1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
#include <algorithm> // for std::sort
#include "ac_slow.hpp"
#include "ac_fast.hpp"
uint32
AC_Converter::Calc_State_Sz(const ACS_State* s) const {
AC_State dummy;
uint32 sz = offsetof(AC_State, input_vect);
sz += s->Get_GotoNum() * sizeof(dummy.input_vect[0]);
if (sz < sizeof(AC_State))
sz = sizeof(AC_State);
uint32 align = __alignof__(dummy);
sz = (sz + align - 1) & ~(align - 1);
return sz;
}
AC_Buffer*
AC_Converter::Alloc_Buffer() {
const vector<ACS_State*>& all_states = _acs.Get_All_States();
const ACS_State* root_state = _acs.Get_Root_State();
uint32 root_fanout = root_state->Get_GotoNum();
// Step 1: Calculate the buffer size
AC_Ofst root_goto_ofst, states_ofst_ofst, first_state_ofst;
// part 1 : buffer header
uint32 sz = root_goto_ofst = sizeof(AC_Buffer);
// part 2: Root-node's goto function
if (likely(root_fanout != 255))
sz += 256;
else
root_goto_ofst = 0;
// part 3: mapping of state's relative position.
unsigned align = __alignof__(AC_Ofst);
sz = (sz + align - 1) & ~(align - 1);
states_ofst_ofst = sz;
sz += sizeof(AC_Ofst) * all_states.size();
// part 4: state's contents
align = __alignof__(AC_State);
sz = (sz + align - 1) & ~(align - 1);
first_state_ofst = sz;
uint32 state_sz = 0;
for (vector<ACS_State*>::const_iterator i = all_states.begin(),
e = all_states.end(); i != e; i++) {
state_sz += Calc_State_Sz(*i);
}
state_sz -= Calc_State_Sz(root_state);
sz += state_sz;
// Step 2: Allocate buffer, and populate header.
AC_Buffer* buf = _buf_alloc.alloc(sz);
buf->hdr.magic_num = AC_MAGIC_NUM;
buf->hdr.impl_variant = IMPL_FAST_VARIANT;
buf->buf_len = sz;
buf->root_goto_ofst = root_goto_ofst;
buf->states_ofst_ofst = states_ofst_ofst;
buf->first_state_ofst = first_state_ofst;
buf->root_goto_num = root_fanout;
buf->state_num = _acs.Get_State_Num();
return buf;
}
void
AC_Converter::Populate_Root_Goto_Func(AC_Buffer* buf,
GotoVect& goto_vect) {
unsigned char *buf_base = (unsigned char*)(buf);
InputTy* root_gotos = (InputTy*)(buf_base + buf->root_goto_ofst);
const ACS_State* root_state = _acs.Get_Root_State();
root_state->Get_Sorted_Gotos(goto_vect);
// Renumber the ID of root-node's immediate kids.
uint32 new_id = 1;
bool full_fantout = (goto_vect.size() == 255);
if (likely(!full_fantout))
bzero(root_gotos, 256*sizeof(InputTy));
for (GotoVect::iterator i = goto_vect.begin(), e = goto_vect.end();
i != e; i++, new_id++) {
InputTy c = i->first;
ACS_State* s = i->second;
_id_map[s->Get_ID()] = new_id;
if (likely(!full_fantout))
root_gotos[c] = new_id;
}
}
AC_Buffer*
AC_Converter::Convert() {
// Step 1: Some preparation stuff.
GotoVect gotovect;
_id_map.clear();
_ofst_map.clear();
_id_map.resize(_acs.Get_Next_Node_Id());
_ofst_map.resize(_acs.Get_Next_Node_Id());
// Step 2: allocate buffer to accommodate the entire AC graph.
AC_Buffer* buf = Alloc_Buffer();
unsigned char* buf_base = (unsigned char*)buf;
// Step 3: Root node need special care.
