1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <libknot/dname.h>
#include "lib/selection.h"
#include "lib/selection_forward.h"
#include "lib/selection_iter.h"
#include "lib/rplan.h"
#include "lib/cache/api.h"
#include "lib/cache/top.h"
#include "lib/resolve.h"
#include "lib/utils.h"
#define VERBOSE_MSG(qry, ...) kr_log_q((qry), SELECTION, __VA_ARGS__)
#define DEFAULT_TIMEOUT 400
#define MAX_TIMEOUT 10000
#define EXPLORE_TIMEOUT_COEFFICIENT 2
#define MAX_BACKOFF 8
#define MINIMAL_TIMEOUT_ADDITION 20
/* After TCP_TIMEOUT_THRESHOLD timeouts one transport, we'll switch to TCP. */
#define TCP_TIMEOUT_THRESHOLD 2
/* If the expected RTT is over TCP_RTT_THRESHOLD we switch to TCP instead. */
#define TCP_RTT_THRESHOLD 2000
/* Define ε for ε-greedy algorithm (see select_transport)
* as ε=EPSILON_NOMIN/EPSILON_DENOM */
#define EPSILON_NOMIN 1
#define EPSILON_DENOM 20
static const char *kr_selection_error_str(enum kr_selection_error err) {
switch (err) {
#define X(ENAME) case KR_SELECTION_ ## ENAME: return #ENAME
X(OK);
X(QUERY_TIMEOUT);
X(TLS_HANDSHAKE_FAILED);
X(TCP_CONNECT_FAILED);
X(TCP_CONNECT_TIMEOUT);
X(REFUSED);
X(SERVFAIL);
X(FORMERR);
X(FORMERR_EDNS);
X(NOTIMPL);
X(OTHER_RCODE);
X(MALFORMED);
X(MISMATCHED);
X(TRUNCATED);
X(DNSSEC_ERROR);
X(LAME_DELEGATION);
X(BAD_CNAME);
case KR_SELECTION_NUMBER_OF_ERRORS: break; // not a valid code
#undef X
}
kr_assert(false); // we want to define all; compiler helps by -Wswitch (no default:)
return NULL;
}
/* Simple detection of IPv6 being broken.
*
* We follow all IPv6 timeouts and successes. Consider it broken iff we've had
* timeouts on several different IPv6 prefixes since the last IPv6 success.
* Note: unlike the rtt_state, this happens only per-process (for simplicity).
*
* ## NO6_PREFIX_* choice
* For our practical use we choose primarily based on root and typical TLD servers.
* Looking at *.{root,gtld}-servers.net, we have 7/26 AAAAs in 2001:500:00**::
* but adding one more byte makes these completely unique, so we choose /48.
* As distribution to ASs seems to be on shorter prefixes (RIPE: /32 -- /24?),
* we wait for several distinct prefixes.
*/
#define NO6_PREFIX_COUNT 6
#define NO6_PREFIX_BYTES (48/8)
static struct {
int len_used;
uint8_t addr_prefixes[NO6_PREFIX_COUNT][NO6_PREFIX_BYTES];
} no6_est = { .len_used = 0 };
bool no6_is_bad(void)
{
return no6_est.len_used == NO6_PREFIX_COUNT;
}
static void no6_timed_out(const struct kr_query *qry, const uint8_t *addr)
{
if (no6_is_bad()) { // we can't get worse
VERBOSE_MSG(qry, "NO6: timed out, but bad already\n");
return;
}
// If we have the address already, do nothing.
for (int i = 0; i < no6_est.len_used; ++i) {
if (memcmp(addr, no6_est.addr_prefixes[i], NO6_PREFIX_BYTES) == 0) {
VERBOSE_MSG(qry, "NO6: timed out, repeated prefix, timeouts %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
return;
}
}
// Append!
memcpy(no6_est.addr_prefixes[no6_est.len_used++], addr, NO6_PREFIX_BYTES);
VERBOSE_MSG(qry, "NO6: timed out, appended, timeouts %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
}
static inline void no6_success(const struct kr_query *qry)
{
if (no6_est.len_used) {
VERBOSE_MSG(qry, "NO6: success, zeroing %d/%d\n",
no6_est.len_used, (int)NO6_PREFIX_COUNT);
}
no6_est.len_used = 0;
}
/* Simple cache interface follows */
static knot_db_val_t cache_key(const uint8_t *ip, size_t len)
{
// CACHE_KEY_DEF: '\0' + 'S' + raw IP
const size_t key_len = len + 2;
uint8_t *key_data = malloc(key_len);
key_data[0] = '\0';
key_data[1] = 'S';
memcpy(key_data + 2, ip, len);
knot_db_val_t key = {
.len = key_len,
.data = key_data,
};
return key;
}
/* First value of timeout will be calculated as SRTT+4*VARIANCE
* by calc_timeout(), so it'll be equal to DEFAULT_TIMEOUT. */
static const struct rtt_state default_rtt_state = { .srtt = 0,
.variance = DEFAULT_TIMEOUT / 4,
.consecutive_timeouts = 0,
.dead_since = 0 };
struct rtt_state get_rtt_state(const uint8_t *ip, size_t len,
struct kr_cache *cache, struct kr_request *req)
{
struct rtt_state state;
knot_db_val_t value;
knot_db_t *db = cache->db;
struct kr_cdb_stats *stats = &cache->stats;
knot_db_val_t key = cache_key(ip, len);
if (cache->api->read(db, stats, &key, &value, 1)) { // NOLINT(bugprone-branch-clone)
state = default_rtt_state;
} else if (kr_fails_assert(value.len == sizeof(struct rtt_state))) {
// shouldn't happen but let's be more robust
state = default_rtt_state;
} else { // memcpy is safe for unaligned case (on non-x86)
memcpy(&state, value.data, sizeof(state));
kr_cache_top_access(req, key.data, key.len, value.len, "get_rtt");
}
free(key.data);
return state;
}
int put_rtt_state(const uint8_t *ip, size_t len, struct rtt_state state,
struct kr_cache *cache, struct kr_request *req)
{
knot_db_t *db = cache->db;
struct kr_cdb_stats *stats = &cache->stats;
knot_db_val_t key = cache_key(ip, len);
knot_db_val_t value = { .len = sizeof(struct rtt_state),
.data = &state };
int ret = cache->api->write(db, stats, &key, &value, 1);
kr_cache_commit(cache);
kr_cache_top_access(req, key.data, key.len, value.len, "put_rtt");
free(key.data);
return ret;
}
void bytes_to_ip(uint8_t *bytes, size_t len, uint16_t port, union kr_sockaddr *dst)
{
switch (len) {
case sizeof(struct in_addr):
dst->ip4.sin_family = AF_INET;
memcpy(&dst->ip4.sin_addr, bytes, len);
dst->ip4.sin_port = htons(port);
break;
case sizeof(struct in6_addr):
memset(&dst->ip6, 0, sizeof(dst->ip6)); // avoid uninit surprises
dst->ip6.sin6_family = AF_INET6;
memcpy(&dst->ip6.sin6_addr, bytes, len);
dst->ip6.sin6_port = htons(port);
break;
default:
kr_assert(false);
}
}
uint8_t *ip_to_bytes(const union kr_sockaddr *src, size_t len)
{
switch (len) {
case sizeof(struct in_addr):
return (uint8_t *)&src->ip4.sin_addr;
case sizeof(struct in6_addr):
return (uint8_t *)&src->ip6.sin6_addr;
default:
kr_assert(false);
return NULL;
}
}
static bool no_rtt_info(struct rtt_state s)
{
return s.srtt == 0 && s.consecutive_timeouts == 0;
}
static unsigned back_off_timeout(uint32_t to, int pow)
{
pow = MIN(pow, MAX_BACKOFF);
to <<= pow;
return MIN(to, MAX_TIMEOUT);
}
/* This is verbatim (minus the default timeout value and minimal variance)
* RFC6298, sec. 2. */
static unsigned calc_timeout(struct rtt_state state)
{
int32_t timeout = state.srtt + MAX(4 * state.variance, MINIMAL_TIMEOUT_ADDITION);
return back_off_timeout(timeout, state.consecutive_timeouts);
}
/* This is verbatim RFC6298, sec. 2. */
static struct rtt_state calc_rtt_state(struct rtt_state old, unsigned new_rtt)
{
if (no_rtt_info(old)) {
return (struct rtt_state){ new_rtt, new_rtt / 2, 0 };
}
struct rtt_state ret = { 0 };
ret.variance = (3 * old.variance + abs(old.srtt - (int32_t)new_rtt)
+ 2/*rounding*/) / 4;
ret.srtt = (7 * old.srtt + new_rtt + 4/*rounding*/) / 8;
return ret;
}
/**
* @internal Invalidate addresses which should be considered dead
*/
static void invalidate_dead_upstream(struct address_state *state,
unsigned int retry_timeout)
{
struct rtt_state *rs = &state->rtt_state;
if (rs->dead_since) {
uint64_t now = kr_now();
if (now < rs->dead_since) {
// broken continuity of timestamp (reboot, different machine, etc.)
