1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include "lib/utils.h"
#include "contrib/cleanup.h"
#include "contrib/ucw/mempool.h"
#include "kresconfig.h"
#include "lib/defines.h"
#include "lib/generic/array.h"
#include "lib/module.h"
#include "lib/resolve.h"
#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/rrset-dump.h>
#include <libknot/rrtype/rrsig.h>
#include <libknot/version.h>
#include <uv.h>
#include <arpa/inet.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/un.h>
struct __attribute__((packed)) kr_sockaddr_key {
int family;
};
struct __attribute__((packed)) kr_sockaddr_in_key {
int family;
char address[sizeof(((struct sockaddr_in *) NULL)->sin_addr)];
uint16_t port;
};
struct __attribute__((packed)) kr_sockaddr_in6_key {
int family;
char address[sizeof(((struct sockaddr_in6 *) NULL)->sin6_addr)];
uint32_t scope;
uint16_t port;
};
struct __attribute((packed)) kr_sockaddr_un_key {
int family;
char path[sizeof(((struct sockaddr_un *) NULL)->sun_path)];
};
extern inline uint64_t kr_rand_bytes(unsigned int size);
/* Logging & debugging */
bool kr_dbg_assertion_abort = DBG_ASSERTION_ABORT;
int kr_dbg_assertion_fork = DBG_ASSERTION_FORK;
void kr_fail(bool is_fatal, const char *expr, const char *func, const char *file, int line)
{
const int errno_orig = errno;
if (is_fatal)
kr_log_crit(SYSTEM, "requirement \"%s\" failed in %s@%s:%d\n", expr, func, file, line);
else
kr_log_error(SYSTEM, "assertion \"%s\" failed in %s@%s:%d\n", expr, func, file, line);
if (is_fatal || (kr_dbg_assertion_abort && !kr_dbg_assertion_fork))
abort();
else if (!kr_dbg_assertion_abort || !kr_dbg_assertion_fork)
goto recover;
// We want to fork and abort the child, unless rate-limited.
static uint64_t limited_until = 0;
const uint64_t now = kr_now();
if (now < limited_until)
goto recover;
if (kr_dbg_assertion_fork > 0) {
// Add jitter +- 25%; in other words: 75% + uniform(0,50%).
// Motivation: if a persistent problem starts happening, desynchronize
// coredumps from different instances as they're not cheap.
limited_until = now + kr_dbg_assertion_fork * 3 / 4
+ kr_dbg_assertion_fork * kr_rand_bytes(1) / 256 / 2;
}
if (fork() == 0)
abort();
recover:
errno = errno_orig;
}
/*
* Macros.
*/
#define strlen_safe(x) ((x) ? strlen(x) : 0)
/**
* @internal Convert 16bit unsigned to string, keeps leading spaces.
* @note Always fills dst length = 5
* Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm
*/
static inline int u16tostr(uint8_t *dst, uint16_t num)
{
uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4);
for(size_t i = 0; i < 5; i++) {
dst[i] = '0' + (char) (tmp >> 28);
tmp = (tmp & 0x0fffffff) * 10;
}
return 5;
}
char* kr_strcatdup(unsigned n, ...)
{
if (n < 1) {
return NULL;
}
/* Calculate total length */
size_t total_len = 0;
va_list vl;
va_start(vl, n);
for (unsigned i = 0; i < n; ++i) {
char *item = va_arg(vl, char *);
const size_t new_len = total_len + strlen_safe(item);
if (unlikely(new_len < total_len)) {
va_end(vl);
return NULL;
}
total_len = new_len;
}
va_end(vl);
/* Allocate result and fill */
char *result = NULL;
if (total_len > 0) {
if (unlikely(total_len == SIZE_MAX)) return NULL;
result = malloc(total_len + 1);
}
if (result) {
char *stream = result;
va_start(vl, n);
for (unsigned i = 0; i < n; ++i) {
char *item = va_arg(vl, char *);
if (item) {
size_t len = strlen(item);
memcpy(stream, item, len + 1);
stream += len;
}
}
va_end(vl);
}
return result;
}
char * kr_absolutize_path(const char *dirname, const char *fname)
{
if (kr_fails_assert(dirname && fname)) {
errno = EINVAL;
return NULL;
}
char *result;
int aret;
if (dirname[0] == '/') { // absolute path is easier
aret = asprintf(&result, "%s/%s", dirname, fname);
} else { // relative path, but don't resolve symlinks
char buf[PATH_MAX];
const char *cwd = getcwd(buf, sizeof(buf));
if (!cwd)
return NULL; // errno has been set already
if (strcmp(dirname, ".") == 0) {
// get rid of one common case of extraneous "./"
aret = asprintf(&result, "%s/%s", cwd, fname);
} else {
aret = asprintf(&result, "%s/%s/%s", cwd, dirname, fname);
}
}
if (aret > 0)
return result;
errno = -aret;
return NULL;
}
int kr_memreserve(void *baton, void **mem, size_t elm_size, size_t want, size_t *have)
{
if (*have >= want) {
return 0;
} else {
knot_mm_t *pool = baton;
size_t next_size = array_next_count(elm_size, want, *have);
void *mem_new = mm_alloc(pool, next_size * elm_size);
