1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
The code originated from https://github.com/fanf2/qp/blob/master/qp.c
at revision 5f6d93753.
*/
#include <stdlib.h>
#include <string.h>
#include "lib/generic/trie.h"
#include "lib/utils.h"
#include "contrib/ucw/lib.h"
#if defined(__i386) || defined(__x86_64) || defined(_M_IX86) \
|| (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN) \
&& __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
/*!
* \brief Use a pointer alignment hack to save memory.
*
* When on, isbranch() relies on the fact that in leaf_t the first pointer
* is aligned on multiple of 4 bytes and that the flags bitfield is
* overlaid over the lowest two bits of that pointer.
* Neither is really guaranteed by the C standards; the second part should
* be OK with x86_64 ABI and most likely any other little-endian platform.
* It would be possible to manipulate the right bits portably, but it would
* complicate the code nontrivially. C++ doesn't even guarantee type-punning.
* In debug mode we check this works OK when creating a new trie instance.
*/
#define FLAGS_HACK 1
#else
#define FLAGS_HACK 0
#endif
typedef unsigned char byte;
#ifndef uint
typedef unsigned int uint;
#define uint uint
#endif
typedef uint bitmap_t; /*! Bit-maps, using the range of 1<<0 to 1<<16 (inclusive). */
typedef struct {
uint32_t len; // 32 bits are enough for key lengths; probably even 16 bits would be.
char chars[];
} tkey_t;
/*! \brief Leaf of trie. */
typedef struct {
#if !FLAGS_HACK
byte flags;
#endif
tkey_t *key; /*!< The pointer must be aligned to 4-byte multiples! */
trie_val_t val;
} leaf_t;
/*! \brief A trie node is either leaf_t or branch_t. */
typedef union node node_t;
/*!
* \brief Branch node of trie.
*
* - The flags distinguish whether the node is a leaf_t (0), or a branch
* testing the more-important nibble (1) or the less-important one (2).
* - It stores the index of the byte that the node tests. The combined
* value (index*4 + flags) increases in branch nodes as you go deeper
* into the trie. All the keys below a branch are identical up to the
* nibble identified by the branch. Indices have to be stored because
* we skip any branch nodes that would have a single child.
* (Consequently, the skipped parts of key have to be validated in a leaf.)
* - The bitmap indicates which subtries are present. The present child nodes
* are stored in the twigs array (with no holes between them).
* - To simplify storing keys that are prefixes of each other, the end-of-string
* position is treated as another nibble value, ordered before all others.
* That affects the bitmap and twigs fields.
*
* \note The branch nodes are never allocated individually, but they are
* always part of either the root node or the twigs array of the parent.
*/
typedef struct {
#if FLAGS_HACK
uint32_t flags : 2,
bitmap : 17; /*!< The first bitmap bit is for end-of-string child. */
#else
byte flags;
uint32_t bitmap;
#endif
uint32_t index;
node_t *twigs;
} branch_t;
union node {
leaf_t leaf;
branch_t branch;
};
struct trie {
node_t root; // undefined when weight == 0, see empty_root()
size_t weight;
knot_mm_t mm;
};
/*! \brief Make the root node empty (debug-only). */
static inline void empty_root(node_t *root) {
#ifndef NDEBUG
*root = (node_t){ .branch = {
.flags = 3, // invalid value that fits
.bitmap = 0,
.index = -1,
.twigs = NULL
} };
#endif
}
/*! \brief Check that unportable code works OK (debug-only). */
static void assert_portability(void) {
#if FLAGS_HACK
kr_require(((union node){ .leaf = {
.key = (tkey_t *)(((uint8_t *)NULL) + 1),
.val = NULL
} }).branch.flags == 1);
#endif
}
/*! \brief Propagate error codes. */
#define ERR_RETURN(x) \
do { \
int err_code_ = x; \
if (unlikely(err_code_ != KNOT_EOK)) \
return err_code_; \
} while (false)
/*!
* \brief Count the number of set bits.
*
* \TODO This implementation may be relatively slow on some HW.
