File: TestStdAlgorithmsTeamSearchN.cpp

package info (click to toggle)
kokkos 4.7.01-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 16,636 kB
  • sloc: cpp: 223,676; sh: 2,446; makefile: 2,437; python: 91; fortran: 4; ansic: 2
file content (296 lines) | stat: -rw-r--r-- 10,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//@HEADER
// ************************************************************************
//
//                        Kokkos v. 4.0
//       Copyright (2022) National Technology & Engineering
//               Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER

#include <TestStdAlgorithmsCommon.hpp>

namespace Test {
namespace stdalgos {
namespace TeamSearchN {

namespace KE = Kokkos::Experimental;

template <class ValueType>
struct EqualFunctor {
  KOKKOS_INLINE_FUNCTION
  bool operator()(const ValueType& lhs, const ValueType& rhs) const {
    return lhs == rhs;
  }
};

template <class DataViewType, class SearchedValuesViewType,
          class DistancesViewType, class IntraTeamSentinelView,
          class BinaryPredType>
struct TestFunctorA {
  DataViewType m_dataView;
  std::size_t m_seqSize;
  SearchedValuesViewType m_searchedValuesView;
  DistancesViewType m_distancesView;
  IntraTeamSentinelView m_intraTeamSentinelView;
  BinaryPredType m_binaryPred;
  int m_apiPick;

  TestFunctorA(const DataViewType dataView, std::size_t seqSize,
               const SearchedValuesViewType searchedValuesView,
               const DistancesViewType distancesView,
               const IntraTeamSentinelView intraTeamSentinelView,
               BinaryPredType binaryPred, int apiPick)
      : m_dataView(dataView),
        m_seqSize(seqSize),
        m_searchedValuesView(searchedValuesView),
        m_distancesView(distancesView),
        m_intraTeamSentinelView(intraTeamSentinelView),
        m_binaryPred(binaryPred),
        m_apiPick(apiPick) {}

  template <class MemberType>
  KOKKOS_INLINE_FUNCTION void operator()(const MemberType& member) const {
    const auto myRowIndex = member.league_rank();
    auto myRowViewFrom = Kokkos::subview(m_dataView, myRowIndex, Kokkos::ALL());
    auto rowFromBegin  = KE::begin(myRowViewFrom);
    auto rowFromEnd    = KE::end(myRowViewFrom);
    const auto searchedValue = m_searchedValuesView(myRowIndex);
    ptrdiff_t resultDist     = 0;

    switch (m_apiPick) {
      case 0: {
        const auto it = KE::search_n(member, rowFromBegin, rowFromEnd,
                                     m_seqSize, searchedValue);
        resultDist    = KE::distance(rowFromBegin, it);
        Kokkos::single(Kokkos::PerTeam(member), [=, *this]() {
          m_distancesView(myRowIndex) = resultDist;
        });

        break;
      }

      case 1: {
        const auto it =
            KE::search_n(member, myRowViewFrom, m_seqSize, searchedValue);
        resultDist = KE::distance(rowFromBegin, it);
        Kokkos::single(Kokkos::PerTeam(member), [=, *this]() {
          m_distancesView(myRowIndex) = resultDist;
        });

        break;
      }

      case 2: {
        const auto it = KE::search_n(member, rowFromBegin, rowFromEnd,
                                     m_seqSize, searchedValue, m_binaryPred);
        resultDist    = KE::distance(rowFromBegin, it);
        Kokkos::single(Kokkos::PerTeam(member), [=, *this]() {
          m_distancesView(myRowIndex) = resultDist;
        });

        break;
      }

      case 3: {
        const auto it = KE::search_n(member, myRowViewFrom, m_seqSize,
                                     searchedValue, m_binaryPred);
        resultDist    = KE::distance(rowFromBegin, it);
        Kokkos::single(Kokkos::PerTeam(member), [=, *this]() {
          m_distancesView(myRowIndex) = resultDist;
        });

        break;
      }
    }

    // store result of checking if all members have their local
    // values matching the one stored in m_distancesView
    member.team_barrier();
    const bool intraTeamCheck = team_members_have_matching_result(
        member, resultDist, m_distancesView(myRowIndex));
    Kokkos::single(Kokkos::PerTeam(member), [=, *this]() {
      m_intraTeamSentinelView(myRowIndex) = intraTeamCheck;
    });
  }
};

template <class LayoutTag, class ValueType>
void test_A(const bool sequencesExist, std::size_t numTeams,
            std::size_t numCols, int apiId) {
  /* description:
     use a rank-2 view randomly filled with values,
     and run a team-level search_n
   */

  // -----------------------------------------------
  // prepare data
  // -----------------------------------------------
  // create a view in the memory space associated with default exespace
  // with as many rows as the number of teams and fill it with random
  // values from an arbitrary range.
  constexpr ValueType lowerBound = 5;
  constexpr ValueType upperBound = 523;
  const auto bounds              = make_bounds(lowerBound, upperBound);

  auto [dataView, dataViewBeforeOp_h] = create_random_view_and_host_clone(
      LayoutTag{}, numTeams, numCols, bounds, "dataView");

  // If sequencesExist == true we need to inject some sequence of count test
  // value into dataView. If sequencesExist == false we set searchedVal to a
  // value that is not present in dataView

  const std::size_t halfCols = (numCols > 1) ? ((numCols + 1) / 2) : (1);
  const std::size_t seqSize  = (numCols > 1) ? (std::log2(numCols)) : (1);

  Kokkos::View<ValueType*> searchedValuesView("searchedValuesView", numTeams);
  auto searchedValuesView_h = create_host_space_copy(searchedValuesView);

  // