1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include "lib/rules/api.h"
#include "lib/rules/impl.h"
#include "lib/cache/cdb_lmdb.h"
#include <stdlib.h>
struct kr_rules *the_rules = NULL;
/* The default TTL value is a compromise and probably of little practical impact.
* - answering from local rules should be quite cheap,
* so very high values are not expected to bring any improvements
* - on the other hand, rules are not expected to change very dynamically
*/
const uint32_t KR_RULE_TTL_DEFAULT = 300;
const kr_rule_opts_t KR_RULE_OPTS_DEFAULT = { .score = KR_RULE_SCORE_DEFAULT, /*and zeros*/ };
/* DB key-space summary
- "\0" starts special keys like "\0rulesets" or "\0stamp"
- "\0tagBits" -> kr_rule_tags_t denoting the set of tags that have a name in DB
- "\0tag_" + tag name -> one byte with the tag's number
- some future additions?
- otherwise it's rulesets - each has a prefix, e.g. RULESET_DEFAULT,
its length is bounded by KEY_RULESET_MAXLEN - 1; after that prefix:
- KEY_EXACT_MATCH + dname_lf ended by double '\0' + KNOT_RRTYPE_FOO
-> exact-match rule (for the given name)
- KEY_ZONELIKE_A + dname_lf (no '\0' at end)
-> zone-like apex (on the given name)
- KEY_VIEW_SRC4 or KEY_VIEW_SRC6 + subnet_encode()
-> conditions + action-rule string; see kr_view_insert_action()
*/
/*const*/ char RULESET_DEFAULT[] = "d";
static const uint8_t KEY_EXACT_MATCH[1] = "e";
static const uint8_t KEY_ZONELIKE_A [1] = "a";
static const uint8_t KEY_VIEW_SRC4[1] = "4";
static const uint8_t KEY_VIEW_SRC6[1] = "6";
/// Returns for functions below: RET_ANSWERED, RET_CONTINUE, negative error codes for bugs
enum ret_codes_ {
RET_CONT_CACHE = 0,
RET_ANSWERED = 1,
RET_CONTINUE = 2,
};
static int answer_exact_match(struct kr_query *qry, knot_pkt_t *pkt, uint16_t type,
knot_db_val_t *val);
static int answer_zla_empty(val_zla_type_t type, struct kr_query *qry, knot_pkt_t *pkt,
knot_db_val_t zla_lf, uint32_t ttl);
static int answer_zla_dname(val_zla_type_t type, struct kr_query *qry, knot_pkt_t *pkt,
knot_db_val_t zla_lf, uint32_t ttl, knot_db_val_t *val);
static int answer_zla_redirect(struct kr_query *qry, knot_pkt_t *pkt, const char *ruleset_name,
knot_db_val_t zla_lf, uint32_t ttl);
static int rule_local_subtree(const knot_dname_t *apex, enum kr_rule_sub_t type,
const knot_dname_t *target, uint32_t ttl,
kr_rule_tags_t tags, kr_rule_opts_t opts);
// LATER: doing tag_names_default() and kr_rule_tag_add() inside a RW transaction would be better.
static int tag_names_default(void)
{
uint8_t key_tb_str[] = "\0tagBits";
knot_db_val_t key = { .data = key_tb_str, .len = sizeof(key_tb_str) };
knot_db_val_t val;
// Check what's in there.
int ret = ruledb_op(read, &key, &val, 1);
if (ret == 0 && !kr_fails_assert(val.data && val.len == sizeof(kr_rule_tags_t)))
return kr_ok(); // it's probably OK
if (ret != kr_error(ENOENT))
return kr_error(ret);
kr_rule_tags_t empty = 0;
val.data = ∅
val.len = sizeof(empty);
return ruledb_op(write, &key, &val, 1); // we got ENOENT, so simple write is OK
}
int kr_rule_tag_add(const char *tag, kr_rule_tags_t *tagset)
{
ENSURE_the_rules;
// Construct the DB key.
const uint8_t key_prefix[] = "\0tag_";
knot_db_val_t key;
knot_db_val_t val;
const size_t tag_len = strlen(tag);
key.len = sizeof(key_prefix) + tag_len;
uint8_t key_buf[key.len];
key.data = key_buf;
memcpy(key_buf, key_prefix, sizeof(key_prefix));
memcpy(key_buf + sizeof(key_prefix), tag, tag_len);
int ret = ruledb_op(read, &key, &val, 1);
if (ret == 0) { // tag exists already
uint8_t *tindex_p = val.data;
static_assert(KR_RULE_TAGS_CAP < (1 << 8 * sizeof(*tindex_p)),
"bad combination of constants");
if (kr_fails_assert(val.data && val.len == 1
&& *tindex_p < KR_RULE_TAGS_CAP)) {
kr_log_error(RULES, "ERROR: invalid length: %d\n", (int)val.len);
return kr_error(EILSEQ);
}
*tagset |= ((kr_rule_tags_t)1 << *tindex_p);
return kr_ok();
} else if (ret != kr_error(ENOENT)) {
return ret;
}
// We need to add it as a new tag. First find the bitmap of named tags.
uint8_t key_tb_str[] = "\0tagBits";
knot_db_val_t key_tb = { .data = key_tb_str, .len = sizeof(key_tb_str) };
ret = ruledb_op(read, &key_tb, &val, 1);
if (ret != 0)
return kr_error(ret);
if (kr_fails_assert(val.data && val.len == sizeof(kr_rule_tags_t))) {
kr_log_error(RULES, "ERROR: invalid length: %d\n", (int)val.len);
return kr_error(EILSEQ);
}
kr_rule_tags_t bmp;
memcpy(&bmp, val.data, sizeof(bmp));
// Find a free index.
static_assert(sizeof(long long) >= sizeof(bmp), "bad combination of constants");
int ix = ffsll(~bmp) - 1;
if (ix < 0 || ix >= 8 * sizeof(bmp))
return kr_error(E2BIG);
const kr_rule_tags_t tag_new = (kr_rule_tags_t)1 << ix;
kr_require((tag_new & bmp) == 0);
// Update the bitmap. ATM ruledb does not overwrite, so we `remove` before `write`.
bmp |= tag_new;
val.data = &bmp;
val.len = sizeof(bmp);
ret = ruledb_op(remove, &key_tb, 1); kr_assert(ret == 1);
ret = ruledb_op(write, &key_tb, &val, 1);
if (ret != 0)
return kr_error(ret);
// Record this tag's mapping.
uint8_t ix_8t = ix;
val.data = &ix_8t;
val.len = sizeof(ix_8t);
ret = ruledb_op(write, &key, &val, 1); // key remained correct since ENOENT
if (ret != 0)
return kr_error(ret);
*tagset |= tag_new;
return kr_ok();
}
int kr_rules_init_ensure(void)
{
if (the_rules)
return kr_ok();
return kr_rules_init(NULL, 0, true);
}
int kr_rules_init(const char *path, size_t maxsize, bool overwrite)
{
if (the_rules)
return kr_error(EINVAL);
the_rules = calloc(1, sizeof(*the_rules));
kr_require(the_rules);
the_rules->api = kr_cdb_lmdb();
struct kr_cdb_opts opts = {
.is_cache = false,
.path = path ? path : "ruledb", // under current workdir
// FIXME: the file will be sparse, but we still need to choose its size somehow.
// Later we might improve it to auto-resize in case of running out of space.
// Caveat: mdb_env_set_mapsize() can only be called without transactions open.
.maxsize = !overwrite ? 0 :
(maxsize ? maxsize : (size_t)(sizeof(size_t) > 4 ? 2048 : 500) * 1024*1024),
};
int ret = the_rules->api->open(&the_rules->db, &the_rules->stats, &opts, NULL);
if (ret == 0 && overwrite) ret = ruledb_op(clear, 0);
if (ret != 0) goto failure;
kr_require(the_rules->db);
if (!overwrite) return kr_ok(); // we assume that the caller ensured OK contents
ret = tag_names_default();
if (ret != 0) goto failure;
ret = rules_defaults_insert();
if (ret != 0) goto failure;
/* Activate one default ruleset. */
uint8_t key_rs[] = "\0rulesets";
knot_db_val_t key = { .data = key_rs, .len = sizeof(key_rs) };
knot_db_val_t rulesets = { .data = &RULESET_DEFAULT, .len = strlen(RULESET_DEFAULT) + 1 };
ret = ruledb_op(remove, &key, 1); kr_assert(ret == 0 || ret == 1);
ret = ruledb_op(write, &key, &rulesets, 1);
if (ret == 0) return kr_ok();
failure:
free(the_rules);
the_rules = NULL;
auto_free const char *path_abs = kr_absolutize_path(".", opts.path);
kr_log_error(RULES, "failed while opening or initializing rule DB %s/\n", path_abs);
return ret;
}
void kr_rules_deinit(void)
{
if (!the_rules) return;
ruledb_op(close);
free(the_rules);
the_rules = NULL;
}
int kr_rules_commit(bool accept)
{
if (!the_rules) return kr_error(EINVAL);
return ruledb_op(commit, accept, false);
}
int kr_rules_reset(void)
{
if (!the_rules) return kr_error(EINVAL);
return ruledb_op(commit, false, true);
}
static bool kr_rule_consume_tags(knot_db_val_t *val, const struct kr_request *req)
{
kr_rule_tags_t tags;
if (deserialize_fails_assert(val, &tags)) {
val->len = 0;
/* We may not fail immediately, but further processing
* will fail anyway due to zero remaining length. */
return false;
}
return tags == KR_RULE_TAGS_ALL || (tags & req->rule_tags);
}
/// Log that we apply a local-data rule (if desired)
// TODO: we might parametrize by some log string that expresses e.g. the type of rule
static void log_rule(kr_rule_opts_t opts, const struct kr_query *qry)
{
const struct kr_request *req = qry->request;
const int level = map_log_level(opts.log_level);
bool do_log = opts.score >= req->rule_score_log
&& (kr_log_is_debug(RULES, req) || KR_LOG_LEVEL_IS(level));
if (!do_log)
return;
bool applied = opts.score >= req->rule_score_apply;
//// Let's construct the log message, piece by piece in `s**` variables.
const char * s1a = "=> local data ",
*s1b = applied ? "applied" : "dry-run";
const char *s2a = "";
char s2b[INET6_ADDRSTRLEN + 1] = "";
if (opts.log_ip) {
s2a = ", user: ";
const struct sockaddr *addr = req->qsource.addr;
if (addr) {
bool ok = inet_ntop(addr->sa_family, kr_inaddr(addr), s2b, sizeof(s2b));
kr_assert(ok);
} else {
strcpy(s2b, "internal");
}
}
const char *s3a = "";
char s3b[KR_DNAME_STR_MAXLEN] = "";
if (opts.log_name) {
s3a = ", name: ";
knot_dname_to_str(s3b, qry->sname, sizeof(s3b));
s3b[sizeof(s3b) - 1] = 0;
}
kr_log_fmt(LOG_GRP_RULES, level, SD_JOURNAL_METADATA,
"[%-6s] %s%s%s%s%s%s\n",
LOG_GRP_RULES_TAG, s1a, s1b, s2a, s2b, s3a, s3b);
}
/** Add name lookup format on the fixed end-position inside key_data.
*
* Note: key_data[KEY_DNAME_END_OFFSET] = '\0' even though
* not always used as a part of the key. */
static inline uint8_t * key_dname_lf(const knot_dname_t *name, uint8_t key_data[KEY_MAXLEN])
{
return knot_dname_lf(name, key_data + KEY_RULESET_MAXLEN + 1)
// FIXME: recheck
+ (name[0] == '\0' ? 0 : 1);
}
/** Return length of the common prefix of two strings (knot_db_val_t). */
static size_t key_common_prefix(knot_db_val_t k1, knot_db_val_t k2)
{
const size_t len = MIN(k1.len, k2.len);
const uint8_t *data1 = k1.data, *data2 = k2.data;
kr_require(len == 0 || (data1 && data2));
for (ssize_t i = 0; i < len; ++i) {
if (data1[i] != data2[i])
return i;
}
return len;
}
/** Find common "subtree" of two strings that both end in a dname_lf ('\0' terminator excluded).
*
* \return index pointing at the '\0' ending the last matching label
* (possibly the virtual '\0' just past the end of either string),
* or if no LF label matches, the first character that differs
* Function reviewed thoroughly, including the dependency.
*/
static size_t key_common_subtree(knot_db_val_t k1, knot_db_val_t k2, size_t lf_start_i)
{
ssize_t i = key_common_prefix(k1, k2);
const char *data1 = k1.data, *data2 = k2.data;
// beware: '\0' at the end is excluded, so we need to handle ends separately
if (i <= lf_start_i
|| (i == k1.len && i == k2.len)
|| (i == k1.len && data2[i] == '\0')
|| (i == k2.len && data1[i] == '\0')) {
return i;
}
do {
--i;
if (i <= lf_start_i)
return i;
if (data2[i] == '\0')
return i;
} while (true);
}
int rule_local_data_answer(struct kr_query *qry, knot_pkt_t *pkt)
{
kr_require(the_rules);
// TODO: implement EDE codes somehow
//if (kr_fails_assert(!qry->data_src.initialized)) // low-severity assertion
if (qry->data_src.initialized) // TODO: why does it happen?
memset(&qry->data_src, 0, sizeof(qry->data_src));
const uint16_t rrtype = qry->stype;
// Init the SNAME-based part of key; it's pretty static.