*/
static uint bitmap_weight(bitmap_t w)
{
kr_require((w & ~((1 << 17) - 1)) == 0); // using the least-important 17 bits
return __builtin_popcount(w);
}
/*! \brief Only keep the lowest bit in the bitmap (least significant -> twigs[0]). */
static bitmap_t bitmap_lowest_bit(bitmap_t w)
{
kr_require((w & ~((1 << 17) - 1)) == 0); // using the least-important 17 bits
return 1 << __builtin_ctz(w);
}
/*! \brief Test flags to determine type of this node. */
static bool isbranch(const node_t *t)
{
uint f = t->branch.flags;
kr_require(f <= 2);
return f != 0;
}
/*! \brief Make a bitmask for testing a branch bitmap. */
static bitmap_t nibbit(byte k, uint flags)
{
uint shift = (2 - flags) << 2;
uint nibble = (k >> shift) & 0xf;
return 1 << (nibble + 1/*because of prefix keys*/);
}
/*! \brief Extract a nibble from a key and turn it into a bitmask. */
static bitmap_t twigbit(const node_t *t, const char *key, uint32_t len)
{
kr_require(isbranch(t));
uint i = t->branch.index;
if (i >= len)
return 1 << 0; // leaf position
return nibbit((byte)key[i], t->branch.flags);
}
/*! \brief Test if a branch node has a child indicated by a bitmask. */
static bool hastwig(const node_t *t, bitmap_t bit)
{
kr_require(isbranch(t));
return t->branch.bitmap & bit;
}
/*! \brief Compute offset of an existing child in a branch node. */
static uint twigoff(const node_t *t, bitmap_t b)
{
kr_require(isbranch(t));
return bitmap_weight(t->branch.bitmap & (b - 1));
}
/*! \brief Get pointer to a particular child of a branch node. */
static node_t* twig(node_t *t, uint i)
{
kr_require(isbranch(t));
return &t->branch.twigs[i];
}
/*!
* \brief For a branch nod, compute offset of a child and child count.
*
* Having this separate might be meaningful for performance optimization.
*/
#define TWIGOFFMAX(off, max, t, b) do { \
(off) = twigoff((t), (b)); \
(max) = bitmap_weight((t)->branch.bitmap);\
} while(0)
/*! \brief Simple string comparator. */
static int key_cmp(const char *k1, uint32_t k1_len, const char *k2, uint32_t k2_len)
{
int ret = memcmp(k1, k2, MIN(k1_len, k2_len));
if (ret != 0) {
return ret;
}
/* Key string is equal, compare lengths. */
if (k1_len == k2_len) {
return 0;
} else if (k1_len < k2_len) {
return -1;
} else {
return 1;
}
}
trie_t* trie_create(knot_mm_t *mm)
{
assert_portability();
trie_t *trie = mm_alloc(mm, sizeof(trie_t));
if (trie != NULL) {
empty_root(&trie->root);
trie->weight = 0;
if (mm != NULL)
trie->mm = *mm;
else
mm_ctx_init(&trie->mm);
}
return trie;
}
/*! \brief Free anything under the trie node, except for the passed pointer itself. */
static void clear_trie(node_t *trie, knot_mm_t *mm)
{
if (!isbranch(trie)) {
mm_free(mm, trie->leaf.key);
} else {
branch_t *b = &trie->branch;
int len = bitmap_weight(b->bitmap);
for (int i = 0; i < len; ++i)
clear_trie(b->twigs + i, mm);
mm_free(mm, b->twigs);
}
}
void trie_free(trie_t *tbl)
{
if (tbl == NULL)
return;
if (tbl->weight)
clear_trie(&tbl->root, &tbl->mm);
mm_free(&tbl->mm, tbl);
}
void trie_clear(trie_t *tbl)
{
if (kr_fails_assert(tbl))
return;
if (!tbl->weight)
return;
clear_trie(&tbl->root, &tbl->mm);
empty_root(&tbl->root);
tbl->weight = 0;
}
size_t trie_weight(const trie_t *tbl)
{
kr_require(tbl);
return tbl->weight;
}
struct found {
leaf_t *l; /**< the found leaf (NULL if not found) */
branch_t *p; /**< the leaf's parent (if exists) */
bitmap_t b; /**< bit-mask with a single bit marking l under p */
};
/** Search trie for an item with the given key (equality only). */
static struct found find_equal(trie_t *tbl, const char *key, uint32_t len)