Populate_Root_Goto_Func(buf, gotovect);
buf->root_goto_num = gotovect.size();
_id_map[_acs.Get_Root_State()->Get_ID()] = 0;
// Step 4: Converting the remaining states by BFSing the graph.
// First of all, enter root's immediate kids to the working list.
vector<const ACS_State*> wl;
State_ID id = 1;
for (GotoVect::iterator i = gotovect.begin(), e = gotovect.end();
i != e; i++, id++) {
ACS_State* s = i->second;
wl.push_back(s);
_id_map[s->Get_ID()] = id;
}
AC_Ofst* state_ofst_vect = (AC_Ofst*)(buf_base + buf->states_ofst_ofst);
AC_Ofst ofst = buf->first_state_ofst;
for (uint32 idx = 0; idx < wl.size(); idx++) {
const ACS_State* old_s = wl[idx];
AC_State* new_s = (AC_State*)(buf_base + ofst);
// This property should hold as we:
// - States are appended to worklist in the BFS order.
// - sibiling states are appended to worklist in the order of their
// corresponding input.
//
State_ID state_id = idx + 1;
ASSERT(_id_map[old_s->Get_ID()] == state_id);
state_ofst_vect[state_id] = ofst;
new_s->first_kid = wl.size() + 1;
new_s->depth = old_s->Get_Depth();
new_s->is_term = old_s->is_Terminal() ?
old_s->get_Pattern_Idx() + 1 : 0;
uint32 gotonum = old_s->Get_GotoNum();
new_s->goto_num = gotonum;
// Populate the "input" field
old_s->Get_Sorted_Gotos(gotovect);
uint32 input_idx = 0;
uint32 id = wl.size() + 1;
InputTy* input_vect = new_s->input_vect;
for (GotoVect::iterator i = gotovect.begin(), e = gotovect.end();
i != e; i++, id++, input_idx++) {
input_vect[input_idx] = i->first;
ACS_State* kid = i->second;
_id_map[kid->Get_ID()] = id;
wl.push_back(kid);
}
_ofst_map[old_s->Get_ID()] = ofst;
ofst += Calc_State_Sz(old_s);
}
// This assertion might be useful to catch buffer overflow
ASSERT(ofst == buf->buf_len);
// Populate the fail-link field.
for (vector<const ACS_State*>::iterator i = wl.begin(), e = wl.end();
i != e; i++) {
const ACS_State* slow_s = *i;
State_ID fast_s_id = _id_map[slow_s->Get_ID()];
AC_State* fast_s = (AC_State*)(buf_base + state_ofst_vect[fast_s_id]);
if (const ACS_State* fl = slow_s->Get_FailLink()) {
State_ID id = _id_map[fl->Get_ID()];
fast_s->fail_link = id;
} else
fast_s->fail_link = 0;
}
#ifdef DEBUG
//dump_buffer(buf, stderr);
#endif
return buf;
}
static inline AC_State*
Get_State_Addr(unsigned char* buf_base, AC_Ofst* StateOfstVect, uint32 state_id) {
ASSERT(state_id != 0 && "root node is handled in speical way");
ASSERT(state_id < ((AC_Buffer*)buf_base)->state_num);
return (AC_State*)(buf_base + StateOfstVect[state_id]);
}
// The performance of the binary search is critical to this work.
//
// Here we provide two versions of binary-search functions.
// The non-pristine version seems to consistently out-perform "pristine" one on
// bunch of benchmarks we tested. With the benchmark under tests/testinput/
//
// The speedup is following on my laptop (core i7, ubuntu):
//
// benchmark was is
// ----------------------------------------
// image.bin 2.3s 2.0s
// test.tar 6.7s 5.7s
//
// NOTE: As of I write this comment, we only measure the performance on about
// 10+ benchmarks. It's still too early to say which one works better.
