1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP
#define KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP
#include <gtest/gtest.h>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <Kokkos_DynRankView.hpp>
#include <Kokkos_Timer.hpp>
#include <Kokkos_Core.hpp>
#include <Kokkos_Macros.hpp>
#ifdef KOKKOS_ENABLE_EXPERIMENTAL_CXX20_MODULES
import kokkos.random;
#else
#include <Kokkos_Random.hpp>
#endif
#include <cmath>
#include <chrono>
#include <vector>
#include <algorithm>
#include <numeric>
namespace Test {
namespace AlgoRandomImpl {
// This test runs the random number generators and uses some statistic tests to
// check the 'goodness' of the random numbers:
// (i) mean: the mean is expected to be 0.5*RAND_MAX
// (ii) variance: the variance is 1/3*mean*mean
// (iii) covariance: the covariance is 0
// (iv) 1-tupledistr: the mean, variance and covariance of a 1D Histrogram
// of random numbers (v) 3-tupledistr: the mean, variance and covariance of
// a 3D Histrogram of random numbers
#define HIST_DIM3D 24
#define HIST_DIM1D (HIST_DIM3D * HIST_DIM3D * HIST_DIM3D)
struct RandomProperties {
uint64_t count;
double mean;
double variance;
double covariance;
double min;
double max;
KOKKOS_INLINE_FUNCTION
RandomProperties() {
count = 0;
mean = 0.0;
variance = 0.0;
covariance = 0.0;
min = 1e64;
max = -1e64;
}
KOKKOS_INLINE_FUNCTION
RandomProperties& operator+=(const RandomProperties& add) {
count += add.count;
mean += add.mean;
variance += add.variance;
covariance += add.covariance;
min = add.min < min ? add.min : min;
max = add.max > max ? add.max : max;
return *this;
}
};
// FIXME_OPENMPTARGET: Need this for OpenMPTarget because contra to the standard
// llvm requires the binary operator defined not just the +=
KOKKOS_INLINE_FUNCTION
RandomProperties operator+(const RandomProperties& org,
const RandomProperties& add) {
RandomProperties val = org;
val += add;
return val;
}
template <class GeneratorPool, class Scalar>
struct test_random_functor {
using rnd_type = typename GeneratorPool::generator_type;
using value_type = RandomProperties;
using device_type = typename GeneratorPool::device_type;
GeneratorPool rand_pool;
const double mean;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View types below.
using type_1d =
Kokkos::View<int[HIST_DIM1D + 1], typename GeneratorPool::device_type>;
type_1d density_1d;
using type_3d =
Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
typename GeneratorPool::device_type>;
type_3d density_3d;
test_random_functor(GeneratorPool rand_pool_, type_1d d1d, type_3d d3d)
: rand_pool(rand_pool_),
mean(0.5 * Kokkos::rand<rnd_type, Scalar>::max()),
density_1d(d1d),
density_3d(d3d) {}
KOKKOS_INLINE_FUNCTION
void operator()(int /*i*/, RandomProperties& prop) const {
using Kokkos::atomic_fetch_add;
rnd_type rand_gen = rand_pool.get_state();
for (int k = 0; k < 1024; ++k) {
const Scalar tmp = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp;
prop.variance += (tmp - mean) * (tmp - mean);
const Scalar tmp2 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp2;
prop.variance += (tmp2 - mean) * (tmp2 - mean);
prop.covariance += (tmp - mean) * (tmp2 - mean);
const Scalar tmp3 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
prop.count++;
prop.mean += tmp3;
prop.variance += (tmp3 - mean) * (tmp3 - mean);
prop.covariance += (tmp2 - mean) * (tmp3 - mean);
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to
// define an exclusive upper bound on the range of random
// numbers that draw() can generate. However, for the float
// specialization, some implementations might violate this upper
// bound, due to rounding error. Just in case, we have left an
// extra space at the end of each dimension of density_1d and
// density_3d.
//
// Please note that those extra entries might not get counted in
// the histograms. However, if Kokkos::rand is broken and only
// returns values of max(), the histograms will still catch this
// indirectly, since none of the other values will be filled in.
const Scalar theMax = Kokkos::rand<rnd_type, Scalar>::max();
const uint64_t ind1_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp / theMax);
const uint64_t ind2_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp2 / theMax);
const uint64_t ind3_1d =
static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp3 / theMax);
const uint64_t ind1_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp / theMax);
const uint64_t ind2_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp2 / theMax);
const uint64_t ind3_3d =
static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp3 / theMax);
atomic_fetch_add(&density_1d(ind1_1d), 1);
atomic_fetch_add(&density_1d(ind2_1d), 1);
atomic_fetch_add(&density_1d(ind3_1d), 1);
atomic_fetch_add(&density_3d(ind1_3d, ind2_3d, ind3_3d), 1);
}
rand_pool.free_state(rand_gen);
}
};
template <class DeviceType>
struct test_histogram1d_functor {
using value_type = RandomProperties;
using execution_space = typename DeviceType::execution_space;
using memory_space = typename DeviceType::memory_space;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View type below.
using type_1d = Kokkos::View<int[HIST_DIM1D + 1], memory_space>;
type_1d density_1d;
double mean;
test_histogram1d_functor(type_1d d1d, int num_draws)
: density_1d(d1d), mean(1.0 * num_draws / HIST_DIM1D * 3) {}
KOKKOS_INLINE_FUNCTION void operator()(
const typename memory_space::size_type i, RandomProperties& prop) const {
using size_type = typename memory_space::size_type;
const double count = density_1d(i);
prop.mean += count;
prop.variance += 1.0 * (count - mean) * (count - mean);
// prop.covariance += 1.0*count*count;
prop.min = count < prop.min ? count : prop.min;
prop.max = count > prop.max ? count : prop.max;
if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
prop.covariance += (count - mean) * (density_1d(i + 1) - mean);
}
}
};
template <class DeviceType>
struct test_histogram3d_functor {
using value_type = RandomProperties;
using execution_space = typename DeviceType::execution_space;
using memory_space = typename DeviceType::memory_space;
// NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
// an exclusive upper bound on the range of random numbers that
// draw() can generate. However, for the float specialization, some
// implementations might violate this upper bound, due to rounding
// error. Just in case, we leave an extra space at the end of each
// dimension, in the View type below.
using type_3d =
Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
memory_space>;
type_3d density_3d;
double mean;
test_histogram3d_functor(type_3d d3d, int num_draws)
: density_3d(d3d), mean(1.0 * num_draws / HIST_DIM1D) {}
KOKKOS_INLINE_FUNCTION void operator()(
const typename memory_space::size_type i, RandomProperties& prop) const {
using size_type = typename memory_space::size_type;
const double count = density_3d(
i / (HIST_DIM3D * HIST_DIM3D),
(i % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D, i % HIST_DIM3D);
prop.mean += count;
prop.variance += (count - mean) * (count - mean);
if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
const double count_next =
density_3d((i + 1) / (HIST_DIM3D * HIST_DIM3D),
((i + 1) % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D,
(i + 1) % HIST_DIM3D);
prop.covariance += (count - mean) * (count_next - mean);
}
}
};
//
// Templated test that uses the above functors.
//
template <class RandomGenerator, class Scalar>
struct test_random_scalar {
using rnd_type = typename RandomGenerator::generator_type;
test_random_scalar(
typename test_random_functor<RandomGenerator, int>::type_1d& density_1d,
typename test_random_functor<RandomGenerator, int>::type_3d& density_3d,
RandomGenerator& pool, unsigned int num_draws) {
using Kokkos::parallel_reduce;
using std::cout;
using std::endl;
{
cout << " -- Testing randomness properties" << endl;
RandomProperties result;
using functor_type = test_random_functor<RandomGenerator, Scalar>;
parallel_reduce(num_draws / 1024,
functor_type(pool, density_1d, density_3d), result);
// printf("Result: %lf %lf
// %lf\n",result.mean/num_draws/3,result.variance/num_draws/3,result.covariance/num_draws/2);
