1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Copyright (C) 2005-2018 Team Kodi
* This file is part of Kodi - https://kodi.tv
*
* SPDX-License-Identifier: GPL-2.0-or-later
* See LICENSES/README.md for more information.
*/
#include "CPUInfoFreebsd.h"
#include "utils/Temperature.h"
#include "utils/log.h"
#include <array>
#include <vector>
// clang-format off
/* sys/types.h must be included early, esp. before sysy/systl.h, otherwise:
/usr/include/sys/sysctl.h:1117:25: error: unknown type name 'u_int' */
#include <sys/types.h>
// clang-format on
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#elif __has_include(<sys/auxv.h>)
#include <sys/auxv.h>
#endif
#include <sys/resource.h>
#include <sys/sysctl.h>
namespace
{
struct CpuData
{
public:
std::size_t GetActiveTime() const { return state[CP_USER] + state[CP_NICE] + state[CP_SYS]; }
std::size_t GetIdleTime() const { return state[CP_INTR] + state[CP_IDLE]; }
std::size_t GetTotalTime() const { return GetActiveTime() + GetIdleTime(); }
std::size_t state[CPUSTATES];
};
} // namespace
std::shared_ptr<CCPUInfo> CCPUInfo::GetCPUInfo()
{
return std::make_shared<CCPUInfoFreebsd>();
}
CCPUInfoFreebsd::CCPUInfoFreebsd()
{
int count = 0;
size_t countLength = sizeof(count);
if (sysctlbyname("hw.ncpu", &count, &countLength, nullptr, 0) == 0)
m_cpuCount = count;
else
m_cpuCount = 1;
std::array<char, 512> cpuModel;
size_t length = cpuModel.size();
if (sysctlbyname("hw.model", cpuModel.data(), &length, nullptr, 0) == 0)
m_cpuModel = cpuModel.data();
for (int i = 0; i < m_cpuCount; i++)
{
CoreInfo core;
core.m_id = i;
m_cores.emplace_back(core);
}
#if defined(__i386__) || defined(__x86_64__)
uint32_t eax, ebx, ecx, edx;
m_cpuVendor.clear();
if (__get_cpuid(CPUID_INFOTYPE_MANUFACTURER, &eax, &ebx, &ecx, &edx))
{
m_cpuVendor.append(reinterpret_cast<const char*>(&ebx), 4);
m_cpuVendor.append(reinterpret_cast<const char*>(&edx), 4);
m_cpuVendor.append(reinterpret_cast<const char*>(&ecx), 4);
}
if (__get_cpuid(CPUID_INFOTYPE_EXTENDED_IMPLEMENTED, &eax, &ebx, &ecx, &edx))
{
if (eax >= CPUID_INFOTYPE_PROCESSOR_3)
{
m_cpuModel.clear();
if (__get_cpuid(CPUID_INFOTYPE_PROCESSOR_1, &eax, &ebx, &ecx, &edx))
{
m_cpuModel.append(reinterpret_cast<const char*>(&eax), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ebx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ecx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&edx), 4);
}
if (__get_cpuid(CPUID_INFOTYPE_PROCESSOR_2, &eax, &ebx, &ecx, &edx))
{
m_cpuModel.append(reinterpret_cast<const char*>(&eax), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ebx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ecx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&edx), 4);
}
if (__get_cpuid(CPUID_INFOTYPE_PROCESSOR_3, &eax, &ebx, &ecx, &edx))
{
m_cpuModel.append(reinterpret_cast<const char*>(&eax), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ebx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&ecx), 4);
m_cpuModel.append(reinterpret_cast<const char*>(&edx), 4);
}
}
}
m_cpuModel = m_cpuModel.substr(0, m_cpuModel.find(char(0))); // remove extra null terminations
if (__get_cpuid(CPUID_INFOTYPE_STANDARD, &eax, &eax, &ecx, &edx))
{
if (edx & CPUID_00000001_EDX_MMX)
m_cpuFeatures |= CPU_FEATURE_MMX;
// Set MMX2 when SSE is present as SSE is a superset of MMX2 and Intel doesn't set the MMX2 cap
