File: ConvolutionKernels.cpp

package info (click to toggle)
kodi 2%3A20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 143,820 kB
  • sloc: cpp: 664,925; xml: 68,398; ansic: 37,223; python: 6,903; sh: 4,209; javascript: 2,325; makefile: 1,754; perl: 969; java: 513; cs: 390; objc: 340
file content (298 lines) | stat: -rw-r--r-- 8,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
 *  Copyright (C) 2005-2018 Team Kodi
 *  This file is part of Kodi - https://kodi.tv
 *
 *  SPDX-License-Identifier: GPL-2.0-or-later
 *  See LICENSES/README.md for more information.
 */

#ifdef TARGET_WINDOWS
  #define _USE_MATH_DEFINES
#endif

#include "ConvolutionKernels.h"
#include "utils/MathUtils.h"

#ifndef M_PI
  #define M_PI       3.14159265358979323846
#endif

#define SINC(x) (sin(M_PI * (x)) / (M_PI * (x)))

CConvolutionKernel::CConvolutionKernel(ESCALINGMETHOD method, int size)
{
  m_size = size;
  m_floatpixels = new float[m_size * 4];

  if (method == VS_SCALINGMETHOD_LANCZOS2)
    Lanczos2();
  else if (method == VS_SCALINGMETHOD_SPLINE36_FAST)
    Spline36Fast();
  else if (method == VS_SCALINGMETHOD_LANCZOS3_FAST)
    Lanczos3Fast();
  else if (method == VS_SCALINGMETHOD_SPLINE36)
    Spline36();
  else if (method == VS_SCALINGMETHOD_LANCZOS3)
    Lanczos3();
  else if (method == VS_SCALINGMETHOD_CUBIC_B_SPLINE)
    Bicubic(1.0, 0.0);
  else if (method == VS_SCALINGMETHOD_CUBIC_MITCHELL)
    Bicubic(1.0 / 3.0, 1.0 / 3.0);
  else if (method == VS_SCALINGMETHOD_CUBIC_CATMULL)
    Bicubic(0.0, 0.5);
  else if (method == VS_SCALINGMETHOD_CUBIC_0_075)
    Bicubic(0.0, 0.75);
  else if (method == VS_SCALINGMETHOD_CUBIC_0_1)
    Bicubic(0.0, 1.0);

  ToIntFract();
  ToUint8();
}

CConvolutionKernel::~CConvolutionKernel()
{
  delete [] m_floatpixels;
  delete [] m_intfractpixels;
  delete [] m_uint8pixels;
}

//generate a lanczos2 kernel which can be loaded with RGBA format
//each value of RGBA has one tap, so a shader can load 4 taps with a single pixel lookup
void CConvolutionKernel::Lanczos2()
{
  for (int i = 0; i < m_size; i++)
  {
    double x = (double)i / (double)m_size;

    //generate taps
    for (int j = 0; j < 4; j++)
      m_floatpixels[i * 4 + j] = (float)LanczosWeight(x + (double)(j - 2), 2.0);

    //any collection of 4 taps added together needs to be exactly 1.0
    //for lanczos this is not always the case, so we take each collection of 4 taps
    //and divide those taps by the sum of the taps
    float weight = 0.0;
    for (int j = 0; j < 4; j++)
      weight += m_floatpixels[i * 4 + j];

    for (int j = 0; j < 4; j++)
      m_floatpixels[i * 4 + j] /= weight;
  }
}

//generate a lanczos3 kernel which can be loaded with RGBA format
//each value of RGBA has one tap, so a shader can load 4 taps with a single pixel lookup
//the two outer lobes of the lanczos3 kernel are added to the two lobes one step to the middle
//this basically looks the same as lanczos3, but the kernel only has 4 taps,
//so it can use the 4x4 convolution shader which is twice as fast as the 6x6 one
void CConvolutionKernel::Lanczos3Fast()
{
  for (int i = 0; i < m_size; i++)
  {
    double a = 3.0;
    double x = (double)i / (double)m_size;

    //generate taps
    m_floatpixels[i * 4 + 0] = (float)(LanczosWeight(x - 2.0, a) + LanczosWeight(x - 3.0, a));
    m_floatpixels[i * 4 + 1] = (float) LanczosWeight(x - 1.0, a);
    m_floatpixels[i * 4 + 2] = (float) LanczosWeight(x      , a);
    m_floatpixels[i * 4 + 3] = (float)(LanczosWeight(x + 1.0, a) + LanczosWeight(x + 2.0, a));

    //any collection of 4 taps added together needs to be exactly 1.0
    //for lanczos this is not always the case, so we take each collection of 4 taps
    //and divide those taps by the sum of the taps
    float weight = 0.0;
    for (int j = 0; j < 4; j++)
      weight += m_floatpixels[i * 4 + j];

    for (int j = 0; j < 4; j++)
      m_floatpixels[i * 4 + j] /= weight;
  }
}

//generate a lanczos3 kernel which can be loaded with RGBA format
//each value of RGB has one tap, so a shader can load 3 taps with a single pixel lookup
void CConvolutionKernel::Lanczos3()
{
  for (int i = 0; i < m_size; i++)
  {
    double x = (double)i / (double)m_size;