double tolerance = 1.6 * std::sqrt(1.0 / num_draws);
double mean_expect = 0.5 * Kokkos::rand<rnd_type, Scalar>::max();
double variance_expect = 1.0 / 3.0 * mean_expect * mean_expect;
double mean_eps = mean_expect / (result.mean / num_draws / 3) - 1.0;
double variance_eps =
variance_expect / (result.variance / num_draws / 3) - 1.0;
double covariance_eps =
result.covariance / num_draws / 2 / variance_expect;
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
EXPECT_LT(std::abs(mean_eps), tolerance);
EXPECT_LT(std::abs(variance_eps), 1.5 * tolerance);
EXPECT_LT(std::abs(covariance_eps), 2.0 * tolerance);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
}
{
cout << " -- Testing 1-D histogram" << endl;
RandomProperties result;
using functor_type =
test_histogram1d_functor<typename RandomGenerator::device_type>;
parallel_reduce(HIST_DIM1D, functor_type(density_1d, num_draws), result);
double mean_eps_expect = 0.0001;
double variance_eps_expect = 0.07;
double covariance_eps_expect = 0.06;
double tolerance = 6 * std::sqrt(1.0 / HIST_DIM1D);
double mean_expect = 1.0 * num_draws * 3 / HIST_DIM1D;
double variance_expect =
1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
double covariance_expect = -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D;
double mean_eps = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
double variance_eps =
variance_expect / (result.variance / HIST_DIM1D) - 1.0;
double covariance_eps =
(result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
if (std::is_same_v<Scalar, Kokkos::Experimental::half_t>) {
mean_eps_expect = 0.0003;
variance_eps_expect = 1.0;
covariance_eps_expect = 5.0e4;
}
#endif
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
EXPECT_LT(std::abs(mean_eps), mean_eps_expect);
EXPECT_LT(std::abs(variance_eps), variance_eps_expect);
EXPECT_LT(std::abs(covariance_eps), covariance_eps_expect);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
cout << "Density 1D: " << mean_eps << " " << variance_eps << " "
<< (result.covariance / HIST_DIM1D / HIST_DIM1D) << " || "
<< tolerance << " " << result.min << " " << result.max << " || "
<< result.variance / HIST_DIM1D << " "
<< 1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D)
<< " || " << result.covariance / HIST_DIM1D << " "
<< -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D << endl;
}
{
cout << " -- Testing 3-D histogram" << endl;
RandomProperties result;
using functor_type =
test_histogram3d_functor<typename RandomGenerator::device_type>;
parallel_reduce(HIST_DIM1D, functor_type(density_3d, num_draws), result);
double variance_factor = 1.2;
double tolerance = 6 * std::sqrt(1.0 / HIST_DIM1D);
double mean_expect = 1.0 * num_draws / HIST_DIM1D;
double variance_expect =
1.0 * num_draws / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
double covariance_expect = -1.0 * num_draws / HIST_DIM1D / HIST_DIM1D;
double mean_eps = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
double variance_eps =
variance_expect / (result.variance / HIST_DIM1D) - 1.0;
double covariance_eps =
(result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;
#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
if (std::is_same_v<Scalar, Kokkos::Experimental::half_t>) {
variance_factor = 7;
}
#endif
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
EXPECT_LT(std::abs(mean_eps), tolerance);
EXPECT_LT(std::abs(variance_eps), variance_factor);
EXPECT_LT(std::abs(covariance_eps), variance_factor);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
}
#endif
cout << "Density 3D: " << mean_eps << " " << variance_eps << " "
<< result.covariance / HIST_DIM1D / HIST_DIM1D << " || " << tolerance
<< " " << result.min << " " << result.max << endl;
}
}
};
template <class RandomGenerator>
void test_random(unsigned int num_draws) {
using std::cout;
using std::endl;
typename test_random_functor<RandomGenerator, int>::type_1d density_1d("D1d");
typename test_random_functor<RandomGenerator, int>::type_3d density_3d("D3d");
uint64_t ticks =
std::chrono::high_resolution_clock::now().time_since_epoch().count();
cout << "Test Seed:" << ticks << endl;
RandomGenerator pool(ticks);
cout << "Test Scalar=int" << endl;
test_random_scalar<RandomGenerator, int> test_int(density_1d, density_3d,
pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=unsigned int" << endl;
test_random_scalar<RandomGenerator, unsigned int> test_uint(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=int64_t" << endl;
