File: base_schema.py

package info (click to toggle)
knot-resolver 6.0.17-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,376 kB
  • sloc: javascript: 42,732; ansic: 40,311; python: 12,580; cpp: 2,121; sh: 1,988; xml: 193; makefile: 181
file content (820 lines) | stat: -rw-r--r-- 32,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
import enum
import inspect
from abc import ABC, abstractmethod  # pylint: disable=[no-name-in-module]
from typing import Any, Callable, Dict, Generic, List, Optional, Set, Tuple, Type, TypeVar, Union, cast

import yaml

from knot_resolver.utils.functional import all_matches

from .base_generic_type_wrapper import BaseGenericTypeWrapper
from .base_value_type import BaseValueType
from .exceptions import AggregateDataValidationError, DataDescriptionError, DataValidationError
from .renaming import Renamed, renamed
from .types import (
    get_generic_type_argument,
    get_generic_type_arguments,
    get_generic_type_wrapper_argument,
    get_optional_inner_type,
    is_dict,
    is_enum,
    is_generic_type_wrapper,
    is_internal_field_name,
    is_list,
    is_literal,
    is_none_type,
    is_optional,
    is_tuple,
    is_union,
)

T = TypeVar("T")


def is_obj_type(obj: Any, types: Union[type, Tuple[Any, ...], Tuple[type, ...]]) -> bool:
    # To check specific type we are using 'type()' instead of 'isinstance()'
    # because for example 'bool' is instance of 'int', 'isinstance(False, int)' returns True.
    # pylint: disable=unidiomatic-typecheck
    if isinstance(types, tuple):
        return type(obj) in types
    return type(obj) is types


class Serializable(ABC):
    """
    An interface for making classes serializable to a dictionary (and in turn into a JSON).
    """

    @abstractmethod
    def to_dict(self) -> Dict[Any, Any]:
        raise NotImplementedError(f"...for class {self.__class__.__name__}")

    @staticmethod
    def is_serializable(typ: Type[Any]) -> bool:
        return (
            typ in {str, bool, int, float}
            or is_none_type(typ)
            or is_literal(typ)
            or is_dict(typ)
            or is_list(typ)
            or is_generic_type_wrapper(typ)
            or (inspect.isclass(typ) and issubclass(typ, Serializable))
            or (inspect.isclass(typ) and issubclass(typ, BaseValueType))
            or (inspect.isclass(typ) and issubclass(typ, BaseSchema))
            or (is_optional(typ) and Serializable.is_serializable(get_optional_inner_type(typ)))
            or (is_union(typ) and all_matches(Serializable.is_serializable, get_generic_type_arguments(typ)))
        )

    @staticmethod
    def serialize(obj: Any) -> Any:
        if isinstance(obj, Serializable):
            return obj.to_dict()

        if isinstance(obj, (BaseValueType, BaseGenericTypeWrapper)):
            o = obj.serialize()
            # if Serializable.is_serializable(o):
            return Serializable.serialize(o)
            # return o

        if isinstance(obj, list):
            res: List[Any] = [Serializable.serialize(i) for i in cast(List[Any], obj)]
            return res

        return obj


class _LazyDefault(Generic[T], Serializable):
    """
    Wrapper for default values BaseSchema classes which deffers their instantiation until the schema
    itself is being instantiated
    """

    def __init__(self, constructor: Callable[..., T], *args: Any, **kwargs: Any) -> None:
        # pylint: disable=[super-init-not-called]
        self._func = constructor
        self._args = args
        self._kwargs = kwargs

    def instantiate(self) -> T:
        return self._func(*self._args, **self._kwargs)

    def to_dict(self) -> Dict[Any, Any]:
        return Serializable.serialize(self.instantiate())


def lazy_default(constructor: Callable[..., T], *args: Any, **kwargs: Any) -> T:
    """We use a factory function because you can't lie about the return type in `__new__`"""
    return _LazyDefault(constructor, *args, **kwargs)  # type: ignore


def _split_docstring(docstring: str) -> Tuple[str, Optional[str]]:
    """
    Splits docstring into description of the class and description of attributes
    """

    if "---" not in docstring:
        return ("\n".join([s.strip() for s in docstring.splitlines()]).strip(), None)

    doc, attrs_doc = docstring.split("---", maxsplit=1)
    return (
        "\n".join([s.strip() for s in doc.splitlines()]).strip(),
        attrs_doc,
    )


def _parse_attrs_docstrings(docstring: str) -> Optional[Dict[str, str]]:
    """
    Given a docstring of a BaseSchema, return a dict with descriptions of individual attributes.
    """

