1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
/*
* File: ximajpg.cpp
* Purpose: Platform Independent JPEG Image Class Loader and Writer
* 07/Aug/2001 Davide Pizzolato - www.xdp.it
* CxImage version 6.0.0 02/Feb/2008
*/
#include "ximajpg.h"
#if CXIMAGE_SUPPORT_JPG
#ifdef _LINUX
#include <jmorecfg.h>
#else
#include "../jpeg/jmorecfg.h"
#endif
#include "ximaiter.h"
#include <setjmp.h>
struct jpg_error_mgr {
struct jpeg_error_mgr pub; /* "public" fields */
jmp_buf setjmp_buffer; /* for return to caller */
char* buffer; /* error message <CSC>*/
};
typedef jpg_error_mgr *jpg_error_ptr;
////////////////////////////////////////////////////////////////////////////////
// Here's the routine that will replace the standard error_exit method:
////////////////////////////////////////////////////////////////////////////////
static void
ima_jpeg_error_exit (j_common_ptr cinfo)
{
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
jpg_error_ptr myerr = (jpg_error_ptr) cinfo->err;
/* Create the message */
myerr->pub.format_message (cinfo, myerr->buffer);
/* Send it to stderr, adding a newline */
/* Return control to the setjmp point */
longjmp(myerr->setjmp_buffer, 1);
}
////////////////////////////////////////////////////////////////////////////////
CxImageJPG::CxImageJPG(): CxImage(CXIMAGE_FORMAT_JPG)
{
#if CXIMAGEJPG_SUPPORT_EXIF
m_exif = NULL;
memset(&m_exifinfo, 0, sizeof(EXIFINFO));
#endif
}
////////////////////////////////////////////////////////////////////////////////
CxImageJPG::~CxImageJPG()
{
#if CXIMAGEJPG_SUPPORT_EXIF
if (m_exif) delete m_exif;
#endif
}
////////////////////////////////////////////////////////////////////////////////
#if CXIMAGEJPG_SUPPORT_EXIF
bool CxImageJPG::DecodeExif(CxFile * hFile)
{
m_exif = new CxExifInfo(&m_exifinfo);
if (m_exif){
long pos=hFile->Tell();
m_exif->DecodeExif(hFile);
hFile->Seek(pos,SEEK_SET);
#ifdef XBMC
memcpy(&info.ExifInfo, m_exif->m_exifinfo, sizeof(EXIFINFO));
#endif
return m_exif->m_exifinfo->IsExif;
} else {
return false;
}
}
#ifdef XBMC
bool CxImageJPG::GetExifThumbnail(const char *filename, const char *outname, int type)
{
CxIOFile file;
if (!file.Open(filename, "rb")) return false;
CxExifInfo exif(&m_exifinfo);
exif.DecodeExif(&file);
if (m_exifinfo.IsExif && m_exifinfo.ThumbnailPointer && m_exifinfo.ThumbnailSize > 0)
{ // have a thumbnail - check whether it needs rotating or resizing
// TODO: Write a fast routine to read the jpeg header to get the width and height
CxImage image(m_exifinfo.ThumbnailPointer, m_exifinfo.ThumbnailSize, CXIMAGE_FORMAT_JPG);
if (image.IsValid())
{
if (image.GetWidth() > 256 || image.GetHeight() > 256)
{ // resize the image
// float amount = 256.0f / max(image.GetWidth(), image.GetHeight());
// image.Resample((long)(image.GetWidth() * amount), (long)(image.GetHeight() * amount), 0);
}
if (m_exifinfo.Orientation != 1)
image.RotateExif(m_exifinfo.Orientation);
return image.Save(outname, CXIMAGE_FORMAT_JPG);
}