//
#if !defined(BS_MULTI_VER)
static bool __attribute__((always_inline)) inline
Binary_Search_Input(InputTy* input_vect, int vect_len, InputTy input, int& idx) {
if (vect_len <= 8) {
for (int i = 0; i < vect_len; i++) {
if (input_vect[i] == input) {
idx = i;
return true;
}
}
return false;
}
// The "low" and "high" must be signed integers, as they could become -1.
// Also since they are signed integer, "(low + high)/2" is sightly more
// expensive than (low+high)>>1 or ((unsigned)(low + high))/2.
//
int low = 0, high = vect_len - 1;
while (low <= high) {
int mid = (low + high) >> 1;
InputTy mid_c = input_vect[mid];
if (input < mid_c)
high = mid - 1;
else if (input > mid_c)
low = mid + 1;
else {
idx = mid;
return true;
}
}
return false;
}
#else
/* Let us call this version "pristine" version. */
static inline bool
Binary_Search_Input(InputTy* input_vect, int vect_len, InputTy input, int& idx) {
int low = 0, high = vect_len - 1;
while (low <= high) {
int mid = (low + high) >> 1;
InputTy mid_c = input_vect[mid];
if (input < mid_c)
high = mid - 1;
else if (input > mid_c)
low = mid + 1;
else {
idx = mid;
return true;
}
}
return false;
}
#endif
typedef enum {
// Look for the first match. e.g. pattern set = {"ab", "abc", "def"},
// subject string "ababcdef". The first match would be "ab" at the
// beginning of the subject string.
MV_FIRST_MATCH,
// Look for the left-most longest match. Follow above example; there are
// two longest matches, "abc" and "def", and the left-most longest match
// is "abc".
MV_LEFT_LONGEST,
// Similar to the left-most longest match, except that it returns the
// *right* most longest match. Follow above example, the match would
// be "def". NYI.
MV_RIGHT_LONGEST,
// Return all patterns that match that given subject string. NYI.
MV_ALL_MATCHES,
} MATCH_VARIANT;
/* The Match_Tmpl is the template for vairants MV_FIRST_MATCH, MV_LEFT_LONGEST,
* MV_RIGHT_LONGEST (If we really really need MV_RIGHT_LONGEST variant, we are
* better off implementing it in a seprate function).
*
* The Match_Tmpl supports three variants at once "symbolically", once it's
* instanced to a particular variants, all the code irrelevant to the variants
* will be statically removed. So don't worry about the code like
* "if (variant == MV_XXXX)"; they will not incur any penalty.
*
* The drawback of using template is increased code size. Unfortunately, there
* is no silver bullet.
*/
template<MATCH_VARIANT variant> static ac_result_t
Match_Tmpl(AC_Buffer* buf, const char* str, uint32 len) {
unsigned char* buf_base = (unsigned char*)(buf);
unsigned char* root_goto = buf_base + buf->root_goto_ofst;
AC_Ofst* states_ofst_vect = (AC_Ofst* )(buf_base + buf->states_ofst_ofst);
AC_State* state = 0;
uint32 idx = 0;
// Skip leading chars that are not valid input of root-nodes.
if (likely(buf->root_goto_num != 255)) {
while(idx < len) {
unsigned char c = str[idx++];
if (unsigned char kid_id = root_goto[c]) {
state = Get_State_Addr(buf_base, states_ofst_vect, kid_id);
break;
}
}
} else {
idx = 1;
state = Get_State_Addr(buf_base, states_ofst_vect, *str);
}
ac_result_t r = {-1, -1};
if (likely(state != 0)) {
if (unlikely(state->is_term)) {
/* Dictionary may have string of length 1 */
r.match_begin = idx - state->depth;
r.match_end = idx - 1;
r.pattern_idx = state->is_term - 1;
if (variant == MV_FIRST_MATCH) {
return r;
}
}
}
while (idx < len) {
unsigned char c = str[idx];
int res;
bool found;
found = Binary_Search_Input(state->input_vect, state->goto_num, c, res);
if (found) {
// The "t = goto(c, current_state)" is valid, advance to state "t".
uint32 kid = state->first_kid + res;
state = Get_State_Addr(buf_base, states_ofst_vect, kid);
idx++;
} else {
// Follow the fail-link.