    _, attrs_doc = _split_docstring(docstring)
    if attrs_doc is None:
        return None

    # try to parse it as yaml:
    data = yaml.safe_load(attrs_doc)
    assert isinstance(data, dict), "Invalid format of attribute description"
    return cast(Dict[str, str], data)


def _get_properties_schema(typ: Type[Any]) -> Dict[Any, Any]:
    schema: Dict[Any, Any] = {}
    annot: Dict[str, Any] = typ.__dict__.get("__annotations__", {})
    docstring: str = typ.__dict__.get("__doc__", "") or ""
    attribute_documentation = _parse_attrs_docstrings(docstring)
    for field_name, python_type in annot.items():
        name = field_name.replace("_", "-")
        schema[name] = _describe_type(python_type)

        # description
        if attribute_documentation is not None:
            if field_name not in attribute_documentation:
                raise DataDescriptionError(f"The docstring does not describe field '{field_name}'", str(typ))
            schema[name]["description"] = attribute_documentation[field_name]
            del attribute_documentation[field_name]

        # default value
        if hasattr(typ, field_name):
            assert Serializable.is_serializable(
                python_type
            ), f"Type '{python_type}' does not appear to be JSON serializable"
            schema[name]["default"] = Serializable.serialize(getattr(typ, field_name))

    if attribute_documentation is not None and len(attribute_documentation) > 0:
        raise DataDescriptionError(
            f"The docstring describes attributes which are not present - {tuple(attribute_documentation.keys())}",
            str(typ),
        )

    return schema


def _describe_type(typ: Type[Any]) -> Dict[Any, Any]:  # noqa: PLR0911, PLR0912
    # pylint: disable=too-many-branches

    if inspect.isclass(typ) and issubclass(typ, BaseSchema):
        return typ.json_schema(include_schema_definition=False)

    if inspect.isclass(typ) and issubclass(typ, BaseValueType):
        return typ.json_schema()

    if is_generic_type_wrapper(typ):
        wrapped = get_generic_type_wrapper_argument(typ)
        return _describe_type(wrapped)

    if is_none_type(typ):
        return {"type": "null"}

    if typ is int:
        return {"type": "integer"}

    if typ is bool:
        return {"type": "boolean"}

    if typ is str:
        return {"type": "string"}

    if is_literal(typ):
        lit = get_generic_type_arguments(typ)
        return {"type": "string", "enum": lit}

    if is_optional(typ):
        desc = _describe_type(get_optional_inner_type(typ))
        if "type" in desc:
            desc["type"] = [desc["type"], "null"]
            return desc
        return {"anyOf": [{"type": "null"}, desc]}

    if is_union(typ):
        variants = get_generic_type_arguments(typ)
        return {"anyOf": [_describe_type(v) for v in variants]}

    if is_list(typ):
        return {"type": "array", "items": _describe_type(get_generic_type_argument(typ))}

    if is_dict(typ):
        key, val = get_generic_type_arguments(typ)

        if inspect.isclass(key) and issubclass(key, BaseValueType):
            assert (
                key.__str__ is not BaseValueType.__str__
            ), "To support derived 'BaseValueType', __str__ must be implemented."
        else:
            assert key is str, "We currently do not support any other keys then strings"

        return {"type": "object", "additionalProperties": _describe_type(val)}

    if inspect.isclass(typ) and issubclass(typ, enum.Enum):  # same as our is_enum(typ), but inlined for type checker
        return {"type": "string", "enum": [str(v) for v in typ]}

    raise NotImplementedError(f"Trying to get JSON schema for type '{typ}', which is not implemented")


