File: TestRandom.hpp

package info (click to toggle)
kokkos 4.7.01-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 16,636 kB
  • sloc: cpp: 223,676; sh: 2,446; makefile: 2,437; python: 91; fortran: 4; ansic: 2
file content (694 lines) | stat: -rw-r--r-- 25,830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//@HEADER
// ************************************************************************
//
//                        Kokkos v. 4.0
//       Copyright (2022) National Technology & Engineering
//               Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER

#ifndef KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP
#define KOKKOS_ALGORITHMS_UNITTESTS_TEST_RANDOM_HPP

#include <gtest/gtest.h>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <Kokkos_DynRankView.hpp>
#include <Kokkos_Timer.hpp>
#include <Kokkos_Core.hpp>
#include <Kokkos_Macros.hpp>
#ifdef KOKKOS_ENABLE_EXPERIMENTAL_CXX20_MODULES
import kokkos.random;
#else
#include <Kokkos_Random.hpp>
#endif
#include <cmath>
#include <chrono>
#include <vector>
#include <algorithm>
#include <numeric>

namespace Test {
namespace AlgoRandomImpl {

// This test runs the random number generators and uses some statistic tests to
// check the 'goodness' of the random numbers:
//    (i)   mean:         the mean is expected to be 0.5*RAND_MAX
//    (ii)  variance:     the variance is 1/3*mean*mean
//    (iii) covariance:   the covariance is 0
//    (iv)  1-tupledistr: the mean, variance and covariance of a 1D Histrogram
//    of random numbers (v)   3-tupledistr: the mean, variance and covariance of
//    a 3D Histrogram of random numbers

#define HIST_DIM3D 24
#define HIST_DIM1D (HIST_DIM3D * HIST_DIM3D * HIST_DIM3D)

struct RandomProperties {
  uint64_t count;
  double mean;
  double variance;
  double covariance;
  double min;
  double max;

  KOKKOS_INLINE_FUNCTION
  RandomProperties() {
    count      = 0;
    mean       = 0.0;
    variance   = 0.0;
    covariance = 0.0;
    min        = 1e64;
    max        = -1e64;
  }

  KOKKOS_INLINE_FUNCTION
  RandomProperties& operator+=(const RandomProperties& add) {
    count += add.count;
    mean += add.mean;
    variance += add.variance;
    covariance += add.covariance;
    min = add.min < min ? add.min : min;
    max = add.max > max ? add.max : max;
    return *this;
  }
};

// FIXME_OPENMPTARGET: Need this for OpenMPTarget because contra to the standard
// llvm requires the binary operator defined not just the +=
KOKKOS_INLINE_FUNCTION
RandomProperties operator+(const RandomProperties& org,
                           const RandomProperties& add) {
  RandomProperties val = org;
  val += add;
  return val;
}

template <class GeneratorPool, class Scalar>
struct test_random_functor {
  using rnd_type = typename GeneratorPool::generator_type;

  using value_type  = RandomProperties;
  using device_type = typename GeneratorPool::device_type;

  GeneratorPool rand_pool;
  const double mean;

  // NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
  // an exclusive upper bound on the range of random numbers that
  // draw() can generate.  However, for the float specialization, some
  // implementations might violate this upper bound, due to rounding
  // error.  Just in case, we leave an extra space at the end of each
  // dimension, in the View types below.
  using type_1d =
      Kokkos::View<int[HIST_DIM1D + 1], typename GeneratorPool::device_type>;
  type_1d density_1d;
  using type_3d =
      Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
                   typename GeneratorPool::device_type>;
  type_3d density_3d;

  test_random_functor(GeneratorPool rand_pool_, type_1d d1d, type_3d d3d)
      : rand_pool(rand_pool_),
        mean(0.5 * Kokkos::rand<rnd_type, Scalar>::max()),
        density_1d(d1d),
        density_3d(d3d) {}

  KOKKOS_INLINE_FUNCTION
  void operator()(int /*i*/, RandomProperties& prop) const {
    using Kokkos::atomic_fetch_add;

    rnd_type rand_gen = rand_pool.get_state();
    for (int k = 0; k < 1024; ++k) {
      const Scalar tmp = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
      prop.count++;
      prop.mean += tmp;
      prop.variance += (tmp - mean) * (tmp - mean);
      const Scalar tmp2 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
      prop.count++;
      prop.mean += tmp2;
      prop.variance += (tmp2 - mean) * (tmp2 - mean);
      prop.covariance += (tmp - mean) * (tmp2 - mean);
      const Scalar tmp3 = Kokkos::rand<rnd_type, Scalar>::draw(rand_gen);
      prop.count++;
      prop.mean += tmp3;
      prop.variance += (tmp3 - mean) * (tmp3 - mean);
      prop.covariance += (tmp2 - mean) * (tmp3 - mean);

      // NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to
      // define an exclusive upper bound on the range of random
      // numbers that draw() can generate.  However, for the float
      // specialization, some implementations might violate this upper
      // bound, due to rounding error.  Just in case, we have left an
      // extra space at the end of each dimension of density_1d and
      // density_3d.
      //
      // Please note that those extra entries might not get counted in
      // the histograms.  However, if Kokkos::rand is broken and only
      // returns values of max(), the histograms will still catch this
      // indirectly, since none of the other values will be filled in.

      const Scalar theMax = Kokkos::rand<rnd_type, Scalar>::max();

      const uint64_t ind1_1d =
          static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp / theMax);
      const uint64_t ind2_1d =
          static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp2 / theMax);
      const uint64_t ind3_1d =
          static_cast<uint64_t>(1.0 * HIST_DIM1D * tmp3 / theMax);

      const uint64_t ind1_3d =
          static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp / theMax);
      const uint64_t ind2_3d =
          static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp2 / theMax);
      const uint64_t ind3_3d =
          static_cast<uint64_t>(1.0 * HIST_DIM3D * tmp3 / theMax);
      atomic_fetch_add(&density_1d(ind1_1d), 1);
      atomic_fetch_add(&density_1d(ind2_1d), 1);
      atomic_fetch_add(&density_1d(ind3_1d), 1);
      atomic_fetch_add(&density_3d(ind1_3d, ind2_3d, ind3_3d), 1);
    }
    rand_pool.free_state(rand_gen);
  }
};

template <class DeviceType>
struct test_histogram1d_functor {
  using value_type      = RandomProperties;
  using execution_space = typename DeviceType::execution_space;
  using memory_space    = typename DeviceType::memory_space;

  // NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
  // an exclusive upper bound on the range of random numbers that
  // draw() can generate.  However, for the float specialization, some
  // implementations might violate this upper bound, due to rounding
  // error.  Just in case, we leave an extra space at the end of each
  // dimension, in the View type below.
  using type_1d = Kokkos::View<int[HIST_DIM1D + 1], memory_space>;
  type_1d density_1d;
  double mean;

  test_histogram1d_functor(type_1d d1d, int num_draws)
      : density_1d(d1d), mean(1.0 * num_draws / HIST_DIM1D * 3) {}

  KOKKOS_INLINE_FUNCTION void operator()(
      const typename memory_space::size_type i, RandomProperties& prop) const {
    using size_type    = typename memory_space::size_type;
    const double count = density_1d(i);
    prop.mean += count;
    prop.variance += 1.0 * (count - mean) * (count - mean);
    // prop.covariance += 1.0*count*count;
    prop.min = count < prop.min ? count : prop.min;
    prop.max = count > prop.max ? count : prop.max;
    if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
      prop.covariance += (count - mean) * (density_1d(i + 1) - mean);
    }
  }
};

template <class DeviceType>
struct test_histogram3d_functor {
  using value_type      = RandomProperties;
  using execution_space = typename DeviceType::execution_space;
  using memory_space    = typename DeviceType::memory_space;

  // NOTE (mfh 03 Nov 2014): Kokkos::rand::max() is supposed to define
  // an exclusive upper bound on the range of random numbers that
  // draw() can generate.  However, for the float specialization, some
  // implementations might violate this upper bound, due to rounding
  // error.  Just in case, we leave an extra space at the end of each
  // dimension, in the View type below.
  using type_3d =
      Kokkos::View<int[HIST_DIM3D + 1][HIST_DIM3D + 1][HIST_DIM3D + 1],
                   memory_space>;
  type_3d density_3d;
  double mean;

  test_histogram3d_functor(type_3d d3d, int num_draws)
      : density_3d(d3d), mean(1.0 * num_draws / HIST_DIM1D) {}

  KOKKOS_INLINE_FUNCTION void operator()(
      const typename memory_space::size_type i, RandomProperties& prop) const {
    using size_type    = typename memory_space::size_type;
    const double count = density_3d(
        i / (HIST_DIM3D * HIST_DIM3D),
        (i % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D, i % HIST_DIM3D);
    prop.mean += count;
    prop.variance += (count - mean) * (count - mean);
    if (i < static_cast<size_type>(HIST_DIM1D - 1)) {
      const double count_next =
          density_3d((i + 1) / (HIST_DIM3D * HIST_DIM3D),
                     ((i + 1) % (HIST_DIM3D * HIST_DIM3D)) / HIST_DIM3D,
                     (i + 1) % HIST_DIM3D);
      prop.covariance += (count - mean) * (count_next - mean);
    }
  }
};

//
// Templated test that uses the above functors.
//
template <class RandomGenerator, class Scalar>
struct test_random_scalar {
  using rnd_type = typename RandomGenerator::generator_type;

  test_random_scalar(
      typename test_random_functor<RandomGenerator, int>::type_1d& density_1d,
      typename test_random_functor<RandomGenerator, int>::type_3d& density_3d,
      RandomGenerator& pool, unsigned int num_draws) {
    using Kokkos::parallel_reduce;
    using std::cout;
    using std::endl;

    {
      cout << " -- Testing randomness properties" << endl;

      RandomProperties result;
      using functor_type = test_random_functor<RandomGenerator, Scalar>;
      parallel_reduce(num_draws / 1024,
                      functor_type(pool, density_1d, density_3d), result);

      // printf("Result: %lf %lf
      // %lf\n",result.mean/num_draws/3,result.variance/num_draws/3,result.covariance/num_draws/2);
      double tolerance       = 1.6 * std::sqrt(1.0 / num_draws);
      double mean_expect     = 0.5 * Kokkos::rand<rnd_type, Scalar>::max();
      double variance_expect = 1.0 / 3.0 * mean_expect * mean_expect;
      double mean_eps = mean_expect / (result.mean / num_draws / 3) - 1.0;
      double variance_eps =
          variance_expect / (result.variance / num_draws / 3) - 1.0;
      double covariance_eps =
          result.covariance / num_draws / 2 / variance_expect;
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
        EXPECT_LT(std::abs(mean_eps), tolerance);
        EXPECT_LT(std::abs(variance_eps), 1.5 * tolerance);
        EXPECT_LT(std::abs(covariance_eps), 2.0 * tolerance);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      }
#endif
    }
    {
      cout << " -- Testing 1-D histogram" << endl;

      RandomProperties result;
      using functor_type =
          test_histogram1d_functor<typename RandomGenerator::device_type>;
      parallel_reduce(HIST_DIM1D, functor_type(density_1d, num_draws), result);
      double mean_eps_expect       = 0.0001;
      double variance_eps_expect   = 0.07;
      double covariance_eps_expect = 0.06;
      double tolerance             = 6 * std::sqrt(1.0 / HIST_DIM1D);
      double mean_expect           = 1.0 * num_draws * 3 / HIST_DIM1D;
      double variance_expect =
          1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
      double covariance_expect = -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D;
      double mean_eps          = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
      double variance_eps =
          variance_expect / (result.variance / HIST_DIM1D) - 1.0;
      double covariance_eps =
          (result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;

#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
      if (std::is_same_v<Scalar, Kokkos::Experimental::half_t>) {
        mean_eps_expect       = 0.0003;
        variance_eps_expect   = 1.0;
        covariance_eps_expect = 5.0e4;
      }
#endif

#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
        EXPECT_LT(std::abs(mean_eps), mean_eps_expect);
        EXPECT_LT(std::abs(variance_eps), variance_eps_expect);
        EXPECT_LT(std::abs(covariance_eps), covariance_eps_expect);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      }
#endif

      cout << "Density 1D: " << mean_eps << " " << variance_eps << " "
           << (result.covariance / HIST_DIM1D / HIST_DIM1D) << " || "
           << tolerance << " " << result.min << " " << result.max << " || "
           << result.variance / HIST_DIM1D << " "
           << 1.0 * num_draws * 3 / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D)
           << " || " << result.covariance / HIST_DIM1D << " "
           << -1.0 * num_draws * 3 / HIST_DIM1D / HIST_DIM1D << endl;
    }
    {
      cout << " -- Testing 3-D histogram" << endl;