test_random_scalar<RandomGenerator, int64_t> test_int64(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=uint64_t" << endl;
test_random_scalar<RandomGenerator, uint64_t> test_uint64(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=half" << endl;
test_random_scalar<RandomGenerator, Kokkos::Experimental::half_t> test_half(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=bhalf" << endl;
test_random_scalar<RandomGenerator, Kokkos::Experimental::bhalf_t> test_bhalf(
density_1d, density_3d, pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=float" << endl;
test_random_scalar<RandomGenerator, float> test_float(density_1d, density_3d,
pool, num_draws);
deep_copy(density_1d, 0);
deep_copy(density_3d, 0);
cout << "Test Scalar=double" << endl;
test_random_scalar<RandomGenerator, double> test_double(
density_1d, density_3d, pool, num_draws);
}
template <class ExecutionSpace, class Pool>
struct TestDynRankView {
using ReducerType = Kokkos::MinMax<double, Kokkos::HostSpace>;
using ReducerValueType = typename ReducerType::value_type;
Kokkos::DynRankView<double, ExecutionSpace> A;
TestDynRankView(int n) : A("a", n) {}
KOKKOS_FUNCTION void operator()(int i, ReducerValueType& update) const {
if (A(i) < update.min_val) update.min_val = A(i);
if (A(i) > update.max_val) update.max_val = A(i);
}
void run() {
Pool random(13);
double min = 10.;
double max = 100.;
ExecutionSpace exec;
Kokkos::fill_random(exec, A, random, min, max);
ReducerValueType val;
Kokkos::parallel_reduce(
Kokkos::RangePolicy<ExecutionSpace>(exec, 0, A.size()), *this,
ReducerType(val));
exec.fence();
ASSERT_GE(val.min_val, min);
ASSERT_LE(val.max_val, max);
}
};
template <class ExecutionSpace, class GeneratorPool>
struct generate_random_stream {
using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;
ViewType vals;
GeneratorPool rand_pool;
int samples;
bool use_specific_gen;
generate_random_stream(ViewType vals_, GeneratorPool rand_pool_, int samples_,
bool use_specific_gen_)
: vals(vals_),
rand_pool(rand_pool_),
samples(samples_),
use_specific_gen(use_specific_gen_) {}
KOKKOS_INLINE_FUNCTION
void operator()(int i) const {
typename GeneratorPool::generator_type rand_gen =
use_specific_gen ? rand_pool.get_state(i) : rand_pool.get_state();
for (int k = 0; k < samples; k++) vals(i, k) = rand_gen.urand64();
rand_pool.free_state(rand_gen);
}
};
// NOTE: this doesn't test the statistical independence of multiple streams
// generated by a Random pool, it only tests for complete duplicates.
template <class ExecutionSpace, class Pool>
void test_duplicate_stream() {
using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;
// Heuristic to create a "large enough" number of streams.
int n_streams = ExecutionSpace{}.concurrency() * 4;
int samples = 8;
Pool rand_pool(42);
ViewType vals_d("Vals", n_streams, samples);
Kokkos::parallel_for(Kokkos::RangePolicy<ExecutionSpace>(0, n_streams),
generate_random_stream<ExecutionSpace, Pool>(
vals_d, rand_pool, samples, false));
auto vals_h =
Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace{}, vals_d);
/*
To quickly find streams that are identical, we sort them by the first number,
if that's equal then the second and so on. We then test each neighbor pair
for duplicates.
*/
std::vector<size_t> indices(n_streams);
std::iota(indices.begin(), indices.end(), 0);
auto comparator = [&](size_t i, size_t j) {
for (int k = 0; k < samples; k++) {
if (vals_h(i, k) != vals_h(j, k)) return vals_h(i, k) < vals_h(j, k);
}
return false;
};
std::sort(indices.begin(), indices.end(), comparator);
for (int i = 0; i < n_streams - 1; i++) {
int idx1 = indices[i];
int idx2 = indices[i + 1];
int k = 0;
while (k < samples && vals_h(idx1, k) == vals_h(idx2, k)) k++;
ASSERT_LT(k, samples) << "Duplicate streams found";
}
}
template <class ExecutionSpace, class GeneratorPool>
struct compare_random_streams {
using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;
ViewType vals;
GeneratorPool rand_pool;
int samples;
compare_random_streams(ViewType vals_, GeneratorPool rand_pool_, int samples_)
: vals(vals_), rand_pool(rand_pool_), samples(samples_) {}
KOKKOS_INLINE_FUNCTION
void operator()(int i, std::size_t& mismatches) const {
// this is problematic: on a GPU when launching with more than a single
// thread the generator returned is in principle random, using atomic
// locks to acquire a state.
// but we only launch it with a single thread so its ok.
typename GeneratorPool::generator_type rand_gen = rand_pool.get_state(i);
for (int k = 0; k < samples; k++)
if (vals(i, k) != rand_gen.urand64()) mismatches++;
rand_pool.free_state(rand_gen);
}
};
template <class ExecutionSpace, class Pool, class... Args>
void test_async_initialization(Args... args) {
// using 2D View here to reuse functions from other test
using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;
int samples = 123456;
// use default execution space instance to generate reference values
Pool rand_pool_A(args...);
ViewType vals_d("Vals", 1, samples);
// create two, distinct ExecutionSpace instances
auto instances =
Kokkos::Experimental::partition_space(ExecutionSpace{}, 1, 1);
// use first instance to initialize values of vals_d
Kokkos::parallel_for(
Kokkos::RangePolicy<ExecutionSpace>(instances.at(0), 0, 1),
generate_random_stream<ExecutionSpace, Pool>(vals_d, rand_pool_A, samples,
true));
instances.at(0).fence();
// use second instance to initialize another Pool using the same seed
Pool rand_pool_B(instances.at(1), args...);
std::size_t mismatches;
// compare values in stream of rand_pool_B with vals_d
Kokkos::parallel_reduce(
Kokkos::RangePolicy<ExecutionSpace>(instances.at(1), 0, 1),
compare_random_streams<ExecutionSpace, Pool>(vals_d, rand_pool_B,
samples),
mismatches);
EXPECT_EQ(mismatches, 0lu) << "Stream from async constructed pool does not "
"match stream from default constructed pool";
}
} // namespace AlgoRandomImpl
TEST(TEST_CATEGORY, Random_XorShift64) {
// FIXME_OPENMPTARGET - causes runtime failure with CrayClang compiler
#if defined(KOKKOS_COMPILER_CRAY_LLVM) && defined(KOKKOS_ENABLE_OPENMPTARGET)
GTEST_SKIP() << "known to fail with OpenMPTarget+Cray LLVM";
#endif
using ExecutionSpace = TEST_EXECSPACE;
#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
defined(KOKKOS_ENABLE_HIP)
const int num_draws = 132141141;
#else // SERIAL, HPX, OPENMP
const int num_draws = 10240000;
#endif
AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(
num_draws);
AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<
Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
num_draws);
AlgoRandomImpl::TestDynRankView<
ExecutionSpace, Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(10000)
.run();
}
TEST(TEST_CATEGORY, Random_XorShift1024_0) {
using ExecutionSpace = TEST_EXECSPACE;
// FIXME_OPENMPTARGET - causes runtime failure with CrayClang compiler
#if defined(KOKKOS_COMPILER_CRAY_LLVM) && defined(KOKKOS_ENABLE_OPENMPTARGET)
GTEST_SKIP() << "known to fail with OpenMPTarget+Cray LLVM";
#endif
#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
defined(KOKKOS_ENABLE_HIP)
const int num_draws = 52428813;
#else // SERIAL, HPX, OPENMP
const int num_draws = 10130144;
#endif
AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(
num_draws);
AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<
Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
num_draws);
AlgoRandomImpl::TestDynRankView<
ExecutionSpace, Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(10000)
.run();
}
TEST(TEST_CATEGORY, Multi_streams) {
using ExecutionSpace = TEST_EXECSPACE;
#ifdef KOKKOS_ENABLE_OPENMPTARGET
if constexpr (std::is_same_v<ExecutionSpace,
Kokkos::Experimental::OpenMPTarget>) {
GTEST_SKIP() << "Libomptarget error"; // FIXME_OPENMPTARGET
}
#endif
#if defined(KOKKOS_ENABLE_SYCL) && defined(KOKKOS_IMPL_ARCH_NVIDIA_GPU)
if constexpr (std::is_same_v<ExecutionSpace, Kokkos::SYCL>) {
GTEST_SKIP() << "Failing on NVIDIA GPUs"; // FIXME_SYCL
}
#endif
using Pool64 = Kokkos::Random_XorShift64_Pool<ExecutionSpace>;
using Pool1024 = Kokkos::Random_XorShift1024_Pool<ExecutionSpace>;
AlgoRandomImpl::test_duplicate_stream<ExecutionSpace, Pool64>();
AlgoRandomImpl::test_duplicate_stream<ExecutionSpace, Pool1024>();
// Test with construction from seed
AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool64>(42);
AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool1024>(42);
// Test with construction from seed and num_states
AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool64>(42, 1);
AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool1024>(42, 1);
}
} // namespace Test
#endif
|