{
kr_require(tbl);
struct found ret0;
memset(&ret0, 0, sizeof(ret0));
if (!tbl->weight)
return ret0;
/* Current node and parent while descending (returned values basically). */
node_t *t = &tbl->root;
branch_t *p = NULL;
bitmap_t b = 0;
while (isbranch(t)) {
__builtin_prefetch(t->branch.twigs);
b = twigbit(t, key, len);
if (!hastwig(t, b))
return ret0;
p = &t->branch;
t = twig(t, twigoff(t, b));
}
if (key_cmp(key, len, t->leaf.key->chars, t->leaf.key->len) != 0)
return ret0;
return (struct found) {
.l = &t->leaf,
.p = p,
.b = b,
};
}
/** Find item with the first key (lexicographical order). */
static struct found find_first(trie_t *tbl)
{
kr_require(tbl);
if (!tbl->weight) {
struct found ret0;
memset(&ret0, 0, sizeof(ret0));
return ret0;
}
/* Current node and parent while descending (returned values basically). */
node_t *t = &tbl->root;
branch_t *p = NULL;
while (isbranch(t)) {
p = &t->branch;
t = &p->twigs[0];
}
return (struct found) {
.l = &t->leaf,
.p = p,
.b = p ? bitmap_lowest_bit(p->bitmap) : 0,
};
}
trie_val_t* trie_get_try(trie_t *tbl, const char *key, uint32_t len)
{
struct found found = find_equal(tbl, key, len);
return found.l ? &found.l->val : NULL;
}
trie_val_t* trie_get_first(trie_t *tbl, char **key, uint32_t *len)
{
struct found found = find_first(tbl);
if (!found.l)
return NULL;
if (key)
*key = found.l->key->chars;
if (len)
*len = found.l->key->len;
return &found.l->val;
}
/** Delete the found element (if any) and return value (unless NULL is passed) */
static int del_found(trie_t *tbl, struct found found, trie_val_t *val)
{
if (!found.l)
return KNOT_ENOENT;
mm_free(&tbl->mm, found.l->key);
if (val != NULL)
*val = found.l->val; // we return trie_val_t directly when deleting
--tbl->weight;
branch_t * const p = found.p; // short-hand
if (unlikely(!p)) { // whole trie was a single leaf
kr_require(tbl->weight == 0);
empty_root(&tbl->root);
return KNOT_EOK;
}
// remove leaf t as child of p; get child index via pointer arithmetic
int ci = ((union node *)found.l) - p->twigs,
cc = bitmap_weight(p->bitmap); // child count
kr_require(ci >= 0 && ci < cc);
if (cc == 2) { // collapse binary node p: move the other child to this node
node_t *twigs = p->twigs;
(*(union node *)p) = twigs[1 - ci]; // it might be a leaf or branch
mm_free(&tbl->mm, twigs);
return KNOT_EOK;
}
memmove(p->twigs + ci, p->twigs + ci + 1, sizeof(node_t) * (cc - ci - 1));
p->bitmap &= ~found.b;
node_t *twigs = mm_realloc(&tbl->mm, p->twigs, sizeof(node_t) * (cc - 1),
sizeof(node_t) * cc);
if (likely(twigs != NULL))
p->twigs = twigs;
/* We can ignore mm_realloc failure, only beware that next time
* the prev_size passed to it wouldn't be correct; TODO? */
return KNOT_EOK;
}
int trie_del(trie_t *tbl, const char *key, uint32_t len, trie_val_t *val)
{
struct found found = find_equal(tbl, key, len);
return del_found(tbl, found, val);
}
int trie_del_first(trie_t *tbl, char *key, uint32_t *len, trie_val_t *val)
{
struct found found = find_first(tbl);
if (!found.l)
return KNOT_ENOENT;
if (key) {
if (!len)
return KNOT_EINVAL;
if (*len < found.l->key->len)
return kr_error(ENOSPC);
memcpy(key, found.l->key->chars, found.l->key->len);
}
if (len) { // makes sense even with key == NULL
*len = found.l->key->len;
}
return del_found(tbl, found, val);
}
/*!
* \brief Stack of nodes, storing a path down a trie.
*
* The structure also serves directly as the public trie_it_t type,
* in which case it always points to the current leaf, unless we've finished
* (i.e. it->len == 0).