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key;
key.data = key_dname_lf(qry->sname, key_data);
key_data[KEY_DNAME_END_OFFSET + 1] = '\0'; // double zero
key.data -= sizeof(KEY_EXACT_MATCH);
int ret;
// Init code for managing the ruleset part of the key.
// LATER(optim.): we might cache the ruleset list a bit
uint8_t * const key_data_ruleset_end = key.data;
knot_db_val_t rulesets = { NULL, 0 };
{
uint8_t key_rs[] = "\0rulesets";
knot_db_val_t key_rsk = { .data = key_rs, .len = sizeof(key_rs) };
ret = ruledb_op(read, &key_rsk, &rulesets, 1);
}
if (ret == kr_error(ENOENT)) return RET_CONT_CACHE; // no rulesets -> no rule used
if (ret != 0) return kr_error(ret);
const char *rulesets_str = rulesets.data;
// Iterate over all rulesets.
while (rulesets.len > 0) {
const char * const ruleset_name = rulesets_str;
{ // Write ruleset-specific prefix of the key.
const size_t rsp_len = strnlen(rulesets_str, rulesets.len);
kr_require(rsp_len <= KEY_RULESET_MAXLEN - 1);
key.data = key_data_ruleset_end - rsp_len;
memcpy(key.data, rulesets_str, rsp_len);
rulesets_str += rsp_len + 1;
rulesets.len -= rsp_len + 1;
}
// Probe for exact and CNAME rule.
memcpy(key_data_ruleset_end, &KEY_EXACT_MATCH, sizeof(KEY_EXACT_MATCH));
key.len = key_data + KEY_DNAME_END_OFFSET + 2 + sizeof(rrtype)
- (uint8_t *)key.data;
const uint16_t types[] = { rrtype, KNOT_RRTYPE_CNAME };
const bool want_CNAME = rrtype != KNOT_RRTYPE_CNAME
&& rrtype != KNOT_RRTYPE_DS;
for (int i = 0; i < 1 + want_CNAME; ++i) {
memcpy(key_data + KEY_DNAME_END_OFFSET + 2, &types[i], sizeof(rrtype));
knot_db_val_t val;
// Multiple variants are possible, with different tags.
for (ret = ruledb_op(it_first, &key, &val);
ret == 0;
ret = ruledb_op(it_next, &val)) {
if (!kr_rule_consume_tags(&val, qry->request))
continue;
// We found a rule that applies to the dname+rrtype+req.
ret = answer_exact_match(qry, pkt, types[i], &val);
if (ret != RET_CONTINUE)
return ret;
}
if (kr_fails_assert(ret == 0 || ret == -ENOENT))
return kr_error(ret);
}
/* Find the closest zone-like apex that applies.
* Now the key needs one byte change and a little truncation
* (we may truncate repeatedly). */
static_assert(sizeof(KEY_ZONELIKE_A) == sizeof(KEY_EXACT_MATCH),
"bad combination of constants");
memcpy(key_data_ruleset_end, &KEY_ZONELIKE_A, sizeof(KEY_ZONELIKE_A));
key.len = key_data + KEY_DNAME_END_OFFSET - (uint8_t *)key.data;
const size_t lf_start_i = key_data_ruleset_end + sizeof(KEY_ZONELIKE_A)
- (const uint8_t *)key.data;
kr_require(lf_start_i < KEY_MAXLEN);
knot_db_val_t key_leq = key;
knot_db_val_t val;
if (rrtype == KNOT_RRTYPE_DS)
goto shorten; // parent-side type, belongs into zone closer to root
// LATER: again, use cursor to iterate over multiple rules on the same key.
do {
ret = ruledb_op(read_leq, &key_leq, &val);
if (ret == -ENOENT) break;
if (ret < 0) return kr_error(ret);
if (ret > 0) { // found a previous key
size_t cs_len = key_common_subtree(key, key_leq, lf_start_i);
if (cs_len < lf_start_i) // no suitable key can exist in DB
break;
if (cs_len < key_leq.len) { // retry at the common subtree
key_leq.len = cs_len;
continue;
}
kr_assert(cs_len == key_leq.len);
}
const knot_db_val_t zla_lf = {
.data = key_leq.data + lf_start_i,
.len = key_leq.len - lf_start_i,
};
// Found some good key, now check tags.
if (!kr_rule_consume_tags(&val, qry->request)) {
kr_assert(key_leq.len >= lf_start_i);
shorten:
// Shorten key_leq by one label and retry.
if (key_leq.len <= lf_start_i) // nowhere to shorten
break;
const char *data = key_leq.data;
while (key_leq.len > lf_start_i && data[--key_leq.len] != '\0') ;
continue;
}
// Tags OK; get ZLA type and deal with special _FORWARD case
val_zla_type_t ztype;
if (deserialize_fails_assert(&val, &ztype))
return kr_error(EILSEQ);
if (ztype == VAL_ZLAT_FORWARD) {
knot_dname_t apex_name[KNOT_DNAME_MAXLEN];
ret = knot_dname_lf2wire(apex_name, zla_lf.len, zla_lf.data);
if (kr_fails_assert(ret > 0)) return kr_error(ret);
if (val.len > 0 // zero len -> default flags
&& deserialize_fails_assert(&val, &qry->data_src.flags)) {
return kr_error(EILSEQ);
}
qry->data_src.initialized = true;
qry->data_src.targets_ptr = val;
qry->data_src.rule_depth = knot_dname_labels(apex_name, NULL);
return RET_CONT_CACHE;
}
// Process opts.
kr_rule_opts_t opts;
if (deserialize_fails_assert(&val, &opts))
return kr_error(EILSEQ);
log_rule(opts, qry);
if (opts.score < qry->request->rule_score_apply)
goto shorten; // continue looking for rules
// The non-forward types optionally specify TTL.
uint32_t ttl = KR_RULE_TTL_DEFAULT;
if (val.len >= sizeof(ttl)) // allow omitting -> can't kr_assert
deserialize_fails_assert(&val, &ttl);
// Finally execute the rule.
switch (ztype) {
case KR_RULE_SUB_EMPTY:
case KR_RULE_SUB_NXDOMAIN:
case KR_RULE_SUB_NODATA:
ret = answer_zla_empty(ztype, qry, pkt, zla_lf, ttl);
break;
case KR_RULE_SUB_REDIRECT:
ret = answer_zla_redirect(qry, pkt, ruleset_name, zla_lf, ttl);
break;
case KR_RULE_SUB_DNAME:
ret = answer_zla_dname(ztype, qry, pkt, zla_lf, ttl, &val);
break;
default:
return kr_error(EILSEQ);
}
if (kr_fails_assert(val.len == 0)) {
kr_log_error(RULES, "ERROR: unused bytes: %zu\n", val.len);
return kr_error(EILSEQ);
}
if (ret == kr_error(EAGAIN))
goto shorten;
return ret ? kr_error(ret) : RET_ANSWERED;
} while (true);
}
return RET_CONT_CACHE;
}
/** SOA RDATA content, used as default in negative answers.