      RandomProperties result;
      using functor_type =
          test_histogram3d_functor<typename RandomGenerator::device_type>;
      parallel_reduce(HIST_DIM1D, functor_type(density_3d, num_draws), result);

      double variance_factor = 1.2;
      double tolerance       = 6 * std::sqrt(1.0 / HIST_DIM1D);
      double mean_expect     = 1.0 * num_draws / HIST_DIM1D;
      double variance_expect =
          1.0 * num_draws / HIST_DIM1D * (1.0 - 1.0 / HIST_DIM1D);
      double covariance_expect = -1.0 * num_draws / HIST_DIM1D / HIST_DIM1D;
      double mean_eps          = mean_expect / (result.mean / HIST_DIM1D) - 1.0;
      double variance_eps =
          variance_expect / (result.variance / HIST_DIM1D) - 1.0;
      double covariance_eps =
          (result.covariance / HIST_DIM1D - covariance_expect) / mean_expect;

#if defined(KOKKOS_HALF_T_IS_FLOAT) && !KOKKOS_HALF_T_IS_FLOAT
      if (std::is_same_v<Scalar, Kokkos::Experimental::half_t>) {
        variance_factor = 7;
      }
#endif

#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      if (!std::is_same_v<Scalar, Kokkos::Experimental::bhalf_t>) {
#endif
        EXPECT_LT(std::abs(mean_eps), tolerance);
        EXPECT_LT(std::abs(variance_eps), variance_factor);
        EXPECT_LT(std::abs(covariance_eps), variance_factor);
#if defined(KOKKOS_BHALF_T_IS_FLOAT) && !KOKKOS_BHALF_T_IS_FLOAT
      }
#endif

      cout << "Density 3D: " << mean_eps << " " << variance_eps << " "
           << result.covariance / HIST_DIM1D / HIST_DIM1D << " || " << tolerance
           << " " << result.min << " " << result.max << endl;
    }
  }
};

template <class RandomGenerator>
void test_random(unsigned int num_draws) {
  using std::cout;
  using std::endl;
  typename test_random_functor<RandomGenerator, int>::type_1d density_1d("D1d");
  typename test_random_functor<RandomGenerator, int>::type_3d density_3d("D3d");

  uint64_t ticks =
      std::chrono::high_resolution_clock::now().time_since_epoch().count();
  cout << "Test Seed:" << ticks << endl;

  RandomGenerator pool(ticks);

  cout << "Test Scalar=int" << endl;
  test_random_scalar<RandomGenerator, int> test_int(density_1d, density_3d,
                                                    pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=unsigned int" << endl;
  test_random_scalar<RandomGenerator, unsigned int> test_uint(
      density_1d, density_3d, pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=int64_t" << endl;
  test_random_scalar<RandomGenerator, int64_t> test_int64(
      density_1d, density_3d, pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=uint64_t" << endl;
  test_random_scalar<RandomGenerator, uint64_t> test_uint64(
      density_1d, density_3d, pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=half" << endl;
  test_random_scalar<RandomGenerator, Kokkos::Experimental::half_t> test_half(
      density_1d, density_3d, pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=bhalf" << endl;
  test_random_scalar<RandomGenerator, Kokkos::Experimental::bhalf_t> test_bhalf(
      density_1d, density_3d, pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=float" << endl;
  test_random_scalar<RandomGenerator, float> test_float(density_1d, density_3d,
                                                        pool, num_draws);
  deep_copy(density_1d, 0);
  deep_copy(density_3d, 0);

  cout << "Test Scalar=double" << endl;
  test_random_scalar<RandomGenerator, double> test_double(
      density_1d, density_3d, pool, num_draws);
}

template <class ExecutionSpace, class Pool>
struct TestDynRankView {
  using ReducerType      = Kokkos::MinMax<double, Kokkos::HostSpace>;
  using ReducerValueType = typename ReducerType::value_type;

  Kokkos::DynRankView<double, ExecutionSpace> A;

  TestDynRankView(int n) : A("a", n) {}

  KOKKOS_FUNCTION void operator()(int i, ReducerValueType& update) const {
    if (A(i) < update.min_val) update.min_val = A(i);
    if (A(i) > update.max_val) update.max_val = A(i);
  }

  void run() {
    Pool random(13);
    double min = 10.;
    double max = 100.;
    ExecutionSpace exec;
    Kokkos::fill_random(exec, A, random, min, max);

