1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* Copyright (C) 2005-2018 Team Kodi
* This file is part of Kodi - https://kodi.tv
*
* SPDX-License-Identifier: GPL-2.0-or-later
* See LICENSES/README.md for more information.
*/
#pragma once
#include <assert.h>
#include <climits>
#include <cmath>
#include <stdint.h>
#include <type_traits>
#if defined(HAVE_SSE2) && defined(__SSE2__)
#include <emmintrin.h>
#endif
// use real compiler defines in here as we want to
// avoid including system.h or other magic includes.
// use 'gcc -dM -E - < /dev/null' or similar to find them.
// clang-format off
#if defined(__aarch64__) || \
defined(__alpha__) || \
defined(__arc__) || \
defined(__arm__) || \
defined(__loongarch__) || \
defined(_M_ARM) || \
defined(__m68k__) || \
defined(__mips__) || \
defined(__or1k__) || \
defined(__powerpc__) || \
defined(__ppc__) || \
defined(__riscv) || \
defined(__SH4__) || \
defined(__s390x__) || \
defined(__sparc__) || \
defined(__xtensa__)
#define DISABLE_MATHUTILS_ASM_ROUND_INT
#endif
// clang-format on
/*! \brief Math utility class.
Note that the test() routine should return true for all implementations
See http://ldesoras.free.fr/doc/articles/rounding_en.pdf for an explanation
of the technique used on x86.
*/
namespace MathUtils
{
// GCC does something stupid with optimization on release builds if we try
// to assert in these functions
/*! \brief Round to nearest integer.
This routine does fast rounding to the nearest integer.
In the case (k + 0.5 for any integer k) we round up to k+1, and in all other
instances we should return the nearest integer.
Thus, { -1.5, -0.5, 0.5, 1.5 } is rounded to { -1, 0, 1, 2 }.
It preserves the property that round(k) - round(k-1) = 1 for all doubles k.
Make sure MathUtils::test() returns true for each implementation.
\sa truncate_int, test
*/
inline int round_int(double x)
{
assert(x > static_cast<double>((int) (INT_MIN / 2)) - 1.0);
assert(x < static_cast<double>((int) (INT_MAX / 2)) + 1.0);
#if defined(DISABLE_MATHUTILS_ASM_ROUND_INT)
/* This implementation warrants some further explanation.
*
* First, a couple of notes on rounding:
* 1) C casts from float/double to integer round towards zero.
* 2) Float/double additions are rounded according to the normal rules,
* in other words: on some architectures, it's fixed at compile-time,
* and on others it can be set using fesetround()). The following
* analysis assumes round-to-nearest with ties rounding to even. This
* is a fairly sensible choice, and is the default with ARM VFP.
*
* What this function wants is round-to-nearest with ties rounding to
* +infinity. This isn't an IEEE rounding mode, even if we could guarantee
* that all architectures supported fesetround(), which they don't. Instead,
* this adds an offset of 2147483648.5 (= 0x80000000.8p0), then casts to
* an unsigned int (crucially, all possible inputs are now in a range where
* round to zero acts the same as round to -infinity) and then subtracts
* 0x80000000 in the integer domain. The 0.5 component of the offset
* converts what is effectively a round down into a round to nearest, with
* ties rounding up, as desired.
*
* There is a catch, that because there is a double rounding, there is a
* small region where the input falls just *below* a tie, where the addition
* of the offset causes a round *up* to an exact integer, due to the finite
* level of precision available in floating point. You need to be aware of
* this when calling this function, although at present it is not believed
* that XBMC ever attempts to round numbers in this window.
*
* It is worth proving the size of the affected window. Recall that double
* precision employs a mantissa of 52 bits.
* 1) For all inputs -0.5 <= x <= INT_MAX
* Once the offset is applied, the most significant binary digit in the
* floating-point representation is +2^31.