*
* It's as recommended except for using a fixed mname (for simplicity):
https://tools.ietf.org/html/rfc6303#section-3
*/
static const uint8_t soa_rdata[] = "\x09localhost\0\6nobody\7invalid\0"
"\0\0\0\1\0\0\x0e\x10\0\0\4\xb0\0\x09\x3a\x80\0\0\x2a\x30";
#define CHECK_RET(ret) do { \
if ((ret) < 0) { kr_assert(false); return kr_error((ret)); } \
} while (false)
static int answer_exact_match(struct kr_query *qry, knot_pkt_t *pkt, uint16_t type,
knot_db_val_t *val)
{
/* Process opts. */
kr_rule_opts_t opts;
if (deserialize_fails_assert(val, &opts))
return kr_error(EILSEQ);
log_rule(opts, qry);
if (opts.score < qry->request->rule_score_apply)
return RET_CONTINUE;
uint32_t ttl;
if (deserialize_fails_assert(val, &ttl))
return kr_error(EILSEQ);
/* Start constructing the (pseudo-)packet. */
int ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
struct answer_rrset arrset;
memset(&arrset, 0, sizeof(arrset));
/* Materialize the base RRset.
* Error handling: we assume it's OK to leak a bit memory from pkt->mm. */
arrset.set.rr = knot_rrset_new(qry->sname, type, KNOT_CLASS_IN, ttl, &pkt->mm);
if (kr_fails_assert(arrset.set.rr))
return kr_error(ENOMEM);
ret = rdataset_materialize_val(&arrset.set.rr->rrs, val, &pkt->mm);
CHECK_RET(ret);
arrset.set.rank = KR_RANK_SECURE | KR_RANK_AUTH; // local data has high trust
arrset.set.expiring = false;
/* Materialize the RRSIG RRset for the answer in (pseudo-)packet.
* (There will almost never be any RRSIG.) */
ret = rdataset_materialize_val(&arrset.sig_rds, val, &pkt->mm);
CHECK_RET(ret);
/* Sanity check: we consumed exactly all data. */
if (kr_fails_assert(val->len == 0)) {
kr_log_error(RULES, "ERROR: unused bytes: %zu\n", val->len);
return kr_error(EILSEQ);
}
/* Special NODATA sub-case. */
knot_rrset_t *rr = arrset.set.rr;
const int is_nodata = rr->rrs.count == 0;
if (is_nodata) {
if (kr_fails_assert(arrset.sig_rds.count == 0))
return kr_error(EILSEQ);
rr->type = KNOT_RRTYPE_SOA;
ret = knot_rrset_add_rdata(rr, soa_rdata, sizeof(soa_rdata) - 1, &pkt->mm);
CHECK_RET(ret);
ret = knot_pkt_begin(pkt, KNOT_AUTHORITY);
CHECK_RET(ret);
}
/* Put links to the materialized data into the pkt. */
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_NOERROR);
ret = pkt_append(pkt, &arrset);
CHECK_RET(ret);
/* Finishing touches. */
qry->flags.EXPIRING = false;
qry->flags.CACHED = true;
qry->flags.NO_MINIMIZE = true;
return RET_ANSWERED;
}
knot_db_val_t local_data_key(const knot_rrset_t *rrs, uint8_t key_data[KEY_MAXLEN],
const char *ruleset_name)
{
knot_db_val_t key;
key.data = key_dname_lf(rrs->owner, key_data);
key_data[KEY_DNAME_END_OFFSET + 1] = '\0'; // double zero
key.data -= sizeof(KEY_EXACT_MATCH);
memcpy(key.data, &KEY_EXACT_MATCH, sizeof(KEY_EXACT_MATCH));
const size_t rsp_len = strlen(ruleset_name);
key.data -= rsp_len;
memcpy(key.data, ruleset_name, rsp_len);
memcpy(key_data + KEY_DNAME_END_OFFSET + 2, &rrs->type, sizeof(rrs->type));
key.len = key_data + KEY_DNAME_END_OFFSET + 2 + sizeof(rrs->type)
- (uint8_t *)key.data;
return key;
}
int kr_rule_local_data_ins(const knot_rrset_t *rrs, const knot_rdataset_t *sig_rds,
kr_rule_tags_t tags, kr_rule_opts_t opts)
{
ENSURE_the_rules;
// Construct the DB key.
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key = local_data_key(rrs, key_data, RULESET_DEFAULT);
return local_data_ins(key, rrs, sig_rds, tags, opts);
}
int local_data_ins(knot_db_val_t key, const knot_rrset_t *rrs, const knot_rdataset_t *sig_rds,
kr_rule_tags_t tags, kr_rule_opts_t opts)
{
// Prepare the data into a temporary buffer.
const int rr_ssize = rdataset_dematerialize_size(&rrs->rrs);
const int val_len = sizeof(tags) + sizeof(opts) + sizeof(rrs->ttl) + rr_ssize
+ rdataset_dematerialize_size(sig_rds);
uint8_t buf[val_len], *data = buf;
memcpy(data, &tags, sizeof(tags));
data += sizeof(tags);
memcpy(data, &opts, sizeof(opts));
data += sizeof(opts);
memcpy(data, &rrs->ttl, sizeof(rrs->ttl));
data += sizeof(rrs->ttl);
rdataset_dematerialize(&rrs->rrs, data);
data += rr_ssize;
rdataset_dematerialize(sig_rds, data);
knot_db_val_t val = { .data = buf, .len = val_len };
int ret = ruledb_op(write, &key, &val, 1); // TODO: overwriting on ==tags?