    ReducerValueType val;
    Kokkos::parallel_reduce(
        Kokkos::RangePolicy<ExecutionSpace>(exec, 0, A.size()), *this,
        ReducerType(val));

    exec.fence();
    ASSERT_GE(val.min_val, min);
    ASSERT_LE(val.max_val, max);
  }
};

template <class ExecutionSpace, class GeneratorPool>
struct generate_random_stream {
  using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;

  ViewType vals;
  GeneratorPool rand_pool;
  int samples;
  bool use_specific_gen;

  generate_random_stream(ViewType vals_, GeneratorPool rand_pool_, int samples_,
                         bool use_specific_gen_)
      : vals(vals_),
        rand_pool(rand_pool_),
        samples(samples_),
        use_specific_gen(use_specific_gen_) {}

  KOKKOS_INLINE_FUNCTION
  void operator()(int i) const {
    typename GeneratorPool::generator_type rand_gen =
        use_specific_gen ? rand_pool.get_state(i) : rand_pool.get_state();

    for (int k = 0; k < samples; k++) vals(i, k) = rand_gen.urand64();

    rand_pool.free_state(rand_gen);
  }
};

// NOTE: this doesn't test the statistical independence of multiple streams
// generated by a Random pool, it only tests for complete duplicates.
template <class ExecutionSpace, class Pool>
void test_duplicate_stream() {
  using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;

  // Heuristic to create a "large enough" number of streams.
  int n_streams = ExecutionSpace{}.concurrency() * 4;
  int samples   = 8;

  Pool rand_pool(42);
  ViewType vals_d("Vals", n_streams, samples);

  Kokkos::parallel_for(Kokkos::RangePolicy<ExecutionSpace>(0, n_streams),
                       generate_random_stream<ExecutionSpace, Pool>(
                           vals_d, rand_pool, samples, false));

  auto vals_h =
      Kokkos::create_mirror_view_and_copy(Kokkos::HostSpace{}, vals_d);

  /*
  To quickly find streams that are identical, we sort them by the first number,
  if that's equal then the second and so on. We then test each neighbor pair
  for duplicates.
  */
  std::vector<size_t> indices(n_streams);
  std::iota(indices.begin(), indices.end(), 0);

  auto comparator = [&](size_t i, size_t j) {
    for (int k = 0; k < samples; k++) {
      if (vals_h(i, k) != vals_h(j, k)) return vals_h(i, k) < vals_h(j, k);
    }
    return false;
  };
  std::sort(indices.begin(), indices.end(), comparator);

  for (int i = 0; i < n_streams - 1; i++) {
    int idx1 = indices[i];
    int idx2 = indices[i + 1];

    int k = 0;
    while (k < samples && vals_h(idx1, k) == vals_h(idx2, k)) k++;
    ASSERT_LT(k, samples) << "Duplicate streams found";
  }
}

template <class ExecutionSpace, class GeneratorPool>
struct compare_random_streams {
  using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;

  ViewType vals;
  GeneratorPool rand_pool;
  int samples;

  compare_random_streams(ViewType vals_, GeneratorPool rand_pool_, int samples_)
      : vals(vals_), rand_pool(rand_pool_), samples(samples_) {}

  KOKKOS_INLINE_FUNCTION
  void operator()(int i, std::size_t& mismatches) const {
    // this is problematic: on a GPU when launching with more than a single
    // thread the generator returned is in principle random, using atomic
    // locks to acquire a state.
    // but we only launch it with a single thread so its ok.
    typename GeneratorPool::generator_type rand_gen = rand_pool.get_state(i);

    for (int k = 0; k < samples; k++)
      if (vals(i, k) != rand_gen.urand64()) mismatches++;

    rand_pool.free_state(rand_gen);
  }
};

template <class ExecutionSpace, class Pool, class... Args>
void test_async_initialization(Args... args) {
  // using 2D View here to reuse functions from other test
  using ViewType = Kokkos::View<uint64_t**, ExecutionSpace>;

  int samples = 123456;

  // use default execution space instance to generate reference values
  Pool rand_pool_A(args...);

  ViewType vals_d("Vals", 1, samples);
  // create two, distinct ExecutionSpace instances
  auto instances =
      Kokkos::Experimental::partition_space(ExecutionSpace{}, 1, 1);
  // use first instance to initialize values of vals_d
  Kokkos::parallel_for(
      Kokkos::RangePolicy<ExecutionSpace>(instances.at(0), 0, 1),
      generate_random_stream<ExecutionSpace, Pool>(vals_d, rand_pool_A, samples,
                                                   true));
  instances.at(0).fence();