* At this magnitude, the smallest step representable in double precision
* is 2^31 / 2^52 = 0.000000476837158203125
* So the size of the range which is rounded up due to the addition is
* half the size of this step, or 0.0000002384185791015625
*
* 2) For all inputs INT_MIN/2 < x < -0.5
* Once the offset is applied, the most significant binary digit in the
* floating-point representation is +2^30.
* At this magnitude, the smallest step representable in double precision
* is 2^30 / 2^52 = 0.0000002384185791015625
* So the size of the range which is rounded up due to the addition is
* half the size of this step, or 0.00000011920928955078125
*
* 3) For all inputs INT_MIN <= x <= INT_MIN/2
* The representation once the offset is applied has equal or greater
* precision than the input, so the addition does not cause rounding.
*/
return ((unsigned int) (x + 2147483648.5)) - 0x80000000;
#else
const float round_to_nearest = 0.5f;
int i;
#if defined(HAVE_SSE2) && defined(__SSE2__)
const float round_dn_to_nearest = 0.4999999f;
i = (x > 0) ? _mm_cvttsd_si32(_mm_set_sd(x + static_cast<double>(round_to_nearest)))
: _mm_cvttsd_si32(_mm_set_sd(x - static_cast<double>(round_dn_to_nearest)));
#elif defined(TARGET_WINDOWS)
__asm
{
fld x
fadd st, st (0)
fadd round_to_nearest
fistp i
sar i, 1
}
#else
__asm__ __volatile__ (
"fadd %%st\n\t"
"fadd %%st(1)\n\t"
"fistpl %0\n\t"
"sarl $1, %0\n"
: "=m"(i) : "u"(round_to_nearest), "t"(x) : "st"
);
#endif
return i;
#endif
}
/*! \brief Truncate to nearest integer.
This routine does fast truncation to an integer.
It should simply drop the fractional portion of the floating point number.
Make sure MathUtils::test() returns true for each implementation.
\sa round_int, test
*/
inline int truncate_int(double x)
{
assert(x > static_cast<double>(INT_MIN / 2) - 1.0);
assert(x < static_cast<double>(INT_MAX / 2) + 1.0);
return static_cast<int>(x);
}
inline int64_t abs(int64_t a)
{
return (a < 0) ? -a : a;
}
inline unsigned bitcount(unsigned v)
{
unsigned c = 0;
for (c = 0; v; c++)
v &= v - 1; // clear the least significant bit set
return c;
}
inline void hack()
{
// stupid hack to keep compiler from dropping these
// functions as unused
MathUtils::round_int(0.0);
MathUtils::truncate_int(0.0);
MathUtils::abs(0);
}
/**
* Compare two floating-point numbers for equality and regard them
* as equal if their difference is below a given threshold.
*
* It is usually not useful to compare float numbers for equality with
* the standard operator== since very close numbers might have different
* representations.
*/
template<typename FloatT>
inline bool FloatEquals(FloatT f1, FloatT f2, FloatT maxDelta)
{
return (std::abs(f2 - f1) < maxDelta);
}
/*!
* \brief Round a floating point number to nearest multiple
* \param value The value to round
* \param multiple The multiple
* \return The rounded value
*/
template<typename T, std::enable_if_t<std::is_floating_point<T>::value, bool> = true>
inline T RoundF(const T value, const T multiple)
{
if (multiple == 0)
return value;
return static_cast<T>(std::round(static_cast<double>(value) / static_cast<double>(multiple)) *
static_cast<double>(multiple));
}
#if 0
/*! \brief test routine for round_int and truncate_int
Must return true on all platforms.
*/
inline bool test()
{
for (int i = -8; i < 8; ++i)
{
double d = 0.25*i;
int r = (i < 0) ? (i - 1) / 4 : (i + 2) / 4;
int t = i / 4;
if (round_int(d) != r || truncate_int(d) != t)
return false;
}
return true;
}
#endif
} // namespace MathUtils
|