if (mem_new != NULL) {
if (*mem) { /* 0-length memcpy from NULL isn't technically OK */
memcpy(mem_new, *mem, (*have)*(elm_size));
mm_free(pool, *mem);
}
*mem = mem_new;
*have = next_size;
return 0;
}
}
return -1;
}
static int pkt_recycle(knot_pkt_t *pkt, bool keep_question)
{
/* The maximum size of a header + query name + (class, type) */
uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)];
/* Save header and the question section */
size_t base_size = KNOT_WIRE_HEADER_SIZE;
if (keep_question) {
base_size += knot_pkt_question_size(pkt);
}
if (kr_fails_assert(base_size <= sizeof(buf))) return kr_error(EINVAL);
memcpy(buf, pkt->wire, base_size);
/* Clear the packet and its auxiliary structures */
knot_pkt_clear(pkt);
/* Restore header and question section and clear counters */
pkt->size = base_size;
memcpy(pkt->wire, buf, base_size);
knot_wire_set_qdcount(pkt->wire, keep_question);
knot_wire_set_ancount(pkt->wire, 0);
knot_wire_set_nscount(pkt->wire, 0);
knot_wire_set_arcount(pkt->wire, 0);
/* Reparse question */
knot_pkt_begin(pkt, KNOT_ANSWER);
return knot_pkt_parse_question(pkt);
}
int kr_pkt_recycle(knot_pkt_t *pkt)
{
return pkt_recycle(pkt, false);
}
int kr_pkt_clear_payload(knot_pkt_t *pkt)
{
return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire));
}
int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl,
uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen)
{
/* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put()
* isn't considered to be used in any performance-critical parts (just lua). */
if (!pkt || !name) {
return kr_error(EINVAL);
}
/* Create empty RR */
knot_rrset_t rr;
knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl);
/* Create RDATA */
knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen);
knot_rdata_init(rdata_tmp, rdlen, rdata);
knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm);
mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */
/* Append RR */
return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE);
}
void kr_pkt_make_auth_header(knot_pkt_t *pkt)
{
if (kr_fails_assert(pkt && pkt->wire)) return;
knot_wire_clear_ad(pkt->wire);
knot_wire_set_aa(pkt->wire);
}
const char *kr_inaddr(const struct sockaddr *addr)
{
if (!addr) {
return NULL;
}
switch (addr->sa_family) {
case AF_INET: return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr);
case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr);
default: return NULL;
}
}
int kr_inaddr_family(const struct sockaddr *addr)
{
if (!addr)
return AF_UNSPEC;
return addr->sa_family;
}
int kr_inaddr_len(const struct sockaddr *addr)
{
if (!addr) {
return kr_error(EINVAL);
}
return kr_family_len(addr->sa_family);
}
int kr_sockaddr_len(const struct sockaddr *addr)
{
if (!addr) {
return kr_error(EINVAL);
}
switch (addr->sa_family) {
case AF_INET: return sizeof(struct sockaddr_in);
case AF_INET6: return sizeof(struct sockaddr_in6);
case AF_UNIX: return sizeof(struct sockaddr_un);
default: return kr_error(EINVAL);
}
}
ssize_t kr_sockaddr_key(struct kr_sockaddr_key_storage *dst,
const struct sockaddr *addr)
{
kr_require(addr);
switch (addr->sa_family) {
case AF_INET:;
const struct sockaddr_in *addr_in = (const struct sockaddr_in *) addr;
struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) dst;
inkey->family = AF_INET;
memcpy(&inkey->address, &addr_in->sin_addr, sizeof(inkey->address));
memcpy(&inkey->port, &addr_in->sin_port, sizeof(inkey->port));
return sizeof(*inkey);
case AF_INET6:;
const struct sockaddr_in6 *addr_in6 = (const struct sockaddr_in6 *) addr;
struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) dst;
in6key->family = AF_INET6;
memcpy(&in6key->address, &addr_in6->sin6_addr, sizeof(in6key->address));
memcpy(&in6key->port, &addr_in6->sin6_port, sizeof(in6key->port));
if (kr_sockaddr_link_local(addr))
memcpy(&in6key->scope, &addr_in6->sin6_scope_id, sizeof(in6key->scope));
else
in6key->scope = 0;
return sizeof(*in6key);
case AF_UNIX:;
const struct sockaddr_un *addr_un = (const struct sockaddr_un *) addr;
struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) dst;
unkey->family = AF_UNIX;
size_t pathlen = strnlen(addr_un->sun_path, sizeof(unkey->path));
if (pathlen == 0 || pathlen >= sizeof(unkey->path)) {
/* Abstract sockets are not supported - we would need
* to also supply a length value for the abstract
* pathname.
*
* UNIX socket path should be null-terminated.
*
* See unix(7). */
return kr_error(EINVAL);
}
pathlen += 1; /* Include null-terminator */
strncpy(unkey->path, addr_un->sun_path, pathlen);
return offsetof(struct kr_sockaddr_un_key, path) + pathlen;
default:
return kr_error(EAFNOSUPPORT);
}
}
struct sockaddr *kr_sockaddr_from_key(struct sockaddr_storage *dst,
const char *key)
{
kr_require(key);
switch (((struct kr_sockaddr_key *) key)->family) {
case AF_INET:;
const struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) key;
struct sockaddr_in *addr_in = (struct sockaddr_in *) dst;
addr_in->sin_family = AF_INET;
memcpy(&addr_in->sin_addr, &inkey->address, sizeof(inkey->address));
memcpy(&addr_in->sin_port, &inkey->port, sizeof(inkey->port));
return (struct sockaddr *) addr_in;
case AF_INET6:;
const struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) key;
struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *) dst;
addr_in6->sin6_family = AF_INET6;
memcpy(&addr_in6->sin6_addr, &in6key->address, sizeof(in6key->address));
memcpy(&addr_in6->sin6_port, &in6key->port, sizeof(in6key->port));
memcpy(&addr_in6->sin6_scope_id, &in6key->scope, sizeof(in6key->scope));
return (struct sockaddr *) addr_in6;
case AF_UNIX:;
const struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) key;
struct sockaddr_un *addr_un = (struct sockaddr_un *) dst;
addr_un->sun_family = AF_UNIX;
strncpy(addr_un->sun_path, unkey->path, sizeof(unkey->path));
return (struct sockaddr *) addr_un;
default:
kr_assert(false);
return NULL;
}
}
bool kr_sockaddr_key_same_addr(const char *key_a, const char *key_b)
{
const struct kr_sockaddr_in6_key *kkey_a = (struct kr_sockaddr_in6_key *) key_a;
const struct kr_sockaddr_in6_key *kkey_b = (struct kr_sockaddr_in6_key *) key_b;
if (kkey_a->family != kkey_b->family)
return false;
ptrdiff_t offset;
switch (kkey_a->family) {
case AF_INET:
offset = offsetof(struct kr_sockaddr_in_key, address);
break;
case AF_INET6:
if (unlikely(kkey_a->scope != kkey_b->scope))
return false;
offset = offsetof(struct kr_sockaddr_in6_key, address);
break;
case AF_UNIX:;
const struct kr_sockaddr_un_key *unkey_a =
(struct kr_sockaddr_un_key *) key_a;
const struct kr_sockaddr_un_key *unkey_b =
(struct kr_sockaddr_un_key *) key_b;
return strncmp(unkey_a->path, unkey_b->path,
sizeof(unkey_a->path)) == 0;
default:
kr_assert(false);
return false;
}
size_t len = kr_family_len(kkey_a->family);
return memcmp(key_a + offset, key_b + offset, len) == 0;
}
int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
{
if (!left || !right) {
return kr_error(EINVAL);
}
if (left->sa_family != right->sa_family) {
return kr_error(EFAULT);
}
if (left->sa_family == AF_INET) {
struct sockaddr_in *left_in = (struct sockaddr_in *)left;
struct sockaddr_in *right_in = (struct sockaddr_in *)right;
if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) {
return kr_error(EFAULT);
}
if (left_in->sin_port != right_in->sin_port) {
return kr_error(EFAULT);
}
} else if (left->sa_family == AF_INET6) {
struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left;
struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right;
if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr,
sizeof(struct in6_addr)) != 0) {
return kr_error(EFAULT);
}
if (left_in6->sin6_port != right_in6->sin6_port) {
return kr_error(EFAULT);
}
} else {
return kr_error(ENOENT);
}
return kr_ok();
}
uint16_t kr_inaddr_port(const struct sockaddr *addr)
{
if (!addr) {
return 0;
}
switch (addr->sa_family) {
case AF_INET: return ntohs(((const struct sockaddr_in *)addr)->sin_port);
case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port);
default: return 0;
}
}
void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
{
if (!addr) {
return;
}
switch (addr->sa_family) {
case AF_INET:
((struct sockaddr_in *)addr)->sin_port = htons(port);
break;
case AF_INET6:
((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
break;
default:
break;
}
}
int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
{
if (!addr) {
return kr_error(EINVAL);
}
return kr_ntop_str(addr->sa_family, kr_inaddr(addr), kr_inaddr_port(addr),
buf, buflen);
}
int kr_ntop_str(int family, const void *src, uint16_t port, char *buf, size_t *buflen)
{
if (!src || !buf || !buflen) {
return kr_error(EINVAL);
