1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/* Copyright (C) CZ.NIC, z.s.p.o. and contributors
* SPDX-License-Identifier: GPL-2.0-or-later
* For more information, see <https://www.knot-dns.cz/>
*/
#include <tap/basic.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdatomic.h>
#include "libdnssec/crypto.h"
#include "libdnssec/random.h"
#include "libknot/libknot.h"
#include "contrib/openbsd/siphash.h"
#include "contrib/sockaddr.h"
#include "time.h"
int fakeclock_gettime(clockid_t clockid, struct timespec *tp);
#define clock_gettime fakeclock_gettime
#include "knot/modules/rrl/functions.c"
#undef clock_gettime
#define RRL_THREADS 4
//#define RRL_SYNC_WITH_REAL_TIME
#define BATCH_QUERIES_LOG 3 // threads acquire queries in batches of 8
#define HOSTS_LOG 3 // at most 6 attackers + 2 wildcard addresses for normal users
#define TICK_QUERIES_LOG 13 // at most 1024 queries per host per tick
// Accessing RRL configuration of INSTANT/RATE limits for V4/V6 and specific prefix.
#define LIMIT(type, Vx, prefix) (RRL_MULT(Vx, prefix) * RRL_ ## type ## _LIMIT)
#define RRL_CONFIG(Vx, name) RRL_ ## Vx ## _ ## name
#define RRL_MULT(Vx, prefix) get_mult(RRL_CONFIG(Vx, PREFIXES), RRL_CONFIG(Vx, RATE_MULT), RRL_CONFIG(Vx, PREFIXES_CNT), prefix)
static inline kru_price_t get_mult(uint8_t prefixes[], kru_price_t mults[], size_t cnt, uint8_t wanted_prefix) {
for (size_t i = 0; i < cnt; i++)
if (prefixes[i] == wanted_prefix)
return mults[i];
assert(0);
return 0;
}
// Macro correction depending on the table mode.
int DIFF = 0;
// Instant limits and rate limits per msec.
#define INST(Vx, prefix) (LIMIT(INSTANT, Vx, prefix) + DIFF)
#define RATEM(Vx, prefix) (LIMIT(RATE, Vx, prefix) / 1000 + DIFF)
// Expected range of limits for parallel test.
#define RANGE_INST(Vx, prefix) INST(Vx, prefix) - 1, INST(Vx, prefix) + RRL_THREADS - 1 + DIFF
#define RANGE_RATEM(Vx, prefix) RATEM(Vx, prefix) - 1 - DIFF, RATEM(Vx, prefix) + RRL_THREADS - DIFF
#define RANGE_UNLIM(queries) queries, queries
/* Fix seed for randomness in RLL module. Change if improbable collisions arise. (one byte) */
#define RRL_SEED_GENERIC 1
#define RRL_SEED_AVX2 1
struct kru_generic {
SIPHASH_KEY hash_key;
// ...
};
struct kru_avx2 {
_Alignas(32) char hash_key[48];
// ...
};
/* Override time in RRL module. */
struct timespec fakeclock_start;
uint32_t fakeclock_tick = 0;
void fakeclock_init(void)
{
clock_gettime(CLOCK_MONOTONIC_COARSE, &fakeclock_start);
fakeclock_tick = 0;
}
int fakeclock_gettime(clockid_t clockid, struct timespec *tp)
{
uint32_t inc_msec = fakeclock_tick;
tp->tv_sec = fakeclock_start.tv_sec + (fakeclock_start.tv_nsec / 1000000 + inc_msec) / 1000;
tp->tv_nsec = (fakeclock_start.tv_nsec + (inc_msec % 1000) * 1000000) % 1000000000;
return 0;
}
struct host {
uint32_t queries_per_tick;
int addr_family;
char *addr_format;
uint32_t min_passed, max_passed;
_Atomic uint32_t passed;
};
struct stage {
uint32_t first_tick, last_tick;
struct host hosts[1 << HOSTS_LOG];
};
struct runnable_data {
rrl_table_t *rrl;
int prime;
_Atomic uint32_t *queries_acquired, *queries_done;
struct stage *stages;
};
static void *rrl_runnable(void *arg)
{
struct runnable_data *d = (struct runnable_data *)arg;
size_t si = 0;
char addr_str[40];
struct sockaddr_storage addr;
while (true) {
uint32_t qi1 = atomic_fetch_add(d->queries_acquired, 1 << BATCH_QUERIES_LOG);
/* increment time if needed; sync on incrementing using spinlock */
uint32_t tick = qi1 >> TICK_QUERIES_LOG;
for (size_t i = 1; tick != fakeclock_tick; i++) {
if ((*d->queries_done >> TICK_QUERIES_LOG) >= tick) {
fakeclock_tick = tick;
}
if (i % (1<<14) == 0) sched_yield();
__sync_synchronize();
}
/* increment stage if needed */
while (tick > d->stages[si].last_tick) {
++si;
if (!d->stages[si].first_tick) return NULL;
}
#ifdef RRL_SYNC_WITH_REAL_TIME
{
struct timespec ts_fake, ts_real;