*/
typedef struct trie_it {
node_t* *stack; /*!< The stack; malloc is used directly instead of mm. */
uint32_t len; /*!< Current length of the stack. */
uint32_t alen; /*!< Allocated/available length of the stack. */
/*! \brief Initial storage for \a stack; it should fit in many use cases. */
node_t* stack_init[60];
} nstack_t;
/*! \brief Create a node stack containing just the root (or empty). */
static void ns_init(nstack_t *ns, trie_t *tbl)
{
kr_require(tbl);
ns->stack = ns->stack_init;
ns->alen = sizeof(ns->stack_init) / sizeof(ns->stack_init[0]);
if (tbl->weight) {
ns->len = 1;
ns->stack[0] = &tbl->root;
} else {
ns->len = 0;
}
}
/*! \brief Free inside of the stack, i.e. not the passed pointer itself. */
static void ns_cleanup(nstack_t *ns)
{
if (kr_fails_assert(ns && ns->stack))
return;
if (likely(ns->stack == ns->stack_init))
return;
free(ns->stack);
#ifndef NDEBUG
ns->stack = NULL;
ns->alen = 0;
#endif
}
/*! \brief Allocate more space for the stack. */
static int ns_longer_alloc(nstack_t *ns)
{
ns->alen *= 2;
size_t new_size = sizeof(nstack_t) + ns->alen * sizeof(node_t *);
node_t **st;
if (ns->stack == ns->stack_init) {
st = malloc(new_size);
if (st != NULL)
memcpy(st, ns->stack, ns->len * sizeof(node_t *));
} else {
st = realloc(ns->stack, new_size);
if (st == NULL) {
free(ns->stack); // left behind by realloc, callers bail out
ns->stack = NULL;
}
}
if (st == NULL)
return KNOT_ENOMEM;
ns->stack = st;
return KNOT_EOK;
}
/*! \brief Ensure the node stack can be extended by one. */
static inline int ns_longer(nstack_t *ns)
{
// get a longer stack if needed
if (likely(ns->len < ns->alen))
return KNOT_EOK;
return ns_longer_alloc(ns); // hand-split the part suitable for inlining
}
/*!
* \brief Find the "branching point" as if searching for a key.
*
* The whole path to the point is kept on the passed stack;
* always at least the root will remain on the top of it.
* Beware: the precise semantics of this function is rather tricky.
* The top of the stack will contain: the corresponding leaf if exact match is found;
* or the immediate node below a branching-point-on-edge or the branching-point itself.
*
* \param info Set position of the point of first mismatch (in index and flags).
* \param first Set the value of the first non-matching character (from trie),
* optionally; end-of-string character has value -256 (that's why it's int).
* Note: the character is converted to *unsigned* char (i.e. 0..255),
* as that's the ordering used in the trie.
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_find_branch(nstack_t *ns, const char *key, uint32_t len,
branch_t *info, int *first)
{
kr_require(ns && ns->len && info);
// First find some leaf with longest matching prefix.
while (isbranch(ns->stack[ns->len - 1])) {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
__builtin_prefetch(t->branch.twigs);
bitmap_t b = twigbit(t, key, len);
// Even if our key is missing from this branch we need to
// keep iterating down to a leaf. It doesn't matter which
// twig we choose since the keys are all the same up to this
// index. Note that blindly using twigoff(t, b) can cause
// an out-of-bounds index if it equals twigmax(t).
uint i = hastwig(t, b) ? twigoff(t, b) : 0;
ns->stack[ns->len++] = twig(t, i);
}
tkey_t *lkey = ns->stack[ns->len-1]->leaf.key;
// Find index of the first char that differs.
uint32_t index = 0;
while (index < MIN(len,lkey->len)) {
if (key[index] != lkey->chars[index])
break;
else
++index;
}
info->index = index;
if (first)
*first = lkey->len > index ? (unsigned char)lkey->chars[index] : -256;
// Find flags: which half-byte has matched.