    //generate taps
    for (int j = 0; j < 3; j++)
      m_floatpixels[i * 4 + j] = (float)LanczosWeight(x * 2.0 + (double)(j * 2 - 3), 3.0);

    m_floatpixels[i * 4 + 3] = 0.0;
  }

  //any collection of 6 taps added together needs to be exactly 1.0
  //for lanczos this is not always the case, so we take each collection of 6 taps
  //and divide those taps by the sum of the taps
  for (int i = 0; i < m_size / 2; i++)
  {
    float weight = 0.0;
    for (int j = 0; j < 3; j++)
    {
      weight += m_floatpixels[i * 4 + j];
      weight += m_floatpixels[(i + m_size / 2) * 4 + j];
    }
    for (int j = 0; j < 3; j++)
    {
      m_floatpixels[i * 4 + j] /= weight;
      m_floatpixels[(i + m_size / 2) * 4 + j] /= weight;
    }
  }
}

void CConvolutionKernel::Spline36Fast()
{
  for (int i = 0; i < m_size; i++)
  {
    double x = (double)i / (double)m_size;

    //generate taps
    m_floatpixels[i * 4 + 0] = (float)(Spline36Weight(x - 2.0) + Spline36Weight(x - 3.0));
    m_floatpixels[i * 4 + 1] = (float) Spline36Weight(x - 1.0);
    m_floatpixels[i * 4 + 2] = (float) Spline36Weight(x      );
    m_floatpixels[i * 4 + 3] = (float)(Spline36Weight(x + 1.0) + Spline36Weight(x + 2.0));

    float weight = 0.0;
    for (int j = 0; j < 4; j++)
      weight += m_floatpixels[i * 4 + j];

    for (int j = 0; j < 4; j++)
      m_floatpixels[i * 4 + j] /= weight;
  }
}

void CConvolutionKernel::Spline36()
{
  for (int i = 0; i < m_size; i++)
  {
    double x = (double)i / (double)m_size;

    //generate taps
    for (int j = 0; j < 3; j++)
      m_floatpixels[i * 4 + j] = (float)Spline36Weight(x * 2.0 + (double)(j * 2 - 3));

    m_floatpixels[i * 4 + 3] = 0.0;
  }

  for (int i = 0; i < m_size / 2; i++)
  {
    float weight = 0.0;
    for (int j = 0; j < 3; j++)
    {
      weight += m_floatpixels[i * 4 + j];
      weight += m_floatpixels[(i + m_size / 2) * 4 + j];
    }
    for (int j = 0; j < 3; j++)
    {
      m_floatpixels[i * 4 + j] /= weight;
      m_floatpixels[(i + m_size / 2) * 4 + j] /= weight;
    }
  }
}

//generate a bicubic kernel which can be loaded with RGBA format
//each value of RGBA has one tap, so a shader can load 4 taps with a single pixel lookup
void CConvolutionKernel::Bicubic(double B, double C)
{
  for (int i = 0; i < m_size; i++)
  {
    double x = (double)i / (double)m_size;

    //generate taps
    for (int j = 0; j < 4; j++)
      m_floatpixels[i * 4 + j] = (float)BicubicWeight(x + (double)(j - 2), B, C);
  }
}

double CConvolutionKernel::LanczosWeight(double x, double radius)
{
  double ax = fabs(x);

  if (ax == 0.0)
    return 1.0;
  else if (ax < radius)
    return SINC(ax) * SINC(ax / radius);
  else
    return 0.0;
}

double CConvolutionKernel::BicubicWeight(double x, double B, double C)
{
  double ax = fabs(x);

  if (ax<1.0)
  {
    return ((12 - 9*B - 6*C) * ax * ax * ax +
            (-18 + 12*B + 6*C) * ax * ax +
            (6 - 2*B))/6;
  }
  else if (ax<2.0)
  {
    return ((-B - 6*C) * ax * ax * ax +
            (6*B + 30*C) * ax * ax + (-12*B - 48*C) *
             ax + (8*B + 24*C)) / 6;
  }
  else
  {
    return 0.0;
  }
}

double CConvolutionKernel::Spline36Weight(double x)
{
  double ax = fabs(x);

  if      ( ax < 1.0 )
    return ( ( 13.0 / 11.0 * (ax      ) - 453.0 / 209.0 ) * (ax      ) -   3.0 / 209.0 ) * (ax      ) + 1.0;
  else if ( ax < 2.0 )
    return ( ( -6.0 / 11.0 * (ax - 1.0) + 270.0 / 209.0 ) * (ax - 1.0) - 156.0 / 209.0 ) * (ax - 1.0);
  else if ( ax < 3.0 )
    return ( (  1.0 / 11.0 * (ax - 2.0) -  45.0 / 209.0 ) * (ax - 2.0) +  26.0 / 209.0 ) * (ax - 2.0);
  return 0.0;
}

//convert float to high byte/low byte, so the kernel can be loaded into an 8 bit texture
//with height 2 and converted back to real float in the shader
//it only works when the kernel texture uses nearest neighbour, but there's almost no difference
//between that and linear interpolation
void CConvolutionKernel::ToIntFract()
{
  m_intfractpixels = new uint8_t[m_size * 8];

  for (int i = 0; i < m_size * 4; i++)
  {
    int value = MathUtils::round_int((static_cast<double>(m_floatpixels[i]) + 1.0) / 2.0 * 65535.0);
    if (value < 0)
      value = 0;
    else if (value > 65535)
      value = 65535;

    int integer = value / 256;
    int fract   = value % 256;

    m_intfractpixels[i] = (uint8_t)integer;
    m_intfractpixels[i + m_size * 4] = (uint8_t)fract;
  }
}

//convert to 8 bits unsigned
void CConvolutionKernel::ToUint8()
{
  m_uint8pixels = new uint8_t[m_size * 4];

  for (int i = 0; i < m_size * 4; i++)
  {
    int value = MathUtils::round_int((static_cast<double>(m_floatpixels[i]) * 0.5 + 0.5) * 255.0);
    if (value < 0)
      value = 0;
    else if (value > 255)
      value = 255;

    m_uint8pixels[i] = (uint8_t)value;
  }
}