*rs = default_rtt_state;
} else if (now < rs->dead_since + retry_timeout) {
// period when we don't want to use the address
state->generation = -1;
} else {
kr_assert(now >= rs->dead_since + retry_timeout);
// we allow to retry the server now
// TODO: perhaps tweak *rs?
}
}
}
/**
* @internal Check if IP address is TLS capable.
*
* @p req has to have the selection_context properly initialized.
*/
static void check_tls_capable(struct address_state *address_state,
struct kr_request *req, struct sockaddr *address)
{
address_state->tls_capable =
req->selection_context.is_tls_capable ?
req->selection_context.is_tls_capable(address) :
false;
}
#if 0
/* TODO: uncomment these once we actually use the information it collects. */
/**
* Check if there is a existing TCP connection to this address.
*
* @p req has to have the selection_context properly initialized.
*/
void check_tcp_connections(struct address_state *address_state, struct kr_request *req, struct sockaddr *address) {
address_state->tcp_connected = req->selection_context.is_tcp_connected ? req->selection_context.is_tcp_connected(address) : false;
address_state->tcp_waiting = req->selection_context.is_tcp_waiting ? req->selection_context.is_tcp_waiting(address) : false;
}
#endif
/**
* @internal Invalidate address if the respective IP version is disabled.
*/
static void check_network_settings(struct address_state *address_state,
size_t address_len, bool no_ipv4, bool no_ipv6)
{
if (no_ipv4 && address_len == sizeof(struct in_addr)) {
address_state->generation = -1;
}
if (no_ipv6 && address_len == sizeof(struct in6_addr)) {
address_state->generation = -1;
}
}
void update_address_state(struct address_state *state, union kr_sockaddr *address,
size_t address_len, struct kr_query *qry)
{
check_tls_capable(state, qry->request, &address->ip);
/* TODO: uncomment this once we actually use the information it collects
check_tcp_connections(address_state, qry->request, &address->ip);
*/
check_network_settings(state, address_len, qry->flags.NO_IPV4,
qry->flags.NO_IPV6);
state->rtt_state =
get_rtt_state(ip_to_bytes(address, address_len),
address_len, &qry->request->ctx->cache, qry->request);
invalidate_dead_upstream(
state, qry->request->ctx->cache_rtt_tout_retry_interval);
#ifdef SELECTION_CHOICE_LOGGING
// This is sometimes useful for debugging, but usually too verbose
if (kr_log_is_debug_qry(SELECTION, qry)) {
const char *ns_str = kr_straddr(&address->ip);
VERBOSE_MSG(qry, "rtt of %s is %d, variance is %d\n", ns_str,
state->rtt_state.srtt, state->rtt_state.variance);
}
#endif
}
static int cmp_choices(const struct choice *a_, const struct choice *b_)
{
int diff;
/* Prefer IPv4 if IPv6 appears to be generally broken. */
diff = (int)a_->address_len - (int)b_->address_len;
if (diff && no6_is_bad()) {
return diff;
}
/* Address with no RTT information is better than address
* with some information. */
if ((diff = no_rtt_info(b_->address_state->rtt_state) -
no_rtt_info(a_->address_state->rtt_state))) {
return diff;
}
/* Address with less errors is better. */
if ((diff = a_->address_state->error_count -
b_->address_state->error_count)) {
return diff;
}
/* Address with smaller expected timeout is better. */
if ((diff = calc_timeout(a_->address_state->rtt_state) -
calc_timeout(b_->address_state->rtt_state))) {
return diff;
}
return 0;
}
/** Select the best entry from choices[] according to cmp_choices() comparator.
*
* Ties are decided in an (almost) uniformly random fashion.
*/
static const struct choice * select_best(const struct choice choices[], int choices_len)
{
/* Deciding ties: it's as-if each index carries one byte of randomness.
* Ties get decided by comparing that byte, and the byte itself
* is computed lazily (negative until computed).
*/
int best_i = 0;
int best_rnd = -1;
for (int i = 1; i < choices_len; ++i) {
int diff = cmp_choices(&choices[i], &choices[best_i]);
if (diff > 0)
continue;
if (diff < 0) {
best_i = i;
best_rnd = -1;
continue;
}
if (best_rnd < 0)
best_rnd = kr_rand_bytes(1);
int new_rnd = kr_rand_bytes(1);
if (new_rnd < best_rnd) {
best_i = i;
best_rnd = new_rnd;
}
}
return &choices[best_i];
}
/* Adjust choice from `unresolved` in case of NO6 (broken IPv6). */
static struct kr_transport unresolved_adjust(const struct to_resolve unresolved[],
int unresolved_len, int index)
{
if (unresolved[index].type != KR_TRANSPORT_RESOLVE_AAAA || !no6_is_bad())
goto finish;
/* AAAA is detected as bad; let's choose randomly from others, if there are any. */
int aaaa_count = 0;
for (int i = 0; i < unresolved_len; ++i)
aaaa_count += (unresolved[i].type == KR_TRANSPORT_RESOLVE_AAAA);
if (aaaa_count == unresolved_len)
goto finish;
/* Chosen index within non-AAAA items. */
int i_no6 = kr_rand_bytes(1) % (unresolved_len - aaaa_count);
for (int i = 0; i < unresolved_len; ++i) {
if (unresolved[i].type == KR_TRANSPORT_RESOLVE_AAAA) {
//continue
} else if (i_no6 == 0) {
index = i;
break;
} else {
--i_no6;
}
}
finish:
return (struct kr_transport){
.protocol = unresolved[index].type,
.ns_name = unresolved[index].name
};
}
/* Performs the actual selection (currently variation on epsilon-greedy). */
struct kr_transport *select_transport(const struct choice choices[], int choices_len,
const struct to_resolve unresolved[],
int unresolved_len, int timeouts,
struct knot_mm *mempool, bool tcp,
size_t *choice_index)
{
if (!choices_len && !unresolved_len) {
/* There is nothing to choose from */
return NULL;
}
struct kr_transport *transport = mm_calloc(mempool, 1, sizeof(*transport));
/* If there are some addresses with no rtt_info we try them
* first (see cmp_choices). So unknown servers are chosen
* *before* the best know server. This ensures that every option
* is tried before going back to some that was tried before. */
const struct choice *best = select_best(choices, choices_len);
const struct choice *chosen;
const bool explore = choices_len == 0 || kr_rand_coin(EPSILON_NOMIN, EPSILON_DENOM)
/* We may need to explore to get at least one A record. */
|| (no6_is_bad() && best->address.ip.sa_family == AF_INET6);
if (explore) {
/* "EXPLORE":
* randomly choose some option
* (including resolution of some new name). */
int index = kr_rand_bytes(1) % (choices_len + unresolved_len);
if (index < unresolved_len) {
// We will resolve a new NS name
*transport = unresolved_adjust(unresolved, unresolved_len, index);
return transport;
} else {
chosen = &choices[index - unresolved_len];
}
} else {
/* "EXPLOIT":
* choose a resolved address which seems best right now. */
chosen = best;
}
/* Don't try the same server again when there are other choices to be explored */
if (chosen->address_state->error_count && unresolved_len) {
int index = kr_rand_bytes(1) % unresolved_len;
*transport = unresolved_adjust(unresolved, unresolved_len, index);
return transport;
}
unsigned timeout;
if (no_rtt_info(chosen->address_state->rtt_state)) {
/* Exponential back-off when retrying after timeout and choosing
* an unknown server. */
timeout = back_off_timeout(DEFAULT_TIMEOUT, timeouts);
} else {
timeout = calc_timeout(chosen->address_state->rtt_state);
if (explore) {
/* When trying a random server, we cap the timeout to EXPLORE_TIMEOUT_COEFFICIENT
* times the timeout for the best server. This is done so we don't spend
* unreasonable amounts of time probing really bad servers while still
* checking once in a while for e.g. big network change etc.
