File: top.c

package info (click to toggle)
knot-resolver 6.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,376 kB
  • sloc: javascript: 42,732; ansic: 40,311; python: 12,580; cpp: 2,121; sh: 1,988; xml: 193; makefile: 181
file content (265 lines) | stat: -rw-r--r-- 8,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*  Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
 *  SPDX-License-Identifier: GPL-3.0-or-later
 */

#include <stdio.h>
#include <limits.h>
#include "lib/utils.h"
#include "lib/defines.h"
#include "lib/cache/top.h"
#include "lib/cache/impl.h"
#include "lib/mmapped.h"
#include "lib/resolve.h"
#include "lib/kru.h"

#define FILE_FORMAT_VERSION 1  // fail if different

#define KRU_CAPACITY(cache_size) (cache_size / 128)   // KRU size is approx. (8 * capacity) B
	// average entry size seems to be 100-200 B,
	// make KRU capacity between cache_size/128 and cache_size/64 (power of two)
	// -> KRU size: between cache_size/16 and cache_size/8 (LMDB size is the rest)
#define TICK_SEC        1
#define NORMAL_SIZE  (150 + KR_CACHE_SIZE_OVERHEAD)  // B; normal size of cache entry
	// used as baseline for the following
#define BASE_PRICE   (((kru_price_t)5) << (KRU_PRICE_BITS - 16))
	// for cache entries of NORMAL_SIZE
	// -> normal increment: 5 (16-bit)
	// -> instant limit:   ~(2^16 / 5)
#define MAX_DECAY    (BASE_PRICE / 2)  // per sec
	// -> rate limit: 1/2 per sec  (more frequent accesses are incomparable)
	// -> half-life:  ~5h 3min

static inline uint32_t ticks_now(void)
{
	struct timespec now_ts = {0};
	int ret = clock_gettime(
		#ifdef CLOCK_REALTIME_COARSE // fails on macOS; docs say it's Linux-specific
			CLOCK_REALTIME_COARSE,
		#else
			CLOCK_REALTIME,
		#endif
		&now_ts);
	kr_assert(ret == 0);
	return now_ts.tv_sec / TICK_SEC;
}

static inline bool first_access_ro(struct kr_cache_top_context *ctx, kru_hash_t hash)
{
	// struct kr_cache_top_context { uint32_t bloom[32]; }
	static_assert(sizeof(((struct kr_cache_top_context *)0)->bloom[0]) * 8 == 32, "");
	static_assert(sizeof(((struct kr_cache_top_context *)0)->bloom)    * 8 == 32 * 32, "");
		// expected around 40 unique cache accesses per request context, possibly up to ~200;
		// prob. of collision of 50th unique access with the preceeding ones: ~0.1 %;
		// 75th: ~0.4 %; 100th: ~1.1 %; 150th: ~3.9 %; 200th: ~8.7 %; 300th: ~23 %; 400th: ~39 %
		//   -> collision means not counting the cache access in KRU while it should be

	uint8_t *h = (uint8_t *)&hash;
	static_assert(sizeof(kru_hash_t) >= 8, "bad size of kru_hash_t");

	bool accessed = 1u &
		(ctx->bloom[h[0] % 32] >> (h[1] % 32)) &
		(ctx->bloom[h[2] % 32] >> (h[3] % 32)) &
		(ctx->bloom[h[4] % 32] >> (h[5] % 32)) &
		(ctx->bloom[h[6] % 32] >> (h[7] % 32));

	return !accessed;
}

static inline bool first_access(struct kr_cache_top_context *ctx, kru_hash_t hash)
{
	if (!first_access_ro(ctx, hash)) return false;

	uint8_t *h = (uint8_t *)&hash;
	static_assert(sizeof(kru_hash_t) >= 8, "bad size of kru_hash_t");

	ctx->bloom[h[0] % 32] |= 1u << (h[1] % 32);
	ctx->bloom[h[2] % 32] |= 1u << (h[3] % 32);
	ctx->bloom[h[4] % 32] |= 1u << (h[5] % 32);
	ctx->bloom[h[6] % 32] |= 1u << (h[7] % 32);

#ifndef NDEBUG // performance vs. benefits; doesn't seem worth doing in production by default
	kr_assert(!first_access_ro(ctx, hash));
#endif

	return true;
}

static inline void get_size_capacity(size_t cache_size, size_t *top_size, size_t *capacity_log)
{
	*top_size = 0;
	*capacity_log = 0;

	const size_t capacity = KRU_CAPACITY(cache_size);
	for (size_t c = capacity - 1; c > 0; c >>= 1) (*capacity_log)++;

	*top_size = offsetof(struct top_data, kru) + KRU.get_size(*capacity_log);
}

size_t kr_cache_top_get_size(size_t cache_size)
{
	size_t top_size, capacity_log;
	get_size_capacity(cache_size, &top_size, &capacity_log);
	return top_size;
}

int kr_cache_top_init(struct kr_cache_top *top, const char *mmap_file, size_t cache_size)
{
	size_t size = 0, capacity_log = 0;
	if (cache_size > 0) {
		get_size_capacity(cache_size, &size, &capacity_log);
	} // else use existing file settings

	struct top_data header = {
		.version          = (FILE_FORMAT_VERSION << 1) | kru_using_avx2(),
		.base_price_norm  = BASE_PRICE * NORMAL_SIZE,
		.max_decay        = MAX_DECAY
	};

	size_t header_size = offsetof(struct top_data, max_decay) + sizeof(header.max_decay);
	static_assert(  // no padding up to .max_decay
		offsetof(struct top_data, max_decay) ==
			sizeof(header.version) +
			sizeof(header.base_price_norm),
		"detected padding with undefined data inside mmapped header");

	if (cache_size == 0) {
		header_size = offsetof(struct top_data, base_price_norm);
	}

	int state = mmapped_init(&top->mmapped, mmap_file, size, &header, header_size, true);
	top->data = top->mmapped.mem;
	bool using_existing = false;