}
if (!inet_ntop(family, src, buf, *buflen)) {
return kr_error(errno);
}
const int len = strlen(buf);
const int len_need = len + 1 + 5 + 1;
if (len_need > *buflen) {
*buflen = len_need;
return kr_error(ENOSPC);
}
*buflen = len_need;
buf[len] = '#';
u16tostr((uint8_t *)&buf[len + 1], port);
buf[len_need - 1] = 0;
return kr_ok();
}
char *kr_straddr(const struct sockaddr *addr)
{
if (kr_fails_assert(addr)) return NULL;
static char str[KR_STRADDR_MAXLEN + 1] = {0};
if (addr->sa_family == AF_UNIX) {
strncpy(str, ((struct sockaddr_un *)addr)->sun_path, sizeof(str) - 1);
return str;
}
size_t len = KR_STRADDR_MAXLEN;
int ret = kr_inaddr_str(addr, str, &len);
return ret != kr_ok() || len == 0 ? NULL : str;
}
int kr_straddr_family(const char *addr)
{
if (!addr) {
return kr_error(EINVAL);
}
if (addr[0] == '/') {
return AF_UNIX;
}
if (strchr(addr, ':')) {
return AF_INET6;
}
if (strchr(addr, '.')) {
return AF_INET;
}
return kr_error(EINVAL);
}
int kr_family_len(int family)
{
switch (family) {
case AF_INET: return sizeof(struct in_addr);
case AF_INET6: return sizeof(struct in6_addr);
default: return kr_error(EINVAL);
}
}
struct sockaddr * kr_straddr_socket(const char *addr, int port, knot_mm_t *pool)
{
switch (kr_straddr_family(addr)) {
case AF_INET: {
struct sockaddr_in *res = mm_alloc(pool, sizeof(*res));
if (uv_ip4_addr(addr, port, res) >= 0) {
return (struct sockaddr *)res;
} else {
mm_free(pool, res);
return NULL;
}
}
case AF_INET6: {
struct sockaddr_in6 *res = mm_alloc(pool, sizeof(*res));
if (uv_ip6_addr(addr, port, res) >= 0) {
return (struct sockaddr *)res;
} else {
mm_free(pool, res);
return NULL;
}
}
case AF_UNIX: {
struct sockaddr_un *res;
const size_t alen = strlen(addr) + 1;
if (alen > sizeof(res->sun_path)) {
return NULL;
}
res = mm_alloc(pool, sizeof(*res));
res->sun_family = AF_UNIX;
memcpy(res->sun_path, addr, alen);
return (struct sockaddr *)res;
}
default:
return NULL;
}
}
int kr_straddr_subnet(void *dst, const char *addr)
{
if (!dst || !addr) {
return kr_error(EINVAL);
}
/* Parse subnet */
int bit_len = 0;
int family = kr_straddr_family(addr);
if (family != AF_INET && family != AF_INET6)
return kr_error(EINVAL);
const int max_len = (family == AF_INET6) ? 128 : 32;
auto_free char *addr_str = strdup(addr);
char *subnet = strchr(addr_str, '/');
if (subnet) {
*subnet = '\0';
subnet += 1;
bit_len = strtol(subnet, NULL, 10);
/* Check client subnet length */
if (bit_len < 0 || bit_len > max_len) {
return kr_error(ERANGE);
}
} else {
/* No subnet, use maximal subnet length. */
bit_len = max_len;
}
/* Parse address */
int ret = inet_pton(family, addr_str, dst);
if (ret != 1) {
return kr_error(EILSEQ);
}
return bit_len;
}
int kr_straddr_split(const char *instr, char ipaddr[static restrict (INET6_ADDRSTRLEN + 1)],
uint16_t *port)
{
if (kr_fails_assert(instr && ipaddr && port)) return kr_error(EINVAL);
/* Find where port number starts. */
const char *p_start = strchr(instr, '@');
if (!p_start)
p_start = strchr(instr, '#');
if (p_start) { /* Get and check the port number. */
if (p_start[1] == '\0') /* Don't accept empty port string. */
return kr_error(EILSEQ);
char *p_end;
long p = strtol(p_start + 1, &p_end, 10);
if (*p_end != '\0' || p <= 0 || p > UINT16_MAX)
return kr_error(EILSEQ);
*port = p;
}
/* Copy the address. */
const size_t addrlen = p_start ? p_start - instr : strlen(instr);
if (addrlen > INET6_ADDRSTRLEN)
return kr_error(EILSEQ);
memcpy(ipaddr, instr, addrlen);
ipaddr[addrlen] = '\0';
return kr_ok();
}
int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
{
if (!addr || !buf || !buflen) {
return kr_error(EINVAL);
}
struct sockaddr_storage ss;
int family = kr_straddr_family(addr);
if (family == kr_error(EINVAL) || inet_pton(family, addr, &ss) != 1) {
return kr_error(EINVAL);
}
int len = strlen(addr);
if (len + 6 >= *buflen) {
return kr_error(ENOSPC);
}
memcpy(buf, addr, len + 1);
buf[len] = '#';
u16tostr((uint8_t *)&buf[len + 1], port);
len += 6;
buf[len] = 0;
*buflen = len;
return kr_ok();
}
int kr_bitcmp(const char *a, const char *b, int bits)
{
/* We're using the function from lua directly, so at least for now
* we avoid crashing on bogus inputs. Meaning: NULL is ordered before
* anything else, and negative length is the same as zero.