do {
fakeclock_gettime(CLOCK_MONOTONIC_COARSE, &ts_fake);
clock_gettime(CLOCK_MONOTONIC_COARSE, &ts_real);
} while (!((ts_real.tv_sec > ts_fake.tv_sec) ||
((ts_real.tv_sec == ts_fake.tv_sec) && (ts_real.tv_nsec >= ts_fake.tv_nsec))));
}
#endif
if (tick >= d->stages[si].first_tick) {
uint32_t qi2 = 0;
do {
uint32_t qi = qi1 + qi2;
/* perform query qi */
uint32_t hi = qi % (1 << HOSTS_LOG);
if (!d->stages[si].hosts[hi].queries_per_tick) continue;
uint32_t hqi = (qi % (1 << TICK_QUERIES_LOG)) >> HOSTS_LOG; // host query index within tick
if (hqi >= d->stages[si].hosts[hi].queries_per_tick) continue;
hqi += (qi >> TICK_QUERIES_LOG) * d->stages[si].hosts[hi].queries_per_tick; // across ticks
(void)snprintf(addr_str, sizeof(addr_str), d->stages[si].hosts[hi].addr_format,
hqi % 0xff, (hqi >> 8) % 0xff, (hqi >> 16) % 0xff);
sockaddr_set(&addr, d->stages[si].hosts[hi].addr_family, addr_str, 0);
if (rrl_query(d->rrl, &addr, NULL) == KNOT_EOK) {
atomic_fetch_add(&d->stages[si].hosts[hi].passed, 1);
if (!d->rrl->rw_mode) {
rrl_update(d->rrl, &addr, 1);
}
}
} while ((qi2 = (qi2 + d->prime) % (1 << BATCH_QUERIES_LOG)));
}
atomic_fetch_add(d->queries_done, 1 << BATCH_QUERIES_LOG);
}
}
char *impl_name = "";
rrl_table_t *rrl = NULL;
void count_test(char *desc, int expected_passing, double margin_fract,
int addr_family, char *addr_format, uint32_t min_value, uint32_t max_value)
{
uint32_t max_queries = expected_passing > 0 ? 2 * expected_passing : -expected_passing;
struct sockaddr_storage addr;
char addr_str[40];
int cnt = -1;
for (size_t i = 0; i < max_queries; i++) {
(void)snprintf(addr_str, sizeof(addr_str), addr_format,
i % (max_value - min_value + 1) + min_value,
i / (max_value - min_value + 1) % 256);
sockaddr_set(&addr, addr_family, addr_str, 0);
if (rrl_query(rrl, &addr, NULL) != KNOT_EOK) {
cnt = i;
break;
}
if (!rrl->rw_mode) {
rrl_update(rrl, &addr, 1);
}
}
if (expected_passing < 0) expected_passing = -1;
if (margin_fract == 0) {
is_int(expected_passing, cnt, "rrl(%s): %-48s [%7d ]", impl_name, desc, expected_passing);
} else {
int max_diff = expected_passing * margin_fract;
ok((expected_passing - max_diff <= cnt) && (cnt <= expected_passing + max_diff),
"rrl(%s): %-48s [%7d <=%7d <=%7d ]", impl_name, desc,
expected_passing - max_diff, cnt, expected_passing + max_diff);
}
}
void test_rrl(bool rw_mode)
{
size_t RRL_TABLE_SIZE = (1 << 20);
uint32_t RRL_INSTANT_LIMIT = (1 << 7);
uint32_t RRL_RATE_LIMIT = (1 << 16);
if (rw_mode) {
RRL_INSTANT_LIMIT = (1 << 8);
RRL_RATE_LIMIT = (1 << 17);
}
fakeclock_init();
/* create rrl table */
rrl = rrl_create(RRL_TABLE_SIZE, RRL_INSTANT_LIMIT, RRL_RATE_LIMIT, rw_mode, 0);
ok(rrl != NULL, "rrl(%s): create", impl_name);
assert(rrl);
if (KRU.initialize == KRU_GENERIC.initialize) {
struct kru_generic *kru = (struct kru_generic *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_GENERIC, sizeof(kru->hash_key));
} else if (KRU.initialize == KRU_AVX2.initialize) {
struct kru_avx2 *kru = (struct kru_avx2 *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_AVX2, sizeof(kru->hash_key));
} else {
assert(0);
}
/* IPv4 multi-prefix tests */
static_assert(RRL_V4_PREFIXES_CNT == 4,
"There are no more IPv4 limited prefixes (/32, /24, /20, /18 will be tested).");
count_test("IPv4 instant limit /32", INST(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv4 instant limit /32 not applied on /31", -1, 0,
AF_INET, "128.0.0.1", 0, 0);
count_test("IPv4 instant limit /24", INST(V4, 24) - INST(V4, 32) - 1, 0,
AF_INET, "128.0.0.%d", 2, 255);
count_test("IPv4 instant limit /24 not applied on /23", -1, 0,
AF_INET, "128.0.1.0", 0, 0);
count_test("IPv4 instant limit /20", INST(V4, 20) - INST(V4, 24) - 1, 0.001,
AF_INET, "128.0.%d.%d", 2, 15);
count_test("IPv4 instant limit /20 not applied on /19", -1, 0,
AF_INET, "128.0.16.0", 0, 0);