// ENOSPC seems to be the only expectable error.
kr_assert(ret == 0 || ret == kr_error(ENOSPC));
if (ret || rrs->type != KNOT_RRTYPE_DNAME)
return ret;
// Now we do special handling for DNAMEs
// - we inserted as usual, so that it works with QTYPE == DNAME
// - now we insert a ZLA to handle generating CNAMEs
// - yes, some edge cases won't work as in real DNS zones (e.g. occlusion)
if (kr_fails_assert(rrs->rrs.count))
return kr_error(EINVAL);
return rule_local_subtree(rrs->owner, KR_RULE_SUB_DNAME,
knot_dname_target(rrs->rrs.rdata), rrs->ttl, tags, opts);
}
int kr_rule_local_data_del(const knot_rrset_t *rrs, kr_rule_tags_t tags)
{
ENSURE_the_rules;
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key = local_data_key(rrs, key_data, RULESET_DEFAULT);
return ruledb_op(remove, &key, 1);
}
int kr_rule_local_data_merge(const knot_rrset_t *rrs, const kr_rule_tags_t tags, kr_rule_opts_t opts)
{
ENSURE_the_rules;
// Construct the DB key.
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key = local_data_key(rrs, key_data, RULESET_DEFAULT);
knot_db_val_t val;
// Transaction: we assume that we're in a RW transaction already,
// so that here we already "have a lock" on the last version.
// FIXME: iterate over multiple tags, once iterator supports RW TXN
int ret = ruledb_op(read, &key, &val, 1);
if (abs(ret) == abs(ENOENT))
goto fallback;
if (ret)
return kr_error(ret);
// check tags
kr_rule_tags_t tags_old;
if (deserialize_fails_assert(&val, &tags_old) || tags_old != tags)
goto fallback;
kr_rule_opts_t opts_old;
if (deserialize_fails_assert(&val, &opts_old))
goto fallback;
// merge TTLs
uint32_t ttl;
if (deserialize_fails_assert(&val, &ttl))
goto fallback;
if (ttl > rrs->ttl)
ttl = rrs->ttl;
knot_rrset_t rrs_new;
knot_rrset_init(&rrs_new, rrs->owner, rrs->type, rrs->rclass, ttl);
// merge the rdatasets
knot_mm_t *mm = mm_ctx_mempool2(MM_DEFAULT_BLKSIZE); // frag. optimization
if (!mm)
return kr_error(ENOMEM);
ret = rdataset_materialize(&rrs_new.rrs, val.data, val.data + val.len, mm);
if (kr_fails_assert(ret >= 0)) { // just invalid call or rubbish data
mm_ctx_delete(mm);
return ret;
}
ret = knot_rdataset_merge(&rrs_new.rrs, &rrs->rrs, mm);
if (ret) { // ENOMEM or hitting 64 KiB limit
mm_ctx_delete(mm);
return kr_error(ret);
}
// everything is ready to insert the merged RRset
ret = local_data_ins(key, &rrs_new, NULL, tags, opts);
mm_ctx_delete(mm);
return ret;
fallback:
return local_data_ins(key, rrs, NULL, tags, opts);
}
/** Empty or NXDOMAIN or NODATA. Returning kr_error(EAGAIN) means the rule didn't match. */
static int answer_zla_empty(val_zla_type_t type, struct kr_query *qry, knot_pkt_t *pkt,
const knot_db_val_t zla_lf, uint32_t ttl)
{
if (kr_fails_assert(type == KR_RULE_SUB_EMPTY || type == KR_RULE_SUB_NXDOMAIN
|| type == KR_RULE_SUB_NODATA))
return kr_error(EINVAL);
knot_dname_t apex_name[KNOT_DNAME_MAXLEN];
int ret = knot_dname_lf2wire(apex_name, zla_lf.len, zla_lf.data);
CHECK_RET(ret);
const bool hit_apex = knot_dname_is_equal(qry->sname, apex_name);
if (hit_apex && type == KR_RULE_SUB_NODATA)
return kr_error(EAGAIN);
/* Start constructing the (pseudo-)packet. */
ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
struct answer_rrset arrset;
memset(&arrset, 0, sizeof(arrset));
/* Construct SOA or NS data (hardcoded content). _EMPTY has a proper zone apex. */
const bool want_NS = hit_apex && type == KR_RULE_SUB_EMPTY
&& qry->stype == KNOT_RRTYPE_NS;
arrset.set.rr = knot_rrset_new(apex_name, want_NS ? KNOT_RRTYPE_NS : KNOT_RRTYPE_SOA,
KNOT_CLASS_IN, ttl, &pkt->mm);
if (kr_fails_assert(arrset.set.rr))
return kr_error(ENOMEM);
if (want_NS) {
kr_require(zla_lf.len + 2 == knot_dname_size(apex_name));
// TODO: maybe it's weird to use this NS name, but what else?
ret = knot_rrset_add_rdata(arrset.set.rr, apex_name, zla_lf.len + 2, &pkt->mm);
} else {
ret = knot_rrset_add_rdata(arrset.set.rr, soa_rdata,
sizeof(soa_rdata) - 1, &pkt->mm);
}
CHECK_RET(ret);
arrset.set.rank = KR_RANK_SECURE | KR_RANK_AUTH; // local data has high trust
arrset.set.expiring = false;
/* Small differences if we exactly hit the name or even type. */
if (type == KR_RULE_SUB_NODATA || (type == KR_RULE_SUB_EMPTY && hit_apex)) {
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_NOERROR);
} else {
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_NXDOMAIN);
}
if (type == KR_RULE_SUB_EMPTY && hit_apex
&& (qry->stype == KNOT_RRTYPE_SOA || qry->stype == KNOT_RRTYPE_NS)) {
ret = knot_pkt_begin(pkt, KNOT_ANSWER);
} else {
ret = knot_pkt_begin(pkt, KNOT_AUTHORITY);
}
CHECK_RET(ret);
/* Put links to the RR into the pkt. */
ret = pkt_append(pkt, &arrset);
CHECK_RET(ret);
/* Finishing touches. */
qry->flags.EXPIRING = false;
qry->flags.CACHED = true;
qry->flags.NO_MINIMIZE = true;
VERBOSE_MSG(qry, "=> satisfied by local data (%s zone)\n",
type == KR_RULE_SUB_EMPTY ? "empty" : "nxdomain");
return kr_ok();
}
static int answer_zla_dname(val_zla_type_t type, struct kr_query *qry, knot_pkt_t *pkt,
const knot_db_val_t zla_lf, uint32_t ttl, knot_db_val_t *val)
{
if (kr_fails_assert(type == KR_RULE_SUB_DNAME))
return kr_error(EINVAL);
const knot_dname_t *dname_target = val->data;
// Theoretically this check could overread the val->len, but that's OK,
// as the policy DB contents wouldn't be directly written by a malicious party.
// Moreover, an overread shouldn't cause worse than a clean segfault.
if (kr_fails_assert(knot_dname_size(dname_target) == val->len))
return kr_error(EILSEQ);
{ // update *val; avoiding void* arithmetics complicates this
char *tmp = val->data;
tmp += val->len;
val->data = tmp;
val->len = 0;
}
knot_dname_t apex_name[KNOT_DNAME_MAXLEN];
int ret = knot_dname_lf2wire(apex_name, zla_lf.len, zla_lf.data);
CHECK_RET(ret);
const bool hit_apex = knot_dname_is_equal(qry->sname, apex_name);
if (hit_apex && type == KR_RULE_SUB_DNAME)
return kr_error(EAGAIN); // LATER: maybe a type that matches apex
// Start constructing the (pseudo-)packet.
ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
struct answer_rrset arrset;
memset(&arrset, 0, sizeof(arrset));
arrset.set.rr = knot_rrset_new(qry->sname, KNOT_RRTYPE_CNAME,
KNOT_CLASS_IN, ttl, &pkt->mm);
if (kr_fails_assert(arrset.set.rr))
return kr_error(ENOMEM);
const knot_dname_t *cname_target = knot_dname_replace_suffix(qry->sname,
knot_dname_labels(apex_name, NULL), dname_target, &pkt->mm);
const int rdata_len = knot_dname_size(cname_target);
const bool cname_fits = rdata_len <= KNOT_DNAME_MAXLEN;
if (cname_fits) {
ret = knot_rrset_add_rdata(arrset.set.rr, cname_target,
knot_dname_size(cname_target), &pkt->mm);
CHECK_RET(ret);
}
arrset.set.rank = KR_RANK_SECURE | KR_RANK_AUTH; // local data has high trust
arrset.set.expiring = false;
if (cname_fits) {
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_NOERROR);
ret = knot_pkt_begin(pkt, KNOT_ANSWER);
CHECK_RET(ret);
// Put links to the RR into the pkt.
ret = pkt_append(pkt, &arrset);
CHECK_RET(ret);
} else {
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_YXDOMAIN);
}
// Finishing touches.
qry->flags.EXPIRING = false;
qry->flags.CACHED = true;
qry->flags.NO_MINIMIZE = true;
VERBOSE_MSG(qry, "=> satisfied by local data (DNAME)\n");
return kr_ok();
}
static int answer_zla_redirect(struct kr_query *qry, knot_pkt_t *pkt, const char *ruleset_name,
const knot_db_val_t zla_lf, uint32_t ttl)
{
VERBOSE_MSG(qry, "=> redirecting by local data\n"); // lazy to get the zone name
knot_dname_t apex_name[KNOT_DNAME_MAXLEN];
int ret = knot_dname_lf2wire(apex_name, zla_lf.len, zla_lf.data);
CHECK_RET(ret);
const bool name_matches = knot_dname_is_equal(qry->sname, apex_name);
if (name_matches || qry->stype == KNOT_RRTYPE_NS || qry->stype == KNOT_RRTYPE_SOA)
goto nodata;
// Reconstruct the DB key from scratch.
knot_rrset_t rrs;
knot_rrset_init(&rrs, apex_name, qry->stype, 0, 0); // 0 are unused
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key = local_data_key(&rrs, key_data, ruleset_name);
knot_db_val_t val;
// Multiple variants are possible, with different tags.
for (ret = ruledb_op(it_first, &key, &val); ret == 0; ret = ruledb_op(it_next, &val)) {
if (kr_rule_consume_tags(&val, qry->request)) {
int ret2 = answer_exact_match(qry, pkt, qry->stype, &val);
if (ret2 != RET_CONTINUE)
return ret2;
}
}
if (ret && ret != -ENOENT)
return ret;
nodata: // Want NODATA answer (or NOERROR if it hits apex SOA).
// Start constructing the (pseudo-)packet.
ret = pkt_renew(pkt, qry->sname, qry->stype);
CHECK_RET(ret);
struct answer_rrset arrset;
memset(&arrset, 0, sizeof(arrset));
arrset.set.rr = knot_rrset_new(apex_name, KNOT_RRTYPE_SOA,
KNOT_CLASS_IN, ttl, &pkt->mm);
if (kr_fails_assert(arrset.set.rr))
return kr_error(ENOMEM);
ret = knot_rrset_add_rdata(arrset.set.rr, soa_rdata,
sizeof(soa_rdata) - 1, &pkt->mm);
CHECK_RET(ret);
arrset.set.rank = KR_RANK_SECURE | KR_RANK_AUTH; // local data has high trust
arrset.set.expiring = false;
knot_wire_set_rcode(pkt->wire, KNOT_RCODE_NOERROR);
knot_section_t sec = name_matches && qry->stype == KNOT_RRTYPE_SOA
? KNOT_ANSWER : KNOT_AUTHORITY;
ret = knot_pkt_begin(pkt, sec);
CHECK_RET(ret);
// Put links to the RR into the pkt.
ret = pkt_append(pkt, &arrset);
CHECK_RET(ret);
// Finishing touches.
qry->flags.EXPIRING = false;
qry->flags.CACHED = true;
qry->flags.NO_MINIMIZE = true;
VERBOSE_MSG(qry, "=> satisfied by local data (no data)\n");
return kr_ok();
}
int kr_rule_local_subtree(const knot_dname_t *apex, enum kr_rule_sub_t type,
uint32_t ttl, kr_rule_tags_t tags, kr_rule_opts_t opts)
{
return rule_local_subtree(apex, type, NULL, ttl, tags, opts);
}
knot_db_val_t zla_key(const knot_dname_t *apex, uint8_t key_data[KEY_MAXLEN])
{
kr_require(the_rules);
knot_db_val_t key;
key.data = key_dname_lf(apex, key_data);
key.data -= sizeof(KEY_ZONELIKE_A);
memcpy(key.data, &KEY_ZONELIKE_A, sizeof(KEY_ZONELIKE_A));
const size_t rsp_len = strlen(RULESET_DEFAULT);
key.data -= rsp_len;
memcpy(key.data, RULESET_DEFAULT, rsp_len);
key.len = key_data + KEY_DNAME_END_OFFSET - (uint8_t *)key.data;
return key;
}
static int rule_local_subtree(const knot_dname_t *apex, enum kr_rule_sub_t type,
const knot_dname_t *target, uint32_t ttl,
kr_rule_tags_t tags, kr_rule_opts_t opts)
{
// type-check
const bool has_target = (type == KR_RULE_SUB_DNAME);
switch (type) {
case KR_RULE_SUB_DNAME:
if (kr_fails_assert(!!target == has_target))
return kr_error(EINVAL);
break;
case KR_RULE_SUB_EMPTY:
case KR_RULE_SUB_NXDOMAIN:
case KR_RULE_SUB_NODATA:
case KR_RULE_SUB_REDIRECT:
break;
default:
kr_assert(false);
return kr_error(EINVAL);
}
const val_zla_type_t ztype = type;
ENSURE_the_rules;
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key = zla_key(apex, key_data);
// Prepare the data into a temporary buffer.