* TODO: review the call sites and probably remove the checks. */
if (bits <= 0 || (!a && !b)) {
return 0;
} else if (!a) {
return -1;
} else if (!b) {
return 1;
}
kr_require((a && b && bits >= 0) || bits == 0);
/* Compare part byte-divisible part. */
const size_t chunk = bits / 8;
int ret = memcmp(a, b, chunk);
if (ret != 0) {
return ret;
}
a += chunk;
b += chunk;
bits -= chunk * 8;
/* Compare last partial byte address block. */
if (bits > 0) {
const size_t shift = (8 - bits);
ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift));
}
return ret;
}
void kr_bitmask(unsigned char *a, size_t a_len, int bits)
{
if (bits < 0 || !a || !a_len) {
return;
}
size_t i = bits / 8;
const size_t mid_bits = 8 - (bits % 8);
const unsigned char mask = 0xFF << mid_bits;
if (i < a_len)
a[i] &= mask;
for (++i; i < a_len; ++i)
a[i] = 0;
}
int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner,
uint16_t type, uint16_t additional)
{
if (!key || !owner) {
return kr_error(EINVAL);
}
uint8_t *key_buf = (uint8_t *)key;
int ret = u16tostr(key_buf, class);
if (ret <= 0) {
return ret;
}
key_buf += ret;
ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN);
if (ret <= 0) {
return ret;
}
knot_dname_to_lower(key_buf);
key_buf += ret - 1;
ret = u16tostr(key_buf, type);
if (ret <= 0) {
return ret;
}
key_buf += ret;
ret = u16tostr(key_buf, additional);
if (ret <= 0) {
return ret;
}
key_buf[ret] = '\0';
return (char *)&key_buf[ret] - key;
}
/** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */
static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2)
{
bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass;
if (match && rr2->type == KNOT_RRTYPE_RRSIG) {
match = match && knot_rrsig_type_covered(rr1->rrs.rdata)
== knot_rrsig_type_covered(rr2->rrs.rdata);
}
match = match && knot_dname_is_equal(rr1->owner, rr2->owner);
return match;
}
/** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire.
*
* Other entries that would form the same RRset get to_wire = false.
* See also rrsets_match.
*/
static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index)
{
if (kr_fails_assert(array && index < array->len)) return kr_error(EINVAL);
const struct ranked_rr_array_entry *e0 = array->at[index];
if (!e0->to_wire) {
return kr_ok();
}
for (ssize_t i = array->len - 1; i >= 0; --i) {
/* ^ iterate backwards, as the end is more likely in CPU caches */
struct ranked_rr_array_entry *ei = array->at[i];
if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */
|| !ei->to_wire /* no use for complex comparison if @to_wire */
) {
continue;
}
if (rrsets_match(ei->rr, e0->rr)) {
ei->to_wire = false;
}
}
return kr_ok();
}
/* Implementation overview of _add() and _finalize():
* - for rdata we just maintain a list of pointers (in knot_rrset_t::additional)
* - we only construct the final rdataset at the end (and thus more efficiently)
*/
typedef array_t(knot_rdata_t *) rdata_array_t;
int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr,
uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool)
{
/* From normal packet parser we always get RRs one by one,
* but cache and prefil modules (also) feed us larger RRsets. */
kr_assert(rr->rrs.count >= 1);
/* Check if another rrset with the same
* rclass/type/owner combination exists within current query
* and merge if needed */
for (ssize_t i = array->len - 1; i >= 0; --i) {
ranked_rr_array_entry_t *stashed = array->at[i];
if (stashed->yielded) {
break;
}
if (stashed->qry_uid != qry_uid) {
break;
/* We do not guarantee merging RRs "across" any point that switched
* to processing a different upstream packet (i.e. qry_uid).