* We also note this capping was done and don't punish the bad server
* further if it fails to answer in the capped timeout. */
unsigned best_timeout = calc_timeout(best->address_state->rtt_state);
if (timeout > best_timeout * EXPLORE_TIMEOUT_COEFFICIENT) {
timeout = best_timeout * EXPLORE_TIMEOUT_COEFFICIENT;
transport->timeout_capped = true;
}
}
}
enum kr_transport_protocol protocol;
if (chosen->address_state->tls_capable) {
protocol = KR_TRANSPORT_TLS;
} else if (tcp ||
chosen->address_state->errors[KR_SELECTION_QUERY_TIMEOUT] >= TCP_TIMEOUT_THRESHOLD ||
timeout > TCP_RTT_THRESHOLD) {
protocol = KR_TRANSPORT_TCP;
} else {
protocol = KR_TRANSPORT_UDP;
}
*transport = (struct kr_transport){
.ns_name = chosen->address_state->ns_name,
.protocol = protocol,
.timeout = timeout,
};
int port = chosen->port;
if (!port) {
switch (transport->protocol) {
case KR_TRANSPORT_TLS:
port = KR_DNS_TLS_PORT;
break;
case KR_TRANSPORT_UDP:
case KR_TRANSPORT_TCP:
port = KR_DNS_PORT;
break;
default:
kr_assert(false);
return NULL;
}
}
switch (chosen->address_len)
{
case sizeof(struct in_addr):
transport->address.ip4 = chosen->address.ip4;
transport->address.ip4.sin_port = htons(port);
break;
case sizeof(struct in6_addr):
transport->address.ip6 = chosen->address.ip6;
transport->address.ip6.sin6_port = htons(port);
break;
default:
kr_assert(false);
return NULL;
}
transport->address_len = chosen->address_len;
if (choice_index) {
*choice_index = chosen->address_state->choice_array_index;
}
return transport;
}
void update_rtt(struct kr_query *qry, struct address_state *addr_state,
const struct kr_transport *transport, unsigned rtt)
{
if (!transport || !addr_state) {
/* Answers from cache have NULL transport, ignore them. */
return;
}
struct kr_request *req = qry->request;
struct kr_cache *cache = &req->ctx->cache;
uint8_t *address = ip_to_bytes(&transport->address, transport->address_len);
/* This construct is a bit racy since the global state may change
* between calls to `get_rtt_state` and `put_rtt_state` but we don't
* care that much since it is rare and we only risk slightly suboptimal
* transport choice. */
struct rtt_state cur_rtt_state =
get_rtt_state(address, transport->address_len, cache, req);
struct rtt_state new_rtt_state = calc_rtt_state(cur_rtt_state, rtt);
put_rtt_state(address, transport->address_len, new_rtt_state, cache, req);
if (transport->address_len == sizeof(struct in6_addr))
no6_success(qry);
if (kr_log_is_debug_qry(SELECTION, qry)) {
KR_DNAME_GET_STR(ns_name, transport->ns_name);
KR_DNAME_GET_STR(zonecut_str, qry->zone_cut.name);
const char *ns_str = kr_straddr(&transport->address.ip);
VERBOSE_MSG(
qry,
"=> id: '%05u' updating: '%s'@'%s' zone cut: '%s'"
" with rtt %u to srtt: %d and variance: %d \n",
qry->id, ns_name, ns_str ? ns_str : "", zonecut_str,
rtt, new_rtt_state.srtt, new_rtt_state.variance);
}
}
/// Update rtt_state (including caching) after a server timed out.