uint flags;
if (index == len && len == lkey->len) { // found equivalent key
info->flags = flags = 0;
goto success;
}
if (likely(index < MIN(len,lkey->len))) {
byte k2 = (byte)lkey->chars[index];
byte k1 = (byte)key[index];
flags = ((k1 ^ k2) & 0xf0) ? 1 : 2;
} else { // one is prefix of another
flags = 1;
}
info->flags = flags;
// now go up the trie from the current leaf
branch_t *t;
do {
if (unlikely(ns->len == 1))
goto success; // only the root stays on the stack
t = (branch_t*)ns->stack[ns->len - 2];
if (t->index < index || (t->index == index && t->flags < flags))
goto success;
--ns->len;
} while (true);
success:
#ifndef NDEBUG // invariants on successful return
kr_require(ns->len);
if (isbranch(ns->stack[ns->len - 1])) {
t = &ns->stack[ns->len - 1]->branch;
kr_require(t->index > index || (t->index == index && t->flags >= flags));
}
if (ns->len > 1) {
t = &ns->stack[ns->len - 2]->branch;
kr_require(t->index < index || (t->index == index
&& (t->flags < flags || (t->flags == 1 && flags == 0))));
}
#endif
return KNOT_EOK;
}
/*!
* \brief Advance the node stack to the last leaf in the subtree.
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_last_leaf(nstack_t *ns)
{
kr_require(ns);
do {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
if (!isbranch(t))
return KNOT_EOK;
int lasti = bitmap_weight(t->branch.bitmap) - 1;
kr_require(lasti >= 0);
ns->stack[ns->len++] = twig(t, lasti);
} while (true);
}
/*!
* \brief Advance the node stack to the first leaf in the subtree.
*
* \return KNOT_EOK or KNOT_ENOMEM.
*/
static int ns_first_leaf(nstack_t *ns)
{
kr_require(ns && ns->len);
do {
ERR_RETURN(ns_longer(ns));
node_t *t = ns->stack[ns->len - 1];
if (!isbranch(t))
return KNOT_EOK;
ns->stack[ns->len++] = twig(t, 0);
} while (true);
}
/*!
* \brief Advance the node stack to the leaf that is previous to the current node.
*
* \note Prefix leaf under the current node DOES count (if present; perhaps questionable).
* \return KNOT_EOK on success, KNOT_ENOENT on not-found, or possibly KNOT_ENOMEM.
*/
static int ns_prev_leaf(nstack_t *ns)
{
kr_require(ns && ns->len > 0);
node_t *t = ns->stack[ns->len - 1];
if (hastwig(t, 1 << 0)) { // the prefix leaf
t = twig(t, 0);
ERR_RETURN(ns_longer(ns));
ns->stack[ns->len++] = t;
return KNOT_EOK;
}
do {
if (ns->len < 2)
return KNOT_ENOENT; // root without empty key has no previous leaf
t = ns->stack[ns->len - 1];
node_t *p = ns->stack[ns->len - 2];
int pindex = t - p->branch.twigs; // index in parent via pointer arithmetic
kr_require(pindex >= 0 && pindex <= 16);
if (pindex > 0) { // t isn't the first child -> go down the previous one
ns->stack[ns->len - 1] = twig(p, pindex - 1);
return ns_last_leaf(ns);
}
// we've got to go up again
--ns->len;
} while (true);
}
/*!
* \brief Advance the node stack to the leaf that is successor to the current node.
*
* \note Prefix leaf or anything else under the current node DOES count.
* \return KNOT_EOK on success, KNOT_ENOENT on not-found, or possibly KNOT_ENOMEM.
*/
static int ns_next_leaf(nstack_t *ns)
{
kr_require(ns && ns->len > 0);
node_t *t = ns->stack[ns->len - 1];
if (isbranch(t))
return ns_first_leaf(ns);
do {
if (ns->len < 2)
return KNOT_ENOENT; // not found, as no more parent is available
t = ns->stack[ns->len - 1];
node_t *p = ns->stack[ns->len - 2];
int pindex = t - p->branch.twigs; // index in parent via pointer arithmetic
kr_require(pindex >= 0 && pindex <= 16);
int pcount = bitmap_weight(p->branch.bitmap);
if (pindex + 1 < pcount) { // t isn't the last child -> go down the next one
ns->stack[ns->len - 1] = twig(p, pindex + 1);
return ns_first_leaf(ns);
}
// we've got to go up again
--ns->len;
} while (true);
}
int trie_get_leq(trie_t *tbl, const char *key, uint32_t len, trie_val_t **val)
{
kr_require(tbl && val);
*val = NULL; // so on failure we can just return;
if (tbl->weight == 0)
return KNOT_ENOENT;
{ // Intentionally un-indented; until end of function, to bound cleanup attr.