	// try using existing data
	if ((state >= 0) && (state & MMAPPED_EXISTING)) {
		if (!KRU.check_size((struct kru *)top->data->kru, (ptrdiff_t)top->mmapped.size - offsetof(struct top_data, kru))) {
			state = mmapped_init_reset(&top->mmapped, mmap_file, size, &header, header_size);
			top->data = top->mmapped.mem;
		} else {
			using_existing = true;
			state = mmapped_init_finish(&top->mmapped);
		}
	}

	// initialize new instance
	if ((state >= 0) && !(state & MMAPPED_EXISTING) && (state & MMAPPED_PENDING)) {
		bool succ = KRU.initialize((struct kru *)top->data->kru, capacity_log, top->data->max_decay);
		if (!succ) {
			state = kr_error(EINVAL);
			goto fail;
		}
		kr_assert(KRU.check_size((struct kru *)top->data->kru, (ptrdiff_t)top->mmapped.size - offsetof(struct top_data, kru)));

		state = mmapped_init_finish(&top->mmapped);
	}

	if (state < 0) goto fail;
	kr_assert(state == 0);

	kr_log_info(CACHE, "Cache top initialized %s (%s).\n",
			using_existing ? "using existing data" : "as empty",
			(kru_using_avx2() ? "AVX2" : "generic"));
	return 0;

fail:
	kr_cache_top_deinit(top);
	kr_log_crit(SYSTEM, "Initialization of cache top failed.\n");
	return state;
}

void kr_cache_top_deinit(struct kr_cache_top *top)
{
	top->data = NULL;
	mmapped_deinit(&top->mmapped);
}

/* text mode: '\0' -> '|'
 * hex bytes: <x00010203x>
 * decimal bytes: <0.1.2.3>
 * CACHE_KEY_DEF
 */
char *kr_cache_top_strkey(void *key, size_t len)
{
	static char str[4 * KR_CACHE_KEY_MAXLEN + 1];
	if (4 * len + 1 > sizeof(str)) len = (sizeof(str) - 1) / 4;
	unsigned char *k = key;

	bool bytes_mode = false;
	bool decimal_bytes = false;
	int force_bytes = 0;
	char *strp = str;
	for (size_t i = 0; i < len; i++) {
		unsigned char c = k[i];
		if ((force_bytes-- <= 0) &&
				((c == 0) || ((c > ' ') && (c <= '~') && (c != '|') && (c != '<') && (c != '>')))) {
			//if (c == ' ') c = '_';
			if (c == 0)   c = '|';
			if (bytes_mode) {
				if (decimal_bytes) strp--;
				*strp++ = '>';
				bytes_mode = false;
				decimal_bytes = false;
			}
			*strp++ = c;
			if ((i > 0) && (k[i - 1] == '\0') && ((i == 1) || k[i - 2] == '\0')) {
				switch (k[i]) {
					case 'S':
						if (len == 6) decimal_bytes = true;
						// pass through
					case '3':
						force_bytes = INT_MAX;
						break;
					case 'E':
						force_bytes = true;
						decimal_bytes = true;
						break;
				}
			}
		} else {
			if (!bytes_mode) {
				*strp++ = '<';
				if (!decimal_bytes) *strp++ = 'x';
				bytes_mode = true;
			}
			if (decimal_bytes) {
				if (c >= 100) *strp++ = '0' + c / 100;
				if (c >= 10)  *strp++ = '0' + c / 10 % 10;
				*strp++ = '0' + c % 10;
				*strp++ = '.';
			} else {
				*strp++ = "0123456789ABCDEF"[c >> 4];
				*strp++ = "0123456789ABCDEF"[c & 15];
			}
		}
	}
	if (bytes_mode) {
		if (decimal_bytes) {
			strp--;
		} else {
			*strp++ = 'x';
		}
		*strp++ = '>';
		bytes_mode = false;
	}
	*strp++ = '\0';
	return str;
}

void kr_cache_top_access(struct kr_request *req, void *key, size_t key_len, size_t data_size, char *debug_label)
{
	struct kr_cache_top *top = &req->ctx->cache.top;
	struct kr_cache_top_context *ctx = &req->cache_top_context;
	kru_hash_t hash = KRU.hash_bytes((struct kru *)&top->data->kru, (uint8_t *)key, key_len);
	const bool unique = ctx ? first_access(ctx, hash) : true;
	if (!unique) return;

	const size_t size = kr_cache_top_entry_size(key_len, data_size);
	const kru_price_t price = kr_cache_top_entry_price(top, size);
	KRU.load_hash((struct kru *)&top->data->kru, ticks_now(), hash, price);
}

uint16_t kr_cache_top_load(struct kr_cache_top *top, void *key, size_t len)
{
	kru_hash_t hash = KRU.hash_bytes((struct kru *)&top->data->kru, (uint8_t *)key, len);
	return KRU.load_hash((struct kru *)&top->data->kru, ticks_now(), hash, 0);
}