* In particular, iterator never returns KR_STATE_YIELD. */
}
if (!rrsets_match(stashed->rr, rr)) {
continue;
}
/* Found the entry to merge with. Check consistency and merge. */
if (kr_fails_assert(stashed->rank == rank && !stashed->cached && stashed->in_progress))
return kr_error(EEXIST);
/* It may happen that an RRset is first considered useful
* (to_wire = false, e.g. due to being part of glue),
* and later we may find we also want it in the answer. */
stashed->to_wire = stashed->to_wire || to_wire;
/* We just add the reference into this in_progress RRset. */
rdata_array_t *ra = stashed->rr->additional;
if (ra == NULL) {
/* RRset not in array format yet -> convert it. */
ra = stashed->rr->additional = mm_alloc(pool, sizeof(*ra));
if (!ra) {
return kr_error(ENOMEM);
}
array_init(*ra);
int ret = array_reserve_mm(*ra, stashed->rr->rrs.count + rr->rrs.count,
kr_memreserve, pool);
if (ret) {
return kr_error(ret);
}
knot_rdata_t *r_it = stashed->rr->rrs.rdata;
for (int ri = 0; ri < stashed->rr->rrs.count;
++ri, r_it = knot_rdataset_next(r_it)) {
kr_require(array_push(*ra, r_it) >= 0);
}
} else {
int ret = array_reserve_mm(*ra, ra->len + rr->rrs.count,
kr_memreserve, pool);
if (ret) {
return kr_error(ret);
}
}
/* Append to the array. */
knot_rdata_t *r_it = rr->rrs.rdata;
for (int ri = 0; ri < rr->rrs.count;
++ri, r_it = knot_rdataset_next(r_it)) {
kr_require(array_push(*ra, r_it) >= 0);
}
return i;
}
/* No stashed rrset found, add */
int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool);
if (ret) {
return kr_error(ret);
}
ranked_rr_array_entry_t *entry = mm_calloc(pool, 1, sizeof(*entry));
if (!entry) {
return kr_error(ENOMEM);
}
knot_rrset_t *rr_new = knot_rrset_new(rr->owner, rr->type, rr->rclass, rr->ttl, pool);
if (!rr_new) {
mm_free(pool, entry);
return kr_error(ENOMEM);
}
rr_new->rrs = rr->rrs;
if (kr_fails_assert(rr_new->additional == NULL)) {
mm_free(pool, entry);
return kr_error(EINVAL);
}
entry->qry_uid = qry_uid;
entry->rr = rr_new;
entry->rank = rank;
entry->to_wire = to_wire;
entry->in_progress = true;
if (array_push(*array, entry) < 0) {
/* Silence coverity. It shouldn't be possible to happen,
* due to the array_reserve_mm call above. */
mm_free(pool, entry);
return kr_error(ENOMEM);
}
ret = to_wire_ensure_unique(array, array->len - 1);
if (ret < 0) return ret;
return array->len - 1;
}
/** Comparator for qsort() on an array of knot_data_t pointers. */
static int rdata_p_cmp(const void *rp1, const void *rp2)
{
/* Just correct types of the parameters and pass them dereferenced. */
const knot_rdata_t *const *r1 = (const knot_rdata_t *const *)rp1;
const knot_rdata_t *const *r2 = (const knot_rdata_t *const *)rp2;
return knot_rdata_cmp(*r1, *r2);
}
int kr_ranked_rrarray_finalize(ranked_rr_array_t *array, uint32_t qry_uid, knot_mm_t *pool)
{
for (ssize_t array_i = array->len - 1; array_i >= 0; --array_i) {
ranked_rr_array_entry_t *stashed = array->at[array_i];
if (stashed->qry_uid != qry_uid) {
continue; /* We apparently can't always short-cut the cycle. */
}
if (!stashed->in_progress) {
continue;
}
rdata_array_t *ra = stashed->rr->additional;
if (!ra) {
/* No array, so we just need to copy the rdataset. */
knot_rdataset_t *rds = &stashed->rr->rrs;
knot_rdataset_t tmp = *rds;
int ret = knot_rdataset_copy(rds, &tmp, pool);
if (ret) {
return kr_error(ret);
}
} else {
/* Multiple RRs; first: sort the array. */
stashed->rr->additional = NULL;
qsort((void *)ra->at, ra->len, array_member_size(*ra), rdata_p_cmp);
/* Prune duplicates: NULL all except the last instance. */
int dup_count = 0;
for (int i = 0; i + 1 < ra->len; ++i) {
if (knot_rdata_cmp(ra->at[i], ra->at[i + 1]) == 0) {
ra->at[i] = NULL;
++dup_count;
kr_log_q(NULL, ITERATOR, "deleted duplicate RR\n");
}
}
/* Prepare rdataset, except rdata contents. */
knot_rdataset_t *rds = &stashed->rr->rrs;
rds->size = 0;
for (int i = 0; i < ra->len; ++i) {
if (ra->at[i]) {
rds->size += knot_rdata_size(ra->at[i]->len);
}
}
rds->count = ra->len - dup_count;
if (rds->size) {
rds->rdata = mm_alloc(pool, rds->size);
if (!rds->rdata) {
return kr_error(ENOMEM);
}
} else {
rds->rdata = NULL;
}
/* Everything is ready; now just copy all the rdata. */
uint8_t *raw_it = (uint8_t *)rds->rdata;
for (int i = 0; i < ra->len; ++i) {
if (ra->at[i] && rds->size/*linters*/) {
const int size = knot_rdata_size(ra->at[i]->len);
memcpy(raw_it, ra->at[i], size);
raw_it += size;
}
}
if (kr_fails_assert(raw_it == (uint8_t *)rds->rdata + rds->size))
return kr_error(EINVAL);
}
stashed->in_progress = false;
}
return kr_ok();
}
int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire,
uint32_t qry_uid, bool check_dups,
bool (*extraCheck)(const ranked_rr_array_entry_t *))
{
for (size_t i = 0; i < array->len; ++i) {
ranked_rr_array_entry_t *entry = array->at[i];