// First find a key with longest-matching prefix
__attribute__((cleanup(ns_cleanup)))
nstack_t ns_local;
ns_init(&ns_local, tbl);
nstack_t *ns = &ns_local;
branch_t bp;
int un_leaf; // first unmatched character in the leaf
ERR_RETURN(ns_find_branch(ns, key, len, &bp, &un_leaf));
int un_key = bp.index < len ? (unsigned char)key[bp.index] : -256;
node_t *t = ns->stack[ns->len - 1];
if (bp.flags == 0) { // found exact match
*val = &t->leaf.val;
return KNOT_EOK;
}
// Get t: the last node on matching path
if (isbranch(t) && t->branch.index == bp.index && t->branch.flags == bp.flags) {
// t is OK
} else {
// the top of the stack was the first unmatched node -> step up
if (ns->len == 1) {
// root was unmatched already
if (un_key < un_leaf)
return KNOT_ENOENT;
ERR_RETURN(ns_last_leaf(ns));
goto success;
}
--ns->len;
t = ns->stack[ns->len - 1];
}
// Now we re-do the first "non-matching" step in the trie
// but try the previous child if key was less (it may not exist)
bitmap_t b = twigbit(t, key, len);
int i = hastwig(t, b)
? twigoff(t, b) - (un_key < un_leaf)
: twigoff(t, b) - 1 /*twigoff returns successor when !hastwig*/;
if (i >= 0) {
ERR_RETURN(ns_longer(ns));
ns->stack[ns->len++] = twig(t, i);
ERR_RETURN(ns_last_leaf(ns));
} else {
ERR_RETURN(ns_prev_leaf(ns));
}
success:
kr_require(!isbranch(ns->stack[ns->len - 1]));
*val = &ns->stack[ns->len - 1]->leaf.val;
return 1;
}
}
/*! \brief Initialize a new leaf, copying the key, and returning failure code. */
static int mk_leaf(node_t *leaf, const char *key, uint32_t len, knot_mm_t *mm)
{
tkey_t *k = mm_alloc(mm, sizeof(tkey_t) + len);
#if FLAGS_HACK
kr_require(((uintptr_t)k) % 4 == 0); // we need an aligned pointer
#endif
if (unlikely(!k))
return KNOT_ENOMEM;
k->len = len;
memcpy(k->chars, key, len);
leaf->leaf = (leaf_t){
#if !FLAGS_HACK
.flags = 0,
#endif
.val = NULL,
.key = k
};
return KNOT_EOK;
}
trie_val_t* trie_get_ins(trie_t *tbl, const char *key, uint32_t len)
{
if (kr_fails_assert(tbl))
return NULL;
// First leaf in an empty tbl?
if (unlikely(!tbl->weight)) {
if (unlikely(mk_leaf(&tbl->root, key, len, &tbl->mm)))
return NULL;
++tbl->weight;
return &tbl->root.leaf.val;
}
{ // Intentionally un-indented; until end of function, to bound cleanup attr.
// Find the branching-point
__attribute__((cleanup(ns_cleanup)))
nstack_t ns_local;
ns_init(&ns_local, tbl);
nstack_t *ns = &ns_local;
branch_t bp; // branch-point: index and flags signifying the longest common prefix
int k2; // the first unmatched character in the leaf
if (unlikely(ns_find_branch(ns, key, len, &bp, &k2)))
return NULL;
node_t *t = ns->stack[ns->len - 1];
if (bp.flags == 0) // the same key was already present
return &t->leaf.val;
node_t leaf;
if (unlikely(mk_leaf(&leaf, key, len, &tbl->mm)))
return NULL;
if (isbranch(t) && bp.index == t->branch.index && bp.flags == t->branch.flags) {
// The node t needs a new leaf child.
bitmap_t b1 = twigbit(t, key, len);
kr_require(!hastwig(t, b1));
uint s, m; TWIGOFFMAX(s, m, t, b1); // new child position and original child count
node_t *twigs = mm_realloc(&tbl->mm, t->branch.twigs,
sizeof(node_t) * (m + 1), sizeof(node_t) * m);
if (unlikely(!twigs))
goto err_leaf;
memmove(twigs + s + 1, twigs + s, sizeof(node_t) * (m - s));
twigs[s] = leaf;
t->branch.twigs = twigs;
t->branch.bitmap |= b1;
++tbl->weight;
return &twigs[s].leaf.val;
} else {
// We need to insert a new binary branch with leaf at *t.