  // use second instance to initialize another Pool using the same seed
  Pool rand_pool_B(instances.at(1), args...);

  std::size_t mismatches;
  // compare values in stream of rand_pool_B with vals_d
  Kokkos::parallel_reduce(
      Kokkos::RangePolicy<ExecutionSpace>(instances.at(1), 0, 1),
      compare_random_streams<ExecutionSpace, Pool>(vals_d, rand_pool_B,
                                                   samples),
      mismatches);

  EXPECT_EQ(mismatches, 0lu) << "Stream from async constructed pool does not "
                                "match stream from default constructed pool";
}

}  // namespace AlgoRandomImpl

TEST(TEST_CATEGORY, Random_XorShift64) {
  // FIXME_OPENMPTARGET - causes runtime failure with CrayClang compiler
#if defined(KOKKOS_COMPILER_CRAY_LLVM) && defined(KOKKOS_ENABLE_OPENMPTARGET)
  GTEST_SKIP() << "known to fail with OpenMPTarget+Cray LLVM";
#endif

  using ExecutionSpace = TEST_EXECSPACE;

#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
    defined(KOKKOS_ENABLE_HIP)
  const int num_draws = 132141141;
#else  // SERIAL, HPX, OPENMP
  const int num_draws = 10240000;
#endif
  AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(
      num_draws);
  AlgoRandomImpl::test_random<Kokkos::Random_XorShift64_Pool<
      Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
      num_draws);
  AlgoRandomImpl::TestDynRankView<
      ExecutionSpace, Kokkos::Random_XorShift64_Pool<ExecutionSpace>>(10000)
      .run();
}

TEST(TEST_CATEGORY, Random_XorShift1024_0) {
  using ExecutionSpace = TEST_EXECSPACE;
  // FIXME_OPENMPTARGET - causes runtime failure with CrayClang compiler
#if defined(KOKKOS_COMPILER_CRAY_LLVM) && defined(KOKKOS_ENABLE_OPENMPTARGET)
  GTEST_SKIP() << "known to fail with OpenMPTarget+Cray LLVM";
#endif

#if defined(KOKKOS_ENABLE_SYCL) || defined(KOKKOS_ENABLE_CUDA) || \
    defined(KOKKOS_ENABLE_HIP)
  const int num_draws = 52428813;
#else  // SERIAL, HPX, OPENMP
  const int num_draws = 10130144;
#endif
  AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(
      num_draws);
  AlgoRandomImpl::test_random<Kokkos::Random_XorShift1024_Pool<
      Kokkos::Device<ExecutionSpace, typename ExecutionSpace::memory_space>>>(
      num_draws);
  AlgoRandomImpl::TestDynRankView<
      ExecutionSpace, Kokkos::Random_XorShift1024_Pool<ExecutionSpace>>(10000)
      .run();
}

TEST(TEST_CATEGORY, Multi_streams) {
  using ExecutionSpace = TEST_EXECSPACE;
#ifdef KOKKOS_ENABLE_OPENMPTARGET
  if constexpr (std::is_same_v<ExecutionSpace,
                               Kokkos::Experimental::OpenMPTarget>) {
    GTEST_SKIP() << "Libomptarget error";  // FIXME_OPENMPTARGET
  }
#endif

#if defined(KOKKOS_ENABLE_SYCL) && defined(KOKKOS_IMPL_ARCH_NVIDIA_GPU)
  if constexpr (std::is_same_v<ExecutionSpace, Kokkos::SYCL>) {
    GTEST_SKIP() << "Failing on NVIDIA GPUs";  // FIXME_SYCL
  }
#endif

  using Pool64   = Kokkos::Random_XorShift64_Pool<ExecutionSpace>;
  using Pool1024 = Kokkos::Random_XorShift1024_Pool<ExecutionSpace>;

  AlgoRandomImpl::test_duplicate_stream<ExecutionSpace, Pool64>();
  AlgoRandomImpl::test_duplicate_stream<ExecutionSpace, Pool1024>();

  // Test with construction from seed
  AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool64>(42);
  AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool1024>(42);
  // Test with construction from seed and num_states
  AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool64>(42, 1);
  AlgoRandomImpl::test_async_initialization<ExecutionSpace, Pool1024>(42, 1);
}

}  // namespace Test
#endif