if (entry->qry_uid != qry_uid) {
continue;
}
if (extraCheck != NULL && !extraCheck(entry)) {
continue;
}
entry->to_wire = to_wire;
if (check_dups) {
int ret = to_wire_ensure_unique(array, i);
if (ret) return ret;
}
}
return kr_ok();
}
static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env)
{
if (!module || !module->props || !prop) {
return NULL;
}
for (const struct kr_prop *p = module->props; p && p->name; ++p) {
if (p->cb != NULL && strcmp(p->name, prop) == 0) {
return p->cb(env, module, input);
}
}
return NULL;
}
char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
{
if (!ctx || !ctx->modules || !module || !prop) {
return NULL;
}
module_array_t *mod_list = ctx->modules;
for (size_t i = 0; i < mod_list->len; ++i) {
struct kr_module *mod = mod_list->at[i];
if (strcmp(mod->name, module) == 0) {
return callprop(mod, prop, input, ctx);
}
}
return NULL;
}
static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen)
{
int offset = 0;
int ret = 0;
struct {
uint8_t (*get) (const uint8_t *packet);
char name[3];
} flag[7] = {
{knot_wire_get_qr, "qr"},
{knot_wire_get_aa, "aa"},
{knot_wire_get_rd, "rd"},
{knot_wire_get_ra, "ra"},
{knot_wire_get_tc, "tc"},
{knot_wire_get_ad, "ad"},
{knot_wire_get_cd, "cd"}
};
for (int i = 0; i < 7; ++i) {
if (!flag[i].get(pkt->wire)) {
continue;
}
ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name);
if (ret <= 0 || ret >= maxlen) {
dst[0] = 0;
return;
}
offset += ret;
maxlen -= ret;
}
dst[offset] = 0;
}
static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode)
{
uint8_t errcode = knot_edns_get_ext_rcode(rr);
uint16_t ext_rcode_id = knot_edns_whole_rcode(errcode, rcode);
const char *ext_rcode_str = "Unused";
const knot_lookup_t *ext_rcode;
if (errcode > 0) {
ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id);
if (ext_rcode != NULL) {
ext_rcode_str = ext_rcode->name;
} else {
ext_rcode_str = "Unknown";
}
}
return mp_printf_append(mp, endp,
";; EDNS PSEUDOSECTION:\n;; "
"Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n",
knot_edns_get_version(rr),
(knot_edns_do(rr) != 0) ? "do" : "",
knot_edns_get_payload(rr),
ext_rcode_str);
}
/**
* Detect if qname contains an uppercase letter.
*/
static bool qname_has_uppercase(const knot_dname_t *qname) {
const int len = knot_dname_size(qname) - 1; /* skip root label at the end */
for (int i = 1; i < len; ++i) { /* skip first length byte */
/* Note: this relies on the fact that correct label lengths
* can't pass this test by "luck" and that correctness
* is checked earlier by packet parser. */
if (qname[i] >= 'A' && qname[i] <= 'Z')
return true;
}
return false;
}
char *kr_pkt_text(const knot_pkt_t *pkt)
{
if (!pkt) {
return NULL;
}
struct mempool *mp = mp_new(512);
static const char * snames[] = {
";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION"
};
char flags[32];
uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire);
uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire);
const char *rcode_str = "Unknown";
const char *opcode_str = "Unknown";
const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode);
const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode);
uint16_t qry_id = knot_wire_get_id(pkt->wire);
uint16_t qdcount = knot_wire_get_qdcount(pkt->wire);
if (rcode != NULL) {
rcode_str = rcode->name;
}
if (opcode != NULL) {
opcode_str = opcode->name;
}
flags_to_str(flags, pkt, sizeof(flags));
char *ptr = mp_printf(mp,
";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n"
";; Flags: %s QUERY: %hu; ANSWER: %hu; "
"AUTHORITY: %hu; ADDITIONAL: %hu\n\n",
opcode_str, rcode_str, qry_id,
flags,
qdcount,
knot_wire_get_ancount(pkt->wire),
knot_wire_get_nscount(pkt->wire),
knot_wire_get_arcount(pkt->wire));
if (knot_pkt_has_edns(pkt)) {
ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire));
}
if (qdcount == 1) {
KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt));
KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt));
const char *qnwarn;
if (qname_has_uppercase(knot_pkt_qname(pkt)))
qnwarn = \
"; WARNING! Uppercase letters indicate positions with letter case mismatches!\n"
"; Normally you should see all-lowercase qname here.\n";
else
qnwarn = "";
ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s%s\t\t%s\n", qnwarn, qname, rrtype);
} else if (qdcount > 1) {
ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount);
}
for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
if (sec->count == 0) {
continue;
}
ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]);
for (unsigned k = 0; k < sec->count; ++k) {
const knot_rrset_t *rr = knot_pkt_rr(sec, k);
if (rr->type == KNOT_RRTYPE_OPT) {
continue;
}
auto_free char *rr_text = kr_rrset_text(rr);
ptr = mp_printf_append(mp, ptr, "%s", rr_text);
}
}