if (edx & CPUID_00000001_EDX_SSE)
m_cpuFeatures |= (CPU_FEATURE_SSE | CPU_FEATURE_MMX2);
if (edx & CPUID_00000001_EDX_SSE2)
m_cpuFeatures |= CPU_FEATURE_SSE2;
if (ecx & CPUID_00000001_ECX_SSE3)
m_cpuFeatures |= CPU_FEATURE_SSE3;
if (ecx & CPUID_00000001_ECX_SSSE3)
m_cpuFeatures |= CPU_FEATURE_SSSE3;
if (ecx & CPUID_00000001_ECX_SSE4)
m_cpuFeatures |= CPU_FEATURE_SSE4;
if (ecx & CPUID_00000001_ECX_SSE42)
m_cpuFeatures |= CPU_FEATURE_SSE42;
}
if (__get_cpuid(CPUID_INFOTYPE_EXTENDED_IMPLEMENTED, &eax, &eax, &ecx, &edx))
{
if (eax >= CPUID_INFOTYPE_EXTENDED)
{
if (edx & CPUID_80000001_EDX_MMX)
m_cpuFeatures |= CPU_FEATURE_MMX;
if (edx & CPUID_80000001_EDX_MMX2)
m_cpuFeatures |= CPU_FEATURE_MMX2;
if (edx & CPUID_80000001_EDX_3DNOW)
m_cpuFeatures |= CPU_FEATURE_3DNOW;
if (edx & CPUID_80000001_EDX_3DNOWEXT)
m_cpuFeatures |= CPU_FEATURE_3DNOWEXT;
}
}
#endif
#if defined(HAS_NEON)
#if defined(__ARM_NEON)
m_cpuFeatures |= CPU_FEATURE_NEON;
#elif __has_include(<sys/auxv.h>)
unsigned long hwcap = 0;
elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap));
if (hwcap & HWCAP_NEON)
m_cpuFeatures |= CPU_FEATURE_NEON;
#endif
#endif
}
int CCPUInfoFreebsd::GetUsedPercentage()
{
if (!m_nextUsedReadTime.IsTimePast())
return m_lastUsedPercentage;
size_t len = sizeof(long);
if (sysctlbyname("kern.cp_times", nullptr, &len, nullptr, 0) != 0)
return false;
std::vector<long> cptimes(len);
size_t cptimesLength = cptimes.size();
if (sysctlbyname("kern.cp_times", cptimes.data(), &cptimesLength, nullptr, 0) != 0)
return false;
size_t activeTime{0};
size_t idleTime{0};
size_t totalTime{0};
std::vector<CpuData> cpuData;
for (int i = 0; i < m_cpuCount; i++)
{
CpuData info;
for (size_t state = 0; state < CPUSTATES; state++)
{
info.state[state] = cptimes[i * CPUSTATES + state];
}
activeTime += info.GetActiveTime();
idleTime += info.GetIdleTime();
totalTime += info.GetTotalTime();
cpuData.emplace_back(info);
}
activeTime -= m_activeTime;
idleTime -= m_idleTime;
totalTime -= m_totalTime;
m_activeTime += activeTime;
m_idleTime += idleTime;
m_totalTime += totalTime;
m_lastUsedPercentage = activeTime * 100.0f / totalTime;
m_nextUsedReadTime.Set(MINIMUM_TIME_BETWEEN_READS);
for (size_t core = 0; core < cpuData.size(); core++)
{
auto activeTime = cpuData[core].GetActiveTime() - m_cores[core].m_activeTime;
auto idleTime = cpuData[core].GetIdleTime() - m_cores[core].m_idleTime;
auto totalTime = cpuData[core].GetTotalTime() - m_cores[core].m_totalTime;
m_cores[core].m_usagePercent = activeTime * 100.0 / totalTime;
m_cores[core].m_activeTime += activeTime;
m_cores[core].m_idleTime += idleTime;
m_cores[core].m_totalTime += totalTime;
}
return static_cast<int>(m_lastUsedPercentage);
}
float CCPUInfoFreebsd::GetCPUFrequency()
{
int hz = 0;
size_t len = sizeof(hz);
if (sysctlbyname("dev.cpu.0.freq", &hz, &len, nullptr, 0) != 0)
hz = 0;
return static_cast<float>(hz);
}
bool CCPUInfoFreebsd::GetTemperature(CTemperature& temperature)
{
if (CheckUserTemperatureCommand(temperature))
return true;
int value;
size_t len = sizeof(value);
/* Temperature is in Kelvin * 10 */
if (sysctlbyname("dev.cpu.0.temperature", &value, &len, nullptr, 0) != 0)
return false;
temperature = CTemperature::CreateFromKelvin(static_cast<double>(value) / 10.0);
temperature.SetValid(true);
return true;
}
|