// Note: it works the same for the case where we insert above root t.
#ifndef NDEBUG
if (ns->len > 1) {
node_t *pt = ns->stack[ns->len - 2];
kr_require(hastwig(pt, twigbit(pt, key, len)));
}
#endif
node_t *twigs = mm_alloc(&tbl->mm, sizeof(node_t) * 2);
if (unlikely(!twigs))
goto err_leaf;
node_t t2 = *t; // Save before overwriting t.
t->branch.flags = bp.flags;
t->branch.index = bp.index;
t->branch.twigs = twigs;
bitmap_t b1 = twigbit(t, key, len);
bitmap_t b2 = unlikely(k2 == -256) ? (1 << 0) : nibbit(k2, bp.flags);
t->branch.bitmap = b1 | b2;
*twig(t, twigoff(t, b1)) = leaf;
*twig(t, twigoff(t, b2)) = t2;
++tbl->weight;
return &twig(t, twigoff(t, b1))->leaf.val;
};
err_leaf:
mm_free(&tbl->mm, leaf.leaf.key);
return NULL;
}
}
/*! \brief Apply a function to every trie_val_t*, in order; a recursive solution. */
static int apply_trie(node_t *t, int (*f)(trie_val_t *, void *), void *d)
{
kr_require(t);
if (!isbranch(t))
return f(&t->leaf.val, d);
int child_count = bitmap_weight(t->branch.bitmap);
for (int i = 0; i < child_count; ++i)
ERR_RETURN(apply_trie(twig(t, i), f, d));
return KNOT_EOK;
}
int trie_apply(trie_t *tbl, int (*f)(trie_val_t *, void *), void *d)
{
kr_require(tbl && f);
if (!tbl->weight)
return KNOT_EOK;
return apply_trie(&tbl->root, f, d);
}
/*! \brief Apply a function to every key + trie_val_t*, in order; a recursive solution. */
static int apply_trie_with_key(node_t *t, int (*f)(const char *, uint32_t, trie_val_t *, void *), void *d)
{
kr_require(t);
if (!isbranch(t))
return f(t->leaf.key->chars, t->leaf.key->len, &t->leaf.val, d);
int child_count = bitmap_weight(t->branch.bitmap);
for (int i = 0; i < child_count; ++i)
ERR_RETURN(apply_trie_with_key(twig(t, i), f, d));
return KNOT_EOK;
}
int trie_apply_with_key(trie_t *tbl, int (*f)(const char *, uint32_t, trie_val_t *, void *), void *d)
{
kr_require(tbl && f);
if (!tbl->weight)
return KNOT_EOK;
return apply_trie_with_key(&tbl->root, f, d);
}
/* These are all thin wrappers around static Tns* functions. */
trie_it_t* trie_it_begin(trie_t *tbl)
{
if (kr_fails_assert(tbl))
return NULL;
trie_it_t *it = malloc(sizeof(nstack_t));
if (!it)
return NULL;
ns_init(it, tbl);
if (it->len == 0) // empty tbl
return it;
if (ns_first_leaf(it)) {
ns_cleanup(it);
free(it);
return NULL;
}
return it;
}
void trie_it_next(trie_it_t *it)
{
kr_require(it && it->len);
if (ns_next_leaf(it) != KNOT_EOK)
it->len = 0;
}
bool trie_it_finished(trie_it_t *it)
{
kr_require(it);
return it->len == 0;
}
void trie_it_free(trie_it_t *it)
{
if (!it)
return;
ns_cleanup(it);
free(it);
}
const char* trie_it_key(trie_it_t *it, size_t *len)
{
kr_require(it && it->len);
node_t *t = it->stack[it->len - 1];
kr_require(!isbranch(t));
tkey_t *key = t->leaf.key;
if (len)
*len = key->len;
return key->chars;
}
trie_val_t* trie_it_val(trie_it_t *it)
{
kr_require(it && it->len);
node_t *t = it->stack[it->len - 1];
kr_require(!isbranch(t));
return &t->leaf.val;
}
|