// nice and fast, but we can't resize :(
/*
FILE *hFileWrite;
if ((hFileWrite=fopen(outname, "wb")) != NULL)
{
fwrite(m_exifinfo.ThumbnailPointer, m_exifinfo.ThumbnailSize, 1, hFileWrite);
fclose(hFileWrite);
return true;
}*/
}
return false;
}
#endif
#endif //CXIMAGEJPG_SUPPORT_EXIF
////////////////////////////////////////////////////////////////////////////////
#if CXIMAGE_SUPPORT_DECODE
////////////////////////////////////////////////////////////////////////////////
#ifdef XBMC
#define RESAMPLE_FACTOR_OF_2_ON_LOAD
#define MAX_PICTURE_AREA 2048*2048 // 4MP == 16MB
#undef RESAMPLE_IF_TOO_BIG
bool CxImageJPG::Decode(CxFile * hFile, int &iMaxWidth, int &iMaxHeight)
#else
bool CxImageJPG::Decode(CxFile * hFile)
#endif
{
#ifdef XBMC
#define BYTES_TO_LOOK 4096
// Attempt to seek to the first SOI within the first 4k of the file
BYTE startBuffer[BYTES_TO_LOOK];
BYTE *pos = startBuffer;
bool failed = true;
int size = hFile->Read(startBuffer, 1, BYTES_TO_LOOK);
while (size > 3)
{
if (*pos == 0xFF && *(pos+1) == 0xD8 && *(pos+2) == 0xFF)
{ // found SOI
hFile->Seek(pos - startBuffer, SEEK_SET);
failed = false;
break;
}
pos++;
size--;
}
if (failed)
return false;
#endif
bool is_exif = false;
#if CXIMAGEJPG_SUPPORT_EXIF
is_exif = DecodeExif(hFile);
#endif
CImageIterator iter(this);
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
/* We use our private extension JPEG error handler. <CSC> */
struct jpg_error_mgr jerr;
jerr.buffer=info.szLastError;
/* More stuff */
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
JSAMPARRAY buffer[4];
#else
JSAMPARRAY buffer; /* Output row buffer */
#endif
int row_stride; /* physical row width in output buffer */
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/
/* Step 1: allocate and initialize JPEG decompression object */
/* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = ima_jpeg_error_exit;
/* Establish the setjmp return context for my_error_exit to use. */
if (setjmp(jerr.setjmp_buffer)) {
/* If we get here, the JPEG code has signaled an error.
* We need to clean up the JPEG object, close the input file, and return.
*/
jpeg_destroy_decompress(&cinfo);
return 0;
}
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(&cinfo);
/* Step 2: specify data source (eg, a file) */
//jpeg_stdio_src(&cinfo, infile);
CxFileJpg src(hFile);
cinfo.src = &src;
/* Step 3: read file parameters with jpeg_read_header() */
(void) jpeg_read_header(&cinfo, TRUE);
/* Step 4 <chupeev> handle decoder options*/
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_GRAYSCALE) != 0)
cinfo.out_color_space = JCS_GRAYSCALE;
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_QUANTIZE) != 0) {
cinfo.quantize_colors = TRUE;
cinfo.desired_number_of_colors = GetJpegQuality();
}
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_DITHER) != 0)
cinfo.dither_mode = m_nDither;
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_ONEPASS) != 0)
cinfo.two_pass_quantize = FALSE;
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & DECODE_NOSMOOTH) != 0)
cinfo.do_fancy_upsampling = FALSE;
//<DP>: Load true color images as RGB (no quantize)
/* Step 4: set parameters for decompression */
/* if (cinfo.jpeg_color_space!=JCS_GRAYSCALE) {
* cinfo.quantize_colors = TRUE;
* cinfo.desired_number_of_colors = 128;
*}
*/ //</DP>
// Set the scale <ignacio>
cinfo.scale_denom = GetJpegScale();
cinfo.scale_num = 1;
// Borrowed the idea from GIF implementation <ignacio>
if (info.nEscape == -1) {
// Return output dimensions only
jpeg_calc_output_dimensions(&cinfo);
head.biWidth = cinfo.output_width;
head.biHeight = cinfo.output_height;
info.dwType = CXIMAGE_FORMAT_JPG;
jpeg_destroy_decompress(&cinfo);
return true;
}
// check if we should load it downsampled by a factor of 2,4 or 8
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
int iWidth = cinfo.image_width;
int iHeight = cinfo.image_height;
float fAR = (float)iWidth/(float)iHeight;
if (iMaxWidth > 0 && iMaxHeight == 0)
{ // scale by area
iMaxWidth = (int)sqrt(iMaxWidth * fAR);
iMaxHeight = (int)(iMaxWidth / fAR);
}
if (iMaxWidth > 0 && iMaxHeight > 0)
{
if (iWidth > iMaxWidth)
{
iWidth = iMaxWidth;
iHeight = (int)((float)iWidth/fAR);
}
if (iHeight > iMaxHeight)
{
iHeight = iMaxHeight;
iWidth = (int)((float)iHeight*fAR);
}
unsigned int power = 2;
cinfo.scale_denom = 1;
while (power <= 8 && cinfo.image_width >= iWidth * power && cinfo.image_height >= iHeight * power)
{
cinfo.scale_denom = power;
power *= 2;
}
jpeg_calc_output_dimensions(&cinfo);
}
#endif
/* Step 5: Start decompressor */
jpeg_start_decompress(&cinfo);
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
*/
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
// save our image width and height
iMaxWidth = cinfo.image_width;
iMaxHeight = cinfo.image_height;
// check if we're going to exceed our maximum picture size
bool bScale(false);
#ifdef RESAMPLE_IF_TOO_BIG
if (cinfo.output_width * cinfo.output_height > MAX_PICTURE_AREA)
{
iWidth = (int)sqrt(MAX_PICTURE_AREA * fAR);
iHeight = (int)(iWidth / fAR);
bScale = true;
}
else
#endif
{
iWidth = cinfo.output_width;
iHeight = cinfo.output_height;
}
Create(iWidth, iHeight, 8*cinfo.num_components, CXIMAGE_FORMAT_JPG);
#else
//Create the image using output dimensions <ignacio>
//Create(cinfo.image_width, cinfo.image_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);
Create(cinfo.output_width, cinfo.output_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);
#endif
if (!pDib) longjmp(jerr.setjmp_buffer, 1); //<DP> check if the image has been created
if (is_exif){
#if CXIMAGEJPG_SUPPORT_EXIF
if ((m_exifinfo.Xresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
SetXDPI((long)(m_exifinfo.Xresolution/m_exifinfo.ResolutionUnit));
if ((m_exifinfo.Yresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
SetYDPI((long)(m_exifinfo.Yresolution/m_exifinfo.ResolutionUnit));
#endif
} else {
switch (cinfo.density_unit) {
case 0: // [andy] fix for aspect ratio...
if((cinfo.Y_density > 0) && (cinfo.X_density > 0)){
SetYDPI((long)(GetXDPI()*(float(cinfo.Y_density)/float(cinfo.X_density))));
}
break;
case 2: // [andy] fix: cinfo.X/Y_density is pixels per centimeter
SetXDPI((long)floor(cinfo.X_density * 2.54 + 0.5));
SetYDPI((long)floor(cinfo.Y_density * 2.54 + 0.5));
break;
default:
SetXDPI(cinfo.X_density);
SetYDPI(cinfo.Y_density);
}
}
if (cinfo.out_color_space==JCS_GRAYSCALE){
SetGrayPalette();
head.biClrUsed =256;
} else {
if (cinfo.quantize_colors){
SetPalette(cinfo.actual_number_of_colors, cinfo.colormap[0], cinfo.colormap[1], cinfo.colormap[2]);
head.biClrUsed=cinfo.actual_number_of_colors;
} else {
head.biClrUsed=0;
}
}
/* JSAMPLEs per row in output buffer */
row_stride = cinfo.output_width * cinfo.output_components;
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
/* Make 4 row buffers to do our resampling on */
for (int i=0; i<4; i++)
{
buffer[i] = (*cinfo.mem->alloc_sarray)
((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
}
#else
/* Make a one-row-high sample array that will go away when done with image */
buffer = (*cinfo.mem->alloc_sarray)
((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);
#endif
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
iter.Upset();
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
int row_position = 0;
int next_row_slot = 0;
int num_scanlines_read = 0;
float xScale = (float)cinfo.output_width/(float)iWidth;
float yScale = (float)cinfo.output_height/(float)iHeight;
int num = cinfo.num_components;
float f_y, f_x, a, b, rr[4], r1, r2;
int i_y, i_x, xx, yy;
for (int y=0;y<iHeight;y++)
{
f_y = (float) y * yScale - 0.5f;
i_y = (int) floor(f_y);
a = f_y - (float)floor(f_y);
// the rows we need are:
// i_y-1, i_y, i_y+1, i_y+2
int iNeededRow = i_y+2;
if (iNeededRow < 0) iNeededRow = 0;
if (iNeededRow >= (int)cinfo.output_height) iNeededRow = cinfo.image_height-1;
bool bFinished(false);
#else
while (cinfo.output_scanline < cinfo.output_height) {
#endif
if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
// decode as many rows as we need
if (bScale)
{
while (iNeededRow >= row_position)
{
num_scanlines_read += jpeg_read_scanlines(&cinfo, buffer[next_row_slot], 1);;
// rotate around
next_row_slot++;
if (next_row_slot >= 4)
next_row_slot = 0;
row_position++;
}
}
else
{
(void) jpeg_read_scanlines(&cinfo, buffer[0], 1);
num_scanlines_read++;
}
#else
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
#endif
// info.nProgress = (long)(100*cinfo.output_scanline/cinfo.output_height);
//<DP> Step 6a: CMYK->RGB */
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
// do bicubic resampling
BYTE *dst=iter.GetRow();
for (int x = 0; x < iWidth; x++)
{
if (bScale)
{
// resample (bicubic)
f_x = (float) x * xScale - 0.5f;
i_x = (int) floor(f_x);
b = f_x - (float)floor(f_x);
for (int k=0; k<num; k++)
rr[k] = 0;
// cycle around the necessary y rows...
for (int m=-1; m<3; m++)
{
r1 = KernelBSpline((float) m - a);
yy = i_y+m;
if (yy<0) yy=0;
if (yy>=(int)cinfo.image_height) yy = cinfo.image_height-1;
// calculate which y row we should be using
int row = next_row_slot;
for (int i=row_position; i>yy; i--)
{
row--;
if (row < 0) row = 3;
}
for(int n=-1; n<3; n++)
{
r2 = r1 * KernelBSpline(b - (float)n);
xx = i_x+n;
if (xx<0) xx=0;
if (xx>=(int)cinfo.image_width) xx=cinfo.image_width-1;
BYTE *pSrc = buffer[row][0];
if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE))
{
float k = (float)pSrc[cinfo.num_components*xx+3];
rr[0] += (k * pSrc[cinfo.num_components*xx+2])/255.0f*r2;
rr[1] += (k * pSrc[cinfo.num_components*xx+1])/255.0f*r2;
rr[2] += (k * pSrc[cinfo.num_components*xx+0])/255.0f*r2;
}
else
{
for (int k=0; k<num; k++)
rr[k] += pSrc[cinfo.num_components*xx+k]*r2;
}
}
}
}
else
{
BYTE *pSrc = buffer[0][0];
if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE))
{
float k = (float)pSrc[cinfo.num_components*x+3];
rr[0] = (k * pSrc[cinfo.num_components*x+2])/255.0f;
rr[1] = (k * pSrc[cinfo.num_components*x+1])/255.0f;
rr[2] = (k * pSrc[cinfo.num_components*x+0])/255.0f;
}
else
{
for (int k=0; k<num; k++)
rr[k] = (float)pSrc[cinfo.num_components*x+k];
}
}
if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE))
{
for (int k=0; k<3; k++)
dst[3*x+k] = (BYTE)rr[k];
}
else
{
for (int k=0; k<num; k++)
dst[num*x+k] = (BYTE)rr[k];
}
}
#else
if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE)){
BYTE k,*dst,*src;
dst=iter.GetRow();
src=buffer[0];
for(long x3=0,x4=0; x3<(long)info.dwEffWidth && x4<row_stride; x3+=3, x4+=4){
k=src[x4+3];
dst[x3] =(BYTE)((k * src[x4+2])/255);
dst[x3+1]=(BYTE)((k * src[x4+1])/255);
dst[x3+2]=(BYTE)((k * src[x4+0])/255);
}
} else {
/* Assume put_scanline_someplace wants a pointer and sample count. */
iter.SetRow(buffer[0], row_stride);
}
#endif
iter.PrevRow();
}
#ifdef RESAMPLE_FACTOR_OF_2_ON_LOAD
while (cinfo.output_scanline < cinfo.output_height)
{
(void) jpeg_read_scanlines(&cinfo, buffer[0], 1);
num_scanlines_read++;
}
#endif
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
//<DP> Step 7A: Swap red and blue components
// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
if ((cinfo.num_components==3)&&(cinfo.quantize_colors==FALSE)){
BYTE* r0=GetBits();
for(long y=0;y<head.biHeight;y++){
if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
RGBtoBGR(r0,3*head.biWidth);
r0+=info.dwEffWidth;
}
}
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(&cinfo);
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
return true;
}
////////////////////////////////////////////////////////////////////////////////
#endif //CXIMAGE_SUPPORT_DECODE
////////////////////////////////////////////////////////////////////////////////
#if CXIMAGE_SUPPORT_ENCODE
////////////////////////////////////////////////////////////////////////////////
bool CxImageJPG::Encode(CxFile * hFile)
{
if (EncodeSafeCheck(hFile)) return false;
if (head.biClrUsed!=0 && !IsGrayScale()){
strcpy(info.szLastError,"JPEG can save only RGB or GreyScale images");
return false;
}
// necessary for EXIF, and for roll backs
long pos=hFile->Tell();
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
//struct jpeg_error_mgr jerr;
/* We use our private extension JPEG error handler. <CSC> */
struct jpg_error_mgr jerr;
jerr.buffer=info.szLastError;
/* More stuff */
int row_stride; /* physical row width in image buffer */
JSAMPARRAY buffer; /* Output row buffer */
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
//cinfo.err = jpeg_std_error(&jerr); <CSC>
/* We set up the normal JPEG error routines, then override error_exit. */
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = ima_jpeg_error_exit;
/* Establish the setjmp return context for my_error_exit to use. */
if (setjmp(jerr.setjmp_buffer)) {
/* If we get here, the JPEG code has signaled an error.
* We need to clean up the JPEG object, close the input file, and return.