const int target_len = has_target ? knot_dname_size(target) : 0;
const bool has_ttl = ttl != KR_RULE_TTL_DEFAULT || has_target;
const int val_len = sizeof(tags) + sizeof(ztype) + sizeof(opts)
+ (has_ttl ? sizeof(ttl) : 0) + target_len;
uint8_t buf[val_len], *data = buf;
memcpy(data, &tags, sizeof(tags));
data += sizeof(tags);
memcpy(data, &ztype, sizeof(ztype));
data += sizeof(ztype);
memcpy(data, &opts, sizeof(opts));
data += sizeof(opts);
if (has_ttl) {
memcpy(data, &ttl, sizeof(ttl));
data += sizeof(ttl);
}
if (has_target) {
memcpy(data, target, target_len);
data += target_len;
}
kr_require(data == buf + val_len);
knot_db_val_t val = { .data = buf, .len = val_len };
int ret = ruledb_op(write, &key, &val, 1); // TODO: overwriting on ==tags?
// ENOSPC seems to be the only expectable error.
kr_assert(ret == 0 || ret == kr_error(ENOSPC));
return ret;
}
/** Encode a subnet into a (longer) string. The result is in `buf` with returned length.
*
* The point is to have different encodings for different subnets,
* with using just byte-length strings (e.g. for ::/1 vs. ::/2).
* You might imagine this as the space of all nodes of a binary trie.
*
* == Key properties ==
* We're utilizing the order on the encoded strings. LMDB uses lexicographical order.
* Optimization: the properties should cut down LMDB operation count when searching
* for rule sets typical in practice. Some properties:
* - full address is just a subnet containing only that address (/128 and /32)
* - order of full addresses is kept the same as before encoding
* - ancestor first: if subnet B is included inside subnet A, we get A < B
* - subnet mixing: if two subnets do not share any address, all addresses of one
* of them are ordered before all addresses of the other one
*
* == The encoding ==
* The encoding replaces each address bit by a pair of bits:
* - 00 -> beyond the subnet's prefix
* - 10 -> zero bit within the subnet's prefix
* - 11 -> one bit within the subnet's prefix
* - we cut the byte-length - no need for all-zero suffixes
*/
static int subnet_encode(const struct sockaddr *addr, int sub_len, uint8_t buf[32])
{
const int len = kr_inaddr_len(addr);
if (kr_fails_assert(len > 0))
return kr_error(len);
if (kr_fails_assert(sub_len >= 0 && sub_len <= 8 * len))
return kr_error(EINVAL);
const uint8_t *a = (const uint8_t *)/*sign*/kr_inaddr(addr);
int i;
// Let's hope that compiler optimizes this into something reasonable.
for (i = 0; sub_len > 0; ++i, sub_len -= 8) {
// r = a[i] interleaved by 1 bits (with 1s on the higher-value positions)
// https://graphics.stanford.edu/~seander/bithacks.html#Interleave64bitOps
// but we modify it slightly: no need for the 0x5555 mask (==0b0101010101010101)
// or the y-part - we instead just set all odd bits to 1s.
uint16_t r = (
(a[i] * 0x0101010101010101ULL & 0x8040201008040201ULL)
* 0x0102040810204081ULL >> 49
) | 0xAAAAU/* = 0b1010'1010'1010'1010 */;
// now r might just need clipping
if (sub_len < 8) {
uint16_t mask = 0xFFFFffffU << (2 * (8 - sub_len));
r &= mask;
}
buf[(ssize_t)2*i] = r / 256;
buf[(ssize_t)2*i + 1] = r % 256;
}
return i * 2;
}
// Is `a` subnet-prefix of `b`? (a byte format of subnet_encode())
static bool subnet_is_prefix(uint8_t a, uint8_t b)
{
while (true) {
if (a >> 6 == 0)
return true;
if (a >> 6 != b >> 6) {
kr_assert(b >> 6 != 0);
return false;
}
a = (a << 2) & 0xff;
b = (b << 2) & 0xff;
}
}
#define KEY_PREPEND(key, arr) do { \
(key).data -= sizeof(arr); \
(key).len += sizeof(arr); \
memcpy((key).data, arr, sizeof(arr)); \
} while (false)
int kr_view_insert_action(const char *subnet, const char *dst_subnet,
kr_proto_set protos, const char *action)
{
if (*dst_subnet == '\0') dst_subnet = NULL; // convenience for the API
ENSURE_the_rules;
// Parse the subnet string.
union kr_sockaddr saddr;
saddr.ip.sa_family = kr_straddr_family(subnet);
int bitlen = kr_straddr_subnet((char *)/*const-cast*/kr_inaddr(&saddr.ip), subnet);
if (bitlen < 0) return kr_error(bitlen);
// Init the addr-based part of key.
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key;
key.data = &key_data[KEY_RULESET_MAXLEN];
key.len = subnet_encode(&saddr.ip, bitlen, key.data);
switch (saddr.ip.sa_family) {
case AF_INET: KEY_PREPEND(key, KEY_VIEW_SRC4); break;
case AF_INET6: KEY_PREPEND(key, KEY_VIEW_SRC6); break;
default: kr_assert(false); return kr_error(EINVAL);
}
{ // Write ruleset-specific prefix of the key.
const size_t rsp_len = strlen(RULESET_DEFAULT);
key.data -= rsp_len;
key.len += rsp_len;
memcpy(key.data, RULESET_DEFAULT, rsp_len);
}
// We have the key; start constructing the value to insert.
const int dst_maxlen = 1 + (dst_subnet ? kr_family_len(saddr.ip.sa_family) : 0);
const int action_len = strlen(action);
uint8_t buf[sizeof(protos) + dst_maxlen + action_len];
uint8_t *data = buf;
int dlen = 0;
memcpy(data, &protos, sizeof(protos));
data += sizeof(protos);
dlen += sizeof(protos);
uint8_t dst_bitlen = 0;
if (dst_subnet) {
// For simplicity, we always write the whole address,
// even if some bytes at the end are useless (keep it iff dst_bitlen > 0).