static void server_timeout(const struct kr_query *qry, const struct kr_transport *transport,
struct address_state *addr_state, struct kr_cache *cache)
{
// Make sure that the timeout wasn't capped; see kr_transport::timeout_capped
if (transport->timeout_capped)
return;
const uint8_t *address = ip_to_bytes(&transport->address, transport->address_len);
if (transport->address_len == sizeof(struct in6_addr))
no6_timed_out(qry, address);
struct rtt_state *state = &addr_state->rtt_state;
// While we were waiting for timeout, the stats might have changed considerably,
// so let's overwrite what we had by fresh cache contents.
// This is useful when the address is busy (we query it concurrently).
*state = get_rtt_state(address, transport->address_len, cache, qry->request);
++state->consecutive_timeouts;
// Avoid overflow; we don't utilize very high values anyway (arbitrary limit).
state->consecutive_timeouts = MIN(64, state->consecutive_timeouts);
if (state->consecutive_timeouts >= KR_NS_TIMEOUT_ROW_DEAD) {
// Only mark as dead if we waited long enough,
// so that many (concurrent) short attempts can't cause the dead state.
if (transport->timeout >= KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT)
state->dead_since = kr_now();
}
// If transport was chosen by a different query, that one will cache it.
if (!transport->deduplicated) {
put_rtt_state(address, transport->address_len, *state, cache, qry->request);
} else {
kr_cache_commit(cache); // Avoid any risk of long transaction.
}
}
// Not everything can be checked in nice ways like static_assert()
static __attribute__((constructor)) void test_RTT_consts(void)
{
// See KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT above.
kr_require(
calc_timeout((struct rtt_state){ .consecutive_timeouts = MAX_BACKOFF, })
>= KR_NS_TIMEOUT_MIN_DEAD_TIMEOUT
);
}
void error(struct kr_query *qry, struct address_state *addr_state,
const struct kr_transport *transport,
enum kr_selection_error sel_error)
{
if (!transport || !addr_state) {
/* Answers from cache have NULL transport, ignore them. */
return;
}
switch (sel_error) {
case KR_SELECTION_OK:
return;
case KR_SELECTION_TCP_CONNECT_FAILED:
case KR_SELECTION_TCP_CONNECT_TIMEOUT:
qry->server_selection.local_state->force_udp = true;
qry->flags.NO_0X20 = qry->request->options.NO_0X20;
/* Connection and handshake failures have properties similar
* to UDP timeouts, so we handle them (almost) the same way. */
/* fall-through */
case KR_SELECTION_TLS_HANDSHAKE_FAILED:
case KR_SELECTION_QUERY_TIMEOUT:
qry->server_selection.local_state->timeouts++;
server_timeout(qry, transport, addr_state, &qry->request->ctx->cache);
break;
case KR_SELECTION_FORMERR:
if (qry->flags.NO_EDNS) {
addr_state->broken = true;
} else {
qry->flags.NO_EDNS = true;
}
break;
case KR_SELECTION_FORMERR_EDNS:
addr_state->broken = true;
break;
case KR_SELECTION_MISMATCHED:
if (qry->flags.NO_0X20 && qry->flags.TCP) {
addr_state->broken = true;
} else {
qry->flags.TCP = true;
qry->flags.NO_0X20 = true;
}
break;
case KR_SELECTION_TRUNCATED:
if (transport->protocol == KR_TRANSPORT_UDP) {
qry->server_selection.local_state->truncated = true;
/* TC=1 over UDP is not an error, so we compensate. */
addr_state->error_count--;
} else {
addr_state->broken = true;
}
break;
case KR_SELECTION_REFUSED:
case KR_SELECTION_SERVFAIL:
if (qry->flags.FORWARD || qry->flags.STUB) {
/* The NS might not be broken, but this state is just for this query
* and it doesn't make sense to retry on the same NS immediately. */
addr_state->broken = true;
break;
}
/* For authoritative servers we try some fallback workarounds. */
if (qry->flags.NO_MINIMIZE && qry->flags.NO_0X20 && qry->flags.TCP) {
addr_state->broken = true;
} else if (qry->flags.NO_MINIMIZE) {
qry->flags.NO_0X20 = true;
qry->flags.TCP = true;
} else {
qry->flags.NO_MINIMIZE = true;
}
break;
case KR_SELECTION_LAME_DELEGATION:
if (qry->flags.NO_MINIMIZE) {
/* Lame delegations are weird, they breed more lame delegations on broken
* zones since trying another server from the same set usually doesn't help.