*/
strcpy(info.szLastError, jerr.buffer); //<CSC>
jpeg_destroy_compress(&cinfo);
return 0;
}
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
//jpeg_stdio_dest(&cinfo, outfile);
CxFileJpg dest(hFile);
cinfo.dest = &dest;
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = GetWidth(); // image width and height, in pixels
cinfo.image_height = GetHeight();
if (IsGrayScale()){
cinfo.input_components = 1; // # of color components per pixel
cinfo.in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
} else {
cinfo.input_components = 3; // # of color components per pixel
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
}
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
//#ifdef C_ARITH_CODING_SUPPORTED
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_ARITHMETIC) != 0)
cinfo.arith_code = TRUE;
//#endif
//#ifdef ENTROPY_OPT_SUPPORTED
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_OPTIMIZE) != 0)
cinfo.optimize_coding = TRUE;
//#endif
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_GRAYSCALE) != 0)
jpeg_set_colorspace(&cinfo, JCS_GRAYSCALE);
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SMOOTHING) != 0)
cinfo.smoothing_factor = m_nSmoothing;
jpeg_set_quality(&cinfo, GetJpegQuality(), (GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_BASELINE) != 0);
//#ifdef C_PROGRESSIVE_SUPPORTED
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_PROGRESSIVE) != 0)
jpeg_simple_progression(&cinfo);
//#endif
#ifdef C_LOSSLESS_SUPPORTED
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_LOSSLESS) != 0)
jpeg_simple_lossless(&cinfo, m_nPredictor, m_nPointTransform);
#endif
//SetCodecOption(ENCODE_SUBSAMPLE_444 | GetCodecOption(CXIMAGE_FORMAT_JPG),CXIMAGE_FORMAT_JPG);
// 2x2, 1x1, 1x1 (4:1:1) : High (default sub sampling)
cinfo.comp_info[0].h_samp_factor = 2;
cinfo.comp_info[0].v_samp_factor = 2;
cinfo.comp_info[1].h_samp_factor = 1;
cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = 1;
cinfo.comp_info[2].v_samp_factor = 1;
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SUBSAMPLE_422) != 0){
// 2x1, 1x1, 1x1 (4:2:2) : Medium
cinfo.comp_info[0].h_samp_factor = 2;
cinfo.comp_info[0].v_samp_factor = 1;
cinfo.comp_info[1].h_samp_factor = 1;
cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = 1;
cinfo.comp_info[2].v_samp_factor = 1;
}
if ((GetCodecOption(CXIMAGE_FORMAT_JPG) & ENCODE_SUBSAMPLE_444) != 0){
// 1x1 1x1 1x1 (4:4:4) : None
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
cinfo.comp_info[1].h_samp_factor = 1;
cinfo.comp_info[1].v_samp_factor = 1;
cinfo.comp_info[2].h_samp_factor = 1;
cinfo.comp_info[2].v_samp_factor = 1;
}
cinfo.density_unit=1;
cinfo.X_density=(unsigned short)GetXDPI();
cinfo.Y_density=(unsigned short)GetYDPI();
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = info.dwEffWidth; /* JSAMPLEs per row in image_buffer */
//<DP> "8+row_stride" fix heap deallocation problem during debug???
buffer = (*cinfo.mem->alloc_sarray)
((j_common_ptr) &cinfo, JPOOL_IMAGE, 8+row_stride, 1);
CImageIterator iter(this);
iter.Upset();
while (cinfo.next_scanline < cinfo.image_height) {
// info.nProgress = (long)(100*cinfo.next_scanline/cinfo.image_height);
iter.GetRow(buffer[0], row_stride);
// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
if (head.biClrUsed==0){ // swap R & B for RGB images
RGBtoBGR(buffer[0], row_stride); // Lance : 1998/09/01 : Bug ID: EXP-2.1.1-9
}
iter.PrevRow();
(void) jpeg_write_scanlines(&cinfo, buffer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
#if CXIMAGEJPG_SUPPORT_EXIF
if (m_exif && m_exif->m_exifinfo->IsExif){
// discard useless sections (if any) read from original image
m_exif->DiscardAllButExif();
// read new created image, to split the sections
hFile->Seek(pos,SEEK_SET);
m_exif->DecodeExif(hFile,EXIF_READ_IMAGE);
// save back the image, adding EXIF section
hFile->Seek(pos,SEEK_SET);
m_exif->EncodeExif(hFile);
}
#endif
/* And we're done! */
return true;
}
////////////////////////////////////////////////////////////////////////////////
#endif // CXIMAGE_SUPPORT_ENCODE
////////////////////////////////////////////////////////////////////////////////
#endif // CXIMAGE_SUPPORT_JPG
|