp_delete(worker->pkt_pool.ctx);
worker->pkt_pool.ctx = NULL;
the_worker = NULL;
}
int worker_init(struct engine *engine, int worker_count)
{
if (kr_fails_assert(engine && engine->L && the_worker == NULL))
return kr_error(EINVAL);
kr_bindings_register(engine->L);
/* Create main worker. */
struct worker_ctx *worker = &the_worker_value;
memset(worker, 0, sizeof(*worker));
worker->engine = engine;
uv_loop_t *loop = uv_default_loop();
worker->loop = loop;
worker->count = worker_count;
/* Register table for worker per-request variables */
lua_newtable(engine->L);
lua_setfield(engine->L, -2, "vars");
lua_getfield(engine->L, -1, "vars");
worker->vars_table_ref = luaL_ref(engine->L, LUA_REGISTRYINDEX);
lua_pop(engine->L, 1);
worker->tcp_pipeline_max = MAX_PIPELINED;
worker->out_addr4.sin_family = AF_UNSPEC;
worker->out_addr6.sin6_family = AF_UNSPEC;
array_init(worker->doh_qry_headers);
int ret = worker_reserve(worker);
if (ret) return ret;
worker->next_request_uid = UINT16_MAX + 1;
/* Set some worker.* fields in Lua */
lua_getglobal(engine->L, "worker");
pid_t pid = getpid();
auto_free char *pid_str = NULL;
const char *inst_name = getenv("SYSTEMD_INSTANCE");
if (inst_name) {
lua_pushstring(engine->L, inst_name);
} else {
ret = asprintf(&pid_str, "%ld", (long)pid);
kr_assert(ret > 0);
lua_pushstring(engine->L, pid_str);
}
lua_setfield(engine->L, -2, "id");
lua_pushnumber(engine->L, pid);
lua_setfield(engine->L, -2, "pid");
lua_pushnumber(engine->L, worker_count);
lua_setfield(engine->L, -2, "count");
char cwd[PATH_MAX];
get_workdir(cwd, sizeof(cwd));
lua_pushstring(engine->L, cwd);
lua_setfield(engine->L, -2, "cwd");
the_worker = worker;
loop->data = the_worker;
/* ^^^^ Now this shouldn't be used anymore, but it's hard to be 100% sure. */
return kr_ok();
}
#undef VERBOSE_MSG
|