TSource = Union[None, "BaseSchema", Dict[str, Any]]


def _create_untouchable(name: str) -> object:
    class _Untouchable:
        def __getattribute__(self, item_name: str) -> Any:
            raise RuntimeError(f"You are not supposed to access object '{name}'.")

        def __setattr__(self, item_name: str, value: Any) -> None:
            raise RuntimeError(f"You are not supposed to access object '{name}'.")

    return _Untouchable()


class ObjectMapper:
    def _create_tuple(self, tp: Type[Any], obj: Tuple[Any, ...], object_path: str) -> Tuple[Any, ...]:
        types = get_generic_type_arguments(tp)
        errs: List[DataValidationError] = []
        res: List[Any] = []
        for i, (t, val) in enumerate(zip(types, obj)):
            try:
                res.append(self.map_object(t, val, object_path=f"{object_path}[{i}]"))
            except DataValidationError as e:
                errs.append(e)
        if len(errs) == 1:
            raise errs[0]
        if len(errs) > 1:
            raise AggregateDataValidationError(object_path, child_exceptions=errs)
        return tuple(res)

    def _create_dict(self, tp: Type[Any], obj: Dict[Any, Any], object_path: str) -> Dict[Any, Any]:
        key_type, val_type = get_generic_type_arguments(tp)
        try:
            errs: List[DataValidationError] = []
            res: Dict[Any, Any] = {}
            for key, val in obj.items():
                try:
                    nkey = self.map_object(key_type, key, object_path=f"{object_path}[{key}]")
                    nval = self.map_object(val_type, val, object_path=f"{object_path}[{key}]")
                    res[nkey] = nval
                except DataValidationError as e:
                    errs.append(e)
            if len(errs) == 1:
                raise errs[0]
            if len(errs) > 1:
                raise AggregateDataValidationError(object_path, child_exceptions=errs)
            return res
        except AttributeError as e:
            raise DataValidationError(
                f"Expected dict-like object, but failed to access its .items() method. Value was {obj}", object_path
            ) from e

    def _create_list(self, tp: Type[Any], obj: List[Any], object_path: str) -> List[Any]:
        if isinstance(obj, str):
            raise DataValidationError("expected list, got string", object_path)

        inner_type = get_generic_type_argument(tp)
        errs: List[DataValidationError] = []
        res: List[Any] = []

        try:
            for i, val in enumerate(obj):
                res.append(self.map_object(inner_type, val, object_path=f"{object_path}[{i}]"))
            if len(res) == 0:
                raise DataValidationError("empty list is not allowed", object_path)
        except DataValidationError as e:
            errs.append(e)
        except TypeError as e:
            errs.append(DataValidationError(str(e), object_path))

        if len(errs) == 1:
            raise errs[0]
        if len(errs) > 1:
            raise AggregateDataValidationError(object_path, child_exceptions=errs)
        return res

    def _create_str(self, obj: Any, object_path: str) -> str:
        # we are willing to cast any primitive value to string, but no compound values are allowed
        if is_obj_type(obj, (str, float, int)) or isinstance(obj, BaseValueType):
            return str(obj)
        if is_obj_type(obj, bool):
            raise DataValidationError(
                "Expected str, found bool. Be careful, that YAML parsers consider even"
                ' "no" and "yes" as a bool. Search for the Norway Problem for more'
                " details. And please use quotes explicitly.",
                object_path,
            )
        raise DataValidationError(
            f"expected str (or number that would be cast to string), but found type {type(obj)}", object_path
        )

    def _create_int(self, obj: Any, object_path: str) -> int:
        # we don't want to make an int out of anything else than other int
        # except for BaseValueType class instances
        if is_obj_type(obj, int) or isinstance(obj, BaseValueType):
            return int(obj)
        raise DataValidationError(f"expected int, found {type(obj)}", object_path)

    def _create_union(self, tp: Type[T], obj: Any, object_path: str) -> T:
        variants = get_generic_type_arguments(tp)
        errs: List[DataValidationError] = []
        for v in variants:
            try:
                return self.map_object(v, obj, object_path=object_path)
            except DataValidationError as e:
                errs.append(e)