int ret = kr_straddr_subnet(data + sizeof(dst_bitlen), dst_subnet);
if (ret < 0) {
kr_log_error(RULES, "failed to parse destination subnet: %s\n",
dst_subnet);
return kr_error(ret);
}
if (saddr.ip.sa_family != kr_straddr_family(dst_subnet)) {
kr_log_error(RULES,
"destination subnet mismatching IPv4 vs. IPv6: %s\n",
dst_subnet);
return kr_error(EINVAL);
}
dst_bitlen = ret;
}
memcpy(data, &dst_bitlen, sizeof(dst_bitlen));
if (dst_bitlen > 0) {
data += dst_maxlen; // address bytes already written above
dlen += dst_maxlen;
} else {
data += sizeof(dst_bitlen);
dlen += sizeof(dst_bitlen);
}
memcpy(data, action, action_len);
data += action_len;
dlen += action_len;
kr_require(data <= buf + dlen);
knot_db_val_t val = { .data = buf, .len = dlen };
return ruledb_op(write, &key, &val, 1);
}
static enum kr_proto req_proto(const struct kr_request *req)
{
if (!req->qsource.addr)
return KR_PROTO_INTERNAL;
const struct kr_request_qsource_flags fl = req->qsource.flags;
if (fl.http)
return KR_PROTO_DOH;
if (fl.tcp)
return fl.tls ? KR_PROTO_DOT : KR_PROTO_TCP53;
// UDP in some form
return fl.tls ? KR_PROTO_DOQ : KR_PROTO_UDP53;
}
static bool req_proto_matches(const struct kr_request *req, kr_proto_set proto_set)
{
if (!proto_set) // empty set always matches
return true;
kr_proto_set mask = 1 << req_proto(req);
return mask & proto_set;
}
static void log_action(const struct kr_request *req, knot_db_val_t act)
{
if (!kr_log_is_debug(RULES, req))
return;
// it's complex to get zero-terminated string for the action
char act_0t[act.len + 1];
memcpy(act_0t, act.data, act.len);
act_0t[act.len] = 0;
VERBOSE_MSG(req->rplan.initial, "=> view selected action: %s\n", act_0t);
}
int kr_view_select_action(const struct kr_request *req, knot_db_val_t *selected)
{
kr_require(the_rules);
const struct sockaddr * const addr = req->qsource.addr;
if (!addr) return kr_error(ENOENT); // internal request; LATER: act somehow?
// Init the addr-based part of key; it's pretty static.
uint8_t key_data[KEY_MAXLEN];
knot_db_val_t key;
key.data = &key_data[KEY_RULESET_MAXLEN];
key.len = subnet_encode(addr, kr_inaddr_len(addr) * 8, key.data);
switch (kr_inaddr_family(addr)) {
case AF_INET: KEY_PREPEND(key, KEY_VIEW_SRC4); break;
case AF_INET6: KEY_PREPEND(key, KEY_VIEW_SRC6); break;
default: kr_assert(false); return kr_error(EINVAL);
}
int ret;
// Init code for managing the ruleset part of the key.
// LATER(optim.): we might cache the ruleset list a bit
uint8_t * const key_data_ruleset_end = key.data;
uint8_t * const key_data_end = key.data + key.len;
knot_db_val_t rulesets = { NULL, 0 };
{
uint8_t key_rs[] = "\0rulesets";
knot_db_val_t key_rsk = { .data = key_rs, .len = sizeof(key_rs) };
ret = ruledb_op(read, &key_rsk, &rulesets, 1);
}
if (ret != 0) return ret; // including ENOENT: no rulesets -> no rule used
const char *rulesets_str = rulesets.data;
// Iterate over all rulesets.
while (rulesets.len > 0) {
{ // Write ruleset-specific prefix of the key.
const size_t rsp_len = strnlen(rulesets_str, rulesets.len);
kr_require(rsp_len <= KEY_RULESET_MAXLEN - 1);
key.data = key_data_ruleset_end - rsp_len;
key.len = key_data_end - (uint8_t *)key.data;
memcpy(key.data, rulesets_str, rsp_len);
rulesets_str += rsp_len + 1;
rulesets.len -= rsp_len + 1;
}
static_assert(sizeof(KEY_VIEW_SRC4) == sizeof(KEY_VIEW_SRC6),
"bad combination of constants");
const size_t addr_start_i = key_data_ruleset_end + sizeof(KEY_VIEW_SRC4)
- (const uint8_t *)key.data;
knot_db_val_t key_leq = key;
knot_db_val_t val;
ret = ruledb_op(read_leq, &key_leq, &val);
for (; true; ret = ruledb_op(read_less, &key_leq, &val)) {
if (ret == -ENOENT) break;
if (ret < 0) return kr_error(ret);
if (ret > 0) { // found a previous key
ssize_t i = key_common_prefix(key, key_leq);
if (i < addr_start_i) // no suitable key can exist in DB
break;
if (i != key_leq.len) {
if (kr_fails_assert(i < key.len && i < key_leq.len))
break;
if (!subnet_is_prefix(((uint8_t *)key_leq.data)[i],
((uint8_t *)key.data)[i])) {
// the key doesn't match
// We can shorten the key to potentially
// speed up by skipping over whole subtrees.
key_leq.len = i + 1;
continue;
}
}
}
// We certainly have a matching key (join of various sub-cases).
// But multiple variants are possible, and conditions inside values.
for (ret = ruledb_op(it_first, &key_leq, &val);
ret == 0;
ret = ruledb_op(it_next, &val)) {
kr_proto_set protos;
if (deserialize_fails_assert(&val, &protos))
continue;
if (!req_proto_matches(req, protos))
continue;
uint8_t dst_bitlen;
if (deserialize_fails_assert(&val, &dst_bitlen))
continue;
if (dst_bitlen) {
const int abytes = kr_inaddr_len(addr);
const char *dst_a = kr_inaddr(req->qsource.dst_addr);
if (kr_fails_assert(val.len >= abytes))
continue;
if (kr_bitcmp(val.data, dst_a, dst_bitlen) != 0)
continue;
val.data += abytes;
val.len -= abytes;
}
// we passed everything; `val` contains just the action
log_action(req, val);
*selected = val;
return kr_ok();
}
// Key matched but none of the condition variants;
// we may still get a match with a wider subnet rule -> continue.
// LATER(optim.): it's possible that something could be made
// somewhat faster in this various jumping around keys.
}
}
return kr_error(ENOENT);
}
|