count_test("IPv4 instant limit /18", INST(V4, 18) - INST(V4, 20) - 1, 0.01,
AF_INET, "128.0.%d.%d", 17, 63);
count_test("IPv4 instant limit /18 not applied on /17", -1, 0,
AF_INET, "128.0.64.0", 0, 0);
/* IPv6 multi-prefix tests */
static_assert(RRL_V6_PREFIXES_CNT == 5,
"There are no more IPv6 limited prefixes (/128, /64, /56, /48, /32 will be tested).");
count_test("IPv6 instant limit /128, independent to IPv4", INST(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
count_test("IPv6 instant limit /128 not applied on /127", -1, 0,
AF_INET6, "8000::1", 0, 0);
count_test("IPv6 instant limit /64", INST(V6, 64) - INST(V6, 128) - 1, 0,
AF_INET6, "8000:0:0:0:%02x%02x::", 0x01, 0xff);
count_test("IPv6 instant limit /64 not applied on /63", -1, 0,
AF_INET6, "8000:0:0:1::", 0, 0);
count_test("IPv6 instant limit /56", INST(V6, 56) - INST(V6, 64) - 1, rw_mode ? 0 : 0.01,
AF_INET6, "8000:0:0:00%02x:%02x00::", 0x02, 0xff);
count_test("IPv6 instant limit /56 not applied on /55", -1, 0,
AF_INET6, "8000:0:0:0100::", 0, 0);
count_test("IPv6 instant limit /48", INST(V6, 48) - INST(V6, 56) - 1, 0.01,
AF_INET6, "8000:0:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /48 not applied on /47", -1, 0,
AF_INET6, "8000:0:1::", 0, 0);
count_test("IPv6 instant limit /32", INST(V6, 32) - INST(V6, 48) - 1, rw_mode ? 0.001 : 0,
AF_INET6, "8000:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /32 not applied on /31", -1, 0,
AF_INET6, "8000:1::", 0, 0);
/* limit after 1 msec */
fakeclock_tick++;
count_test("IPv4 rate limit /32 after 1 msec", RATEM(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv6 rate limit /128 after 1 msec", RATEM(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
/* parallel tests */
struct stage stages[] = {
/* first tick, last tick, hosts */
{32, 32, {
/* queries per tick, family, address, min passed, max passed */
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_INST ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_INST ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{33, 255, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_RATEM ( V6, 128 )},
}},
{256, 511, {
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )}
}},
{512, 512, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{0}
};
pthread_t thr[RRL_THREADS];
struct runnable_data rd[RRL_THREADS];
_Atomic uint32_t queries_acquired = 0, queries_done = 0;
int primes[] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61};
assert(sizeof(primes)/sizeof(*primes) >= RRL_THREADS);
for (unsigned i = 0; i < RRL_THREADS; ++i) {
rd[i].rrl = rrl;
rd[i].queries_acquired = &queries_acquired;
rd[i].queries_done = &queries_done;
rd[i].prime = primes[i];
rd[i].stages = stages;
pthread_create(thr + i, NULL, &rrl_runnable, rd + i);
}
for (unsigned i = 0; i < RRL_THREADS; ++i) {
pthread_join(thr[i], NULL);
}
unsigned si = 0;
do {
struct host * const h = stages[si].hosts;
uint32_t ticks = stages[si].last_tick - stages[si].first_tick + 1;
for (size_t i = 0; h[i].queries_per_tick; i++) {
ok( h[i].min_passed * ticks <= h[i].passed && h[i].passed <= h[i].max_passed * ticks,
"rrl(%s): parallel stage %d, addr %-25s [%7d <=%12.4f <=%7d ]", impl_name,
si, h[i].addr_format, h[i].min_passed, (double)h[i].passed / ticks, h[i].max_passed);
}
} while (stages[++si].first_tick);
rrl_destroy(rrl);
}
void test_rrl_mode(bool test_avx2, bool rw_mode)
{
if (!rw_mode) {
DIFF = 1;
}
KRU = KRU_GENERIC;
impl_name = "KRU_GENERIC";
test_rrl(rw_mode);
if (test_avx2) {
KRU = KRU_AVX2;
impl_name = "KRU_AVX2";
test_rrl(rw_mode);
} else {
diag("AVX2 NOT available");
}
}
int main(int argc, char *argv[])
{
plan_lazy();
dnssec_crypto_init();
assert(KRU_GENERIC.initialize != KRU_AVX2.initialize);
bool test_avx2 = (KRU.initialize == KRU_AVX2.initialize);
test_rrl_mode(test_avx2, true);
test_rrl_mode(test_avx2, false);
dnssec_crypto_cleanup();
return 0;
}
|