        raise DataValidationError("could not parse any of the possible variants", object_path, child_exceptions=errs)

    def _create_optional(self, tp: Type[Optional[T]], obj: Any, object_path: str) -> Optional[T]:
        inner: Type[Any] = get_optional_inner_type(tp)
        if obj is None:
            return None
        return self.map_object(inner, obj, object_path=object_path)

    def _create_bool(self, obj: Any, object_path: str) -> bool:
        if is_obj_type(obj, bool):
            return obj
        raise DataValidationError(f"expected bool, found {type(obj)}", object_path)

    def _create_literal(self, tp: Type[Any], obj: Any, object_path: str) -> Any:
        expected = get_generic_type_arguments(tp)
        if obj in expected:
            return obj
        raise DataValidationError(f"'{obj}' does not match any of the expected values {expected}", object_path)

    def _create_base_schema_object(self, tp: Type[Any], obj: Any, object_path: str) -> "BaseSchema":
        if isinstance(obj, (dict, BaseSchema)):
            return tp(obj, object_path=object_path)
        raise DataValidationError(f"expected 'dict' or 'NoRenameBaseSchema' object, found '{type(obj)}'", object_path)

    def create_value_type_object(self, tp: Type[Any], obj: Any, object_path: str) -> "BaseValueType":
        if isinstance(obj, tp):
            # if we already have a custom value type, just pass it through
            return obj
        # no validation performed, the implementation does it in the constuctor
        try:
            return tp(obj, object_path=object_path)
        except ValueError as e:
            if len(e.args) > 0 and isinstance(e.args[0], str):
                msg = e.args[0]
            else:
                msg = f"Failed to validate value against {tp} type"
            raise DataValidationError(msg, object_path) from e

    def _create_default(self, obj: Any) -> Any:
        if isinstance(obj, _LazyDefault):
            return obj.instantiate()  # type: ignore
        return obj

    def map_object(  # noqa: PLR0911, PLR0912
        self,
        tp: Type[Any],
        obj: Any,
        default: Any = ...,
        use_default: bool = False,
        object_path: str = "/",
    ) -> Any:
        """
        Given an expected type `cls` and a value object `obj`, return a new object of the given type and map fields of `obj` into it. During the mapping procedure,
        runtime type checking is performed.
        """

        # Disabling these checks, because I think it's much more readable as a single function
        # and it's not that large at this point. If it got larger, then we should definitely split it
        # pylint: disable=too-many-branches,too-many-locals,too-many-statements

        # default values
        if obj is None and use_default:
            return self._create_default(default)

        # NoneType
        if is_none_type(tp):
            if obj is None:
                return None
            raise DataValidationError(f"expected None, found '{obj}'.", object_path)

        # Optional[T]  (could be technically handled by Union[*variants], but this way we have better error reporting)
        if is_optional(tp):
            return self._create_optional(tp, obj, object_path)

        # Union[*variants]
        if is_union(tp):
            return self._create_union(tp, obj, object_path)

        # after this, there is no place for a None object
        if obj is None:
            raise DataValidationError(f"unexpected value 'None' for type {tp}", object_path)

        # int
        if tp is int:
            return self._create_int(obj, object_path)

        # str
        if tp is str:
            return self._create_str(obj, object_path)

        # bool
        if tp is bool:
            return self._create_bool(obj, object_path)

        # float
        if tp is float:
            raise NotImplementedError(
                "Floating point values are not supported in the object mapper."
                " Please implement them and be careful with type coercions"
            )

        # Literal[T]
        if is_literal(tp):
            return self._create_literal(tp, obj, object_path)

        # Dict[K,V]
        if is_dict(tp):
            return self._create_dict(tp, obj, object_path)

        # any Enums (probably used only internally in DataValidator)
        if is_enum(tp):
            if isinstance(obj, tp):
                return obj
            raise DataValidationError(f"unexpected value '{obj}' for enum '{tp}'", object_path)

        # List[T]
        if is_list(tp):
            return self._create_list(tp, obj, object_path)

        # Tuple[A,B,C,D,...]
        if is_tuple(tp):
            return self._create_tuple(tp, obj, object_path)

        # type of obj and cls type match
        if is_obj_type(obj, tp):
            return obj

        # when the specified type is Any, just return the given value
        # on mypy version 1.11.0 comparison-overlap error started popping up
        # https://github.com/python/mypy/issues/17665
        if tp == Any:  # type: ignore[comparison-overlap]
            return obj

        # BaseValueType subclasses
        if inspect.isclass(tp) and issubclass(tp, BaseValueType):
            return self.create_value_type_object(tp, obj, object_path)

        # BaseGenericTypeWrapper subclasses
        if is_generic_type_wrapper(tp):
            inner_type = get_generic_type_wrapper_argument(tp)
            obj_valid = self.map_object(inner_type, obj, object_path)
            return tp(obj_valid, object_path=object_path)  # type: ignore

        # nested BaseSchema subclasses
        if inspect.isclass(tp) and issubclass(tp, BaseSchema):
            return self._create_base_schema_object(tp, obj, object_path)

        # if the object matches, just pass it through
        if inspect.isclass(tp) and isinstance(obj, tp):
            return obj

        # default error handler
        raise DataValidationError(
            f"Type {tp} cannot be parsed. This is a implementation error. "
            "Please fix your types in the class or improve the parser/validator.",
            object_path,
        )

    def is_obj_type_valid(self, obj: Any, tp: Type[Any]) -> bool:
        """
        Runtime type checking. Validate, that a given object is of a given type.
        """

        try:
            self.map_object(tp, obj)
            return True
        except (DataValidationError, ValueError):
            return False

    def _assign_default(self, obj: Any, name: str, python_type: Any, object_path: str) -> None:
        cls = obj.__class__

        try:
            default = self._create_default(getattr(cls, name, None))
        except ValueError as e:
            raise DataValidationError(str(e), f"{object_path}/{name}") from e

        value = self.map_object(python_type, default, object_path=f"{object_path}/{name}")
        setattr(obj, name, value)

    def _assign_field(self, obj: Any, name: str, python_type: Any, value: Any, object_path: str) -> None:
        value = self.map_object(python_type, value, object_path=f"{object_path}/{name}")
        setattr(obj, name, value)

    def _assign_fields(self, obj: Any, source: Union[Dict[str, Any], "BaseSchema", None], object_path: str) -> Set[str]:
        """
        Order of assignment:
          1. all direct assignments
          2. assignments with conversion method
        """
        cls = obj.__class__
        annot = cls.__dict__.get("__annotations__", {})
        errs: List[DataValidationError] = []

        used_keys: Set[str] = set()
        for name, python_type in annot.items():
            try:
                if is_internal_field_name(name):
                    continue

                # populate field
                if source is None:
                    self._assign_default(obj, name, python_type, object_path)

                # check for invalid configuration with both transformation function and default value
                elif hasattr(obj, f"_{name}") and hasattr(obj, name):
                    raise RuntimeError(
                        f"Field '{obj.__class__.__name__}.{name}' has default value and transformation function at"
                        " the same time. That is now allowed. Store the default in the transformation function."
                    )

                # there is a transformation function to create the value
                elif hasattr(obj, f"_{name}") and callable(getattr(obj, f"_{name}")):
                    val = self._get_converted_value(obj, name, source, object_path)
                    self._assign_field(obj, name, python_type, val, object_path)
                    used_keys.add(name)

                # source just contains the value
                elif name in source:
                    val = source[name]
                    self._assign_field(obj, name, python_type, val, object_path)
                    used_keys.add(name)

                # there is a default value, or the type is optional => store the default or null
                elif hasattr(obj, name) or is_optional(python_type):
                    self._assign_default(obj, name, python_type, object_path)