/* Close growing buffer and duplicate result before deleting */
char *result = strdup(ptr);
mp_delete(mp);
return result;
}
const knot_dump_style_t KR_DUMP_STYLE_DEFAULT = { /* almost all = false, */
.show_ttl = true,
#if KNOT_VERSION_HEX >= 0x030200
.human_timestamp = true,
#else
.human_tmstamp = true,
#endif
};
char *kr_rrset_text(const knot_rrset_t *rr)
{
if (!rr) {
return NULL;
}
/* Note: knot_rrset_txt_dump will double the size until the rrset fits */
size_t bufsize = 128;
char *buf = malloc(bufsize);
int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KR_DUMP_STYLE_DEFAULT);
if (ret < 0) {
free(buf);
return NULL;
}
return buf;
}
uint64_t kr_now(void)
{
return uv_now(uv_default_loop());
}
void kr_uv_free_cb(uv_handle_t* handle)
{
free(handle->data);
}
const char *kr_strptime_diff(const char *format, const char *time1_str,
const char *time0_str, double *diff) {
if (kr_fails_assert(format && time1_str && time0_str && diff)) return NULL;
struct tm time1_tm;
time_t time1_u;
struct tm time0_tm;
time_t time0_u;
char *err = strptime(time1_str, format, &time1_tm);
if (err == NULL || err != time1_str + strlen(time1_str))
return "strptime failed for time1";
time1_tm.tm_isdst = -1; /* determine if DST is active or not */
time1_u = mktime(&time1_tm);
if (time1_u == (time_t)-1)
return "mktime failed for time1";
err = strptime(time0_str, format, &time0_tm);
if (err == NULL || err != time0_str + strlen(time0_str))
return "strptime failed for time0";
time0_tm.tm_isdst = -1; /* determine if DST is active or not */
time0_u = mktime(&time0_tm);
if (time0_u == (time_t)-1)
return "mktime failed for time0";
*diff = difftime(time1_u, time0_u);
return NULL;
}
int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf)
{
knot_dname_t *d = dst; /* moving "cursor" as we write it out */
if (kr_fails_assert(d && (len == 0 || lf))) return kr_error(EINVAL);
/* we allow the final zero byte to be omitted */
if (!len) {
goto finish;
}
if (lf[len - 1]) {
++len;
}
/* convert the name, one label at a time */
int label_end = len - 1; /* index of the zero byte after the current label */
while (label_end >= 0) {
/* find label_start */
int i = label_end - 1;
while (i >= 0 && lf[i])
--i;
const int label_start = i + 1; /* index of the first byte of the current label */
const int label_len = label_end - label_start;
kr_assert(label_len >= 0);
if (label_len > 63 || label_len <= 0)
return kr_error(EILSEQ);
/* write the label */
*d = label_len;
++d;
memcpy(d, lf + label_start, label_len);
d += label_len;
/* next label */
label_end = label_start - 1;
}
finish:
*d = 0; /* the final zero */
++d;
return d - dst;
}
static void rnd_noerror(void *data, uint size)
{
int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size);
if (ret) {
kr_log_error(SYSTEM, "gnutls_rnd(): %s\n", gnutls_strerror(ret));
abort();
}
}
void kr_rnd_buffered(void *data, uint size)
{
/* static circular buffer, from index _begin (inclusive) to _end (exclusive) */
static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */
static uint buf_begin = sizeof(buf);
if (unlikely(size > sizeof(buf))) {
rnd_noerror(data, size);
return;
}
/* Start with contiguous chunk, possibly until the end of buffer. */
const uint size1 = MIN(size, sizeof(buf) - buf_begin);
uint8_t *d = data;
memcpy(d, buf + buf_begin, size1);
if (size1 == size) {
buf_begin += size1;
return;
}
d += size1;
size -= size1;
/* Refill the whole buffer, and finish by another contiguous chunk. */
rnd_noerror(buf, sizeof(buf));
memcpy(d, buf, size);
buf_begin = size;
}
void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner,
uint16_t type, uint16_t rclass, uint32_t ttl)
{
if (kr_fails_assert(rrset)) return;
knot_rrset_init(rrset, owner, type, rclass, ttl);
}
bool kr_pkt_has_wire(const knot_pkt_t *pkt)
{
return pkt->size != KR_PKT_SIZE_NOWIRE;
}
bool kr_pkt_has_dnssec(const knot_pkt_t *pkt)
{
return knot_pkt_has_dnssec(pkt);
}
uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)
{
return knot_pkt_qclass(pkt);
}
uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)
{
return knot_pkt_qtype(pkt);
}
uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)
{
return knot_rrsig_sig_inception(rdata);
}
uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)
{
return knot_rrsig_sig_expiration(rdata);
}
uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)
{
return knot_rrsig_type_covered(rdata);
}
time_t kr_file_mtime (const char* fname) {
struct stat fstat;
if (stat(fname, &fstat) != 0) {
return 0;
}
return fstat.st_mtime;
}
long long kr_fssize(const char *path)
{
if (!path)
return kr_error(EINVAL);
struct statvfs buf;
if (statvfs(path, &buf) != 0)
return kr_error(errno);
return buf.f_frsize * buf.f_blocks;
}
const char * kr_dirent_name(const struct dirent *de)
{
return de ? de->d_name : NULL;
}
|