State_ID fl = state->fail_link;
if (fl == 0) {
// fail-link is root-node, which implies the root-node dosen't
// have 255 valid transitions (otherwise, the fail-link should
// points to "goto(root, c)"), so we don't need speical handling
// as we did before this while-loop is entered.
//
while(idx < len) {
InputTy c = str[idx++];
if (unsigned char kid_id = root_goto[c]) {
state =
Get_State_Addr(buf_base, states_ofst_vect, kid_id);
break;
}
}
} else {
state = Get_State_Addr(buf_base, states_ofst_vect, fl);
}
}
// Check to see if the state is terminal state?
if (state->is_term) {
if (variant == MV_FIRST_MATCH) {
ac_result_t r;
r.match_begin = idx - state->depth;
r.match_end = idx - 1;
r.pattern_idx = state->is_term - 1;
return r;
}
if (variant == MV_LEFT_LONGEST) {
int match_begin = idx - state->depth;
int match_end = idx - 1;
if (r.match_begin == -1 ||
match_end - match_begin > r.match_end - r.match_begin) {
r.match_begin = match_begin;
r.match_end = match_end;
r.pattern_idx = state->is_term - 1;
}
continue;
}
ASSERT(false && "NYI");
}
}
return r;
}
ac_result_t
Match(AC_Buffer* buf, const char* str, uint32 len) {
return Match_Tmpl<MV_FIRST_MATCH>(buf, str, len);
}
ac_result_t
Match_Longest_L(AC_Buffer* buf, const char* str, uint32 len) {
return Match_Tmpl<MV_LEFT_LONGEST>(buf, str, len);
}
#ifdef DEBUG
void
AC_Converter::dump_buffer(AC_Buffer* buf, FILE* f) {
vector<AC_Ofst> state_ofst;
state_ofst.resize(_id_map.size());
fprintf(f, "Id maps between old/slow and new/fast graphs\n");
int old_id = 0;
for (vector<uint32>::iterator i = _id_map.begin(), e = _id_map.end();
i != e; i++, old_id++) {
State_ID new_id = *i;
if (new_id != 0) {
fprintf(f, "%d -> %d, ", old_id, new_id);
}
}
fprintf(f, "\n");
int idx = 0;
for (vector<uint32>::iterator i = _id_map.begin(), e = _id_map.end();
i != e; i++, idx++) {
uint32 id = *i;
if (id == 0) continue;
state_ofst[id] = _ofst_map[idx];
}
unsigned char* buf_base = (unsigned char*)buf;
// dump root goto-function.
fprintf(f, "root, fanout:%d goto {", buf->root_goto_num);
if (buf->root_goto_num != 255) {
unsigned char* root_goto = buf_base + buf->root_goto_ofst;
for (uint32 i = 0; i < 255; i++) {
if (root_goto[i] != 0)
fprintf(f, "%c->S:%d, ", (unsigned char)i, root_goto[i]);
}
} else {
fprintf(f, "full fanout\n");
}
fprintf(f, "}\n");
// dump remaining states.
AC_Ofst* state_ofst_vect = (AC_Ofst*)(buf_base + buf->states_ofst_ofst);
for (uint32 i = 1, e = buf->state_num; i < e; i++) {
AC_Ofst ofst = state_ofst_vect[i];
ASSERT(ofst == state_ofst[i]);
fprintf(f, "S:%d, ofst:%d, goto={", i, ofst);
AC_State* s = (AC_State*)(buf_base + ofst);
State_ID kid = s->first_kid;
for (uint32 k = 0, ke = s->goto_num; k < ke; k++, kid++)
fprintf(f, "%c->S:%d, ", s->input_vect[k], kid);
fprintf(f, "}, fail-link = S:%d, %s\n", s->fail_link,
s->is_term ? "terminal" : "");
}
}
#endif
|