                # we expected a value but it was not there
                else:
                    errs.append(DataValidationError(f"missing attribute '{name}'.", object_path))
            except DataValidationError as e:
                errs.append(e)

        if len(errs) == 1:
            raise errs[0]
        if len(errs) > 1:
            raise AggregateDataValidationError(object_path, errs)
        return used_keys

    def _get_converted_value(self, obj: Any, key: str, source: TSource, object_path: str) -> Any:
        """
        Get a value of a field by invoking appropriate transformation function.
        """
        try:
            func = getattr(obj.__class__, f"_{key}")
            argc = len(inspect.signature(func).parameters)
            if argc == 1:
                # it is a static method
                return func(source)
            if argc == 2:
                # it is a instance method
                return func(_create_untouchable("obj"), source)
            raise RuntimeError("Transformation function has wrong number of arguments")
        except ValueError as e:
            if len(e.args) > 0 and isinstance(e.args[0], str):
                msg = e.args[0]
            else:
                msg = "Failed to validate value type"
            raise DataValidationError(msg, object_path) from e

    def object_constructor(self, obj: Any, source: Union["BaseSchema", Dict[Any, Any]], object_path: str) -> None:
        """
        Delegated constructor for the NoRenameBaseSchema class.

        The reason this method is delegated to the mapper is due to renaming. Like this, we don't have to
        worry about a different BaseSchema class, when we want to have dynamically renamed fields.
        """
        # As this is a delegated constructor, we must ignore protected access warnings

        # sanity check
        if not isinstance(source, (BaseSchema, dict)):  # type: ignore
            raise DataValidationError(f"expected dict-like object, found '{type(source)}'", object_path)

        # construct lower level schema first if configured to do so
        if obj._LAYER is not None:  # noqa: SLF001
            source = obj._LAYER(source, object_path=object_path)  # pylint: disable=not-callable  # noqa: SLF001

        # assign fields
        used_keys = self._assign_fields(obj, source, object_path)

        # check for unused keys in the source object
        if source and not isinstance(source, BaseSchema):
            unused = source.keys() - used_keys
            if len(unused) > 0:
                keys = ", ".join((f"'{u}'" for u in unused))
                raise DataValidationError(
                    f"unexpected extra key(s) {keys}",
                    object_path,
                )

        # validate the constructed value
        try:
            obj._validate()  # noqa: SLF001
        except ValueError as e:
            raise DataValidationError(e.args[0] if len(e.args) > 0 else "Validation error", object_path or "/") from e


class BaseSchema(Serializable):
    """
    Base class for modeling configuration schema. It somewhat resembles standard dataclasses with additional
    functionality:

    * type validation
    * data conversion

    To create an instance of this class, you have to provide source data in the form of dict-like object.
    Generally, raw dict or another `BaseSchema` instance. The provided data object is traversed, transformed
    and validated before assigned to the appropriate fields (attributes).

    Fields (attributes)
    ===================

    The fields (or attributes) of the class are defined the same way as in a dataclass by creating a class-level
    type-annotated fields. An example of that is:

    class A(BaseSchema):
        awesome_number: int

    If your `BaseSchema` instance has a field with type of a BaseSchema, its value is recursively created
    from the nested input data. This way, you can specify a complex tree of BaseSchema's and use the root
    BaseSchema to create instance of everything.

    Transformation
    ==============

    You can provide the BaseSchema class with a field and a function with the same name, but starting with
    underscore ('_'). For example, you could have field called `awesome_number` and function called
    `_awesome_number(self, source)`. The function takes one argument - the source data (optionally with self,
    but you are not supposed to touch that). It can read any data from the source object and return a value of
    an appropriate type, which will be assigned to the field `awesome_number`. If you want to report an error
    during validation, raise a `ValueError` exception.

    Using this, you can convert any input values into any type and field you want. To make the conversion easier
    to write, you could also specify a special class variable called `_LAYER` pointing to another
    BaseSchema class. This causes the source object to be first parsed as the specified additional layer of BaseSchema and after that
    used a source for this class. This therefore allows nesting of transformation functions.

    Validation
    ==========

    All assignments to fields during object construction are checked at runtime for proper types. This means,
    you are free to use an untrusted source object and turn it into a data structure, where you are sure what
    is what.

    You can also define a `_validate` method, which will be called once the whole data structure is built. You
    can validate the data in there and raise a `ValueError`, if they are invalid.

    Default values
    ==============

    If you create a field with a value, it will be used as a default value whenever the data in source object
    are not present. As a special case, default value for Optional type is None if not specified otherwise. You
    are not allowed to have a field with a default value and a transformation function at once.

    Example
    =======

    See tests/utils/test_modelling.py for example usage.
    """

    _LAYER: Optional[Type["BaseSchema"]] = None
    _MAPPER: ObjectMapper = ObjectMapper()

    def __init__(self, source: TSource = None, object_path: str = ""):  # pylint: disable=[super-init-not-called]
        # save source data (and drop information about nullness)
        source = source or {}
        self.__source: Union[Dict[str, Any], BaseSchema] = source

        # delegate the rest of the constructor
        self._MAPPER.object_constructor(self, source, object_path)

    def get_unparsed_data(self) -> Dict[str, Any]:
        if isinstance(self.__source, BaseSchema):
            return self.__source.get_unparsed_data()
        if isinstance(self.__source, Renamed):
            return self.__source.original()
        return self.__source

    def __getitem__(self, key: str) -> Any:
        if not hasattr(self, key):
            raise RuntimeError(f"Object '{self}' of type '{type(self)}' does not have field named '{key}'")
        return getattr(self, key)

    def __contains__(self, item: Any) -> bool:
        return hasattr(self, item)

    def _validate(self) -> None:
        """
        Validation procedure called after all field are assigned. Should throw a ValueError in case of failure.
        """

    def __eq__(self, o: object) -> bool:
        cls = self.__class__
        if not isinstance(o, cls):
            return False

        annot = cls.__dict__.get("__annotations__", {})
        for name in annot.keys():
            if getattr(self, name) != getattr(o, name):
                return False

        return True

    @classmethod
    def json_schema(
        cls: Type["BaseSchema"],
        schema_id: Optional[str] = None,
        title: Optional[str] = None,
        description: Optional[str] = None,
        include_schema_definition: bool = True,
    ) -> Dict[Any, Any]:
        if cls._LAYER is not None:
            return cls._LAYER.json_schema(
                schema_id=schema_id,
                title=title,
                description=description,
                include_schema_definition=include_schema_definition,
            )

        schema: Dict[Any, Any] = {}
        if include_schema_definition:
            schema["$schema"] = "https://json-schema.org/draft/2020-12/schema"
        if schema_id is not None:
            schema["$id"] = schema_id
        if title is not None:
            schema["title"] = title
        if description is not None:
            schema["description"] = description
        elif cls.__doc__ is not None:
            schema["description"] = _split_docstring(cls.__doc__)[0]
        schema["type"] = "object"
        schema["properties"] = _get_properties_schema(cls)

        return schema

    def to_dict(self) -> Dict[Any, Any]:
        res: Dict[Any, Any] = {}
        cls = self.__class__
        annot = cls.__dict__.get("__annotations__", {})

        for name in annot:
            res[name] = Serializable.serialize(getattr(self, name))
        return res


class RenamingObjectMapper(ObjectMapper):
    """
    Same as object mapper, but it uses collection wrappers from the module `renamed` to perform dynamic field renaming.

    More specifically:
    - it renames all properties in (nested) objects
    - it does not rename keys in dictionaries
    """

    def _create_dict(self, tp: Type[Any], obj: Dict[Any, Any], object_path: str) -> Dict[Any, Any]:
        if isinstance(obj, Renamed):
            obj = obj.original()
        return super()._create_dict(tp, obj, object_path)

    def _create_base_schema_object(self, tp: Type[Any], obj: Any, object_path: str) -> "BaseSchema":
        if isinstance(obj, dict):
            obj = renamed(obj)
        return super()._create_base_schema_object(tp, obj, object_path)

    def object_constructor(self, obj: Any, source: Union["BaseSchema", Dict[Any, Any]], object_path: str) -> None:
        if isinstance(source, dict):
            source = renamed(source)
        return super().object_constructor(obj, source, object_path)


# export as a standalone functions for simplicity compatibility
is_obj_type_valid = ObjectMapper().is_obj_type_valid
map_object = ObjectMapper().map_object


class ConfigSchema(BaseSchema):
    """
    Same as BaseSchema, but maps with RenamingObjectMapper
    """

    _MAPPER: ObjectMapper = RenamingObjectMapper()