* We force resolution of another NS name in hope of getting somewhere. */
qry->server_selection.local_state->force_resolve = true;
addr_state->broken = true;
} else {
qry->flags.NO_MINIMIZE = true;
}
break;
case KR_SELECTION_NOTIMPL:
case KR_SELECTION_OTHER_RCODE:
case KR_SELECTION_DNSSEC_ERROR:
case KR_SELECTION_BAD_CNAME:
case KR_SELECTION_MALFORMED:
/* These errors are fatal, no point in trying this server again. */
addr_state->broken = true;
break;
default:
kr_assert(false);
return;
}
addr_state->error_count++;
addr_state->errors[sel_error]++;
if (kr_log_is_debug_qry(SELECTION, qry)) {
KR_DNAME_GET_STR(ns_name, transport->ns_name);
KR_DNAME_GET_STR(zonecut_str, qry->zone_cut.name);
const char *ns_str = kr_straddr(&transport->address.ip);
const char *err_str = kr_selection_error_str(sel_error);
VERBOSE_MSG(
qry,
"=> id: '%05u' noting selection error: '%s'@'%s'"
" zone cut: '%s' error: %d %s\n",
qry->id, ns_name, ns_str ? ns_str : "",
zonecut_str, sel_error, err_str ? err_str : "??");
}
}
void kr_server_selection_init(struct kr_query *qry)
{
struct knot_mm *mempool = &qry->request->pool;
struct local_state *local_state = mm_calloc(mempool, 1, sizeof(*local_state));
if (qry->flags.FORWARD || qry->flags.STUB) {
qry->server_selection = (struct kr_server_selection){
.initialized = true,
.choose_transport = forward_choose_transport,
.update_rtt = forward_update_rtt,
.error = forward_error,
.local_state = local_state,
};
forward_local_state_alloc(
mempool, &qry->server_selection.local_state->priv,
qry->request);
} else {
qry->server_selection = (struct kr_server_selection){
.initialized = true,
.choose_transport = iter_choose_transport,
.update_rtt = iter_update_rtt,
.error = iter_error,
.local_state = local_state,
};
iter_local_state_alloc(
mempool, &qry->server_selection.local_state->priv);
}
}
void kr_server_selection_cached(struct kr_query *qry)
{
qry->server_selection = (struct kr_server_selection){
.initialized = false,
// we reuse iter_error, as it's no-op if (!initialized)
.error = iter_error,
// everything else is NULL
};
}
int kr_forward_add_target(struct kr_request *req, const struct sockaddr *sock)
{
if (!req->selection_context.forwarding_targets.at) {
return kr_error(EINVAL);
}
union kr_sockaddr address;
switch (sock->sa_family) {
case AF_INET:
if (req->options.NO_IPV4)
return kr_error(EINVAL);
address.ip4 = *(const struct sockaddr_in *)sock;
break;
case AF_INET6:
if (req->options.NO_IPV6)
return kr_error(EINVAL);
address.ip6 = *(const struct sockaddr_in6 *)sock;
break;
default:
return kr_error(EINVAL);
}
array_push_mm(req->selection_context.forwarding_targets, address,
kr_memreserve, &req->pool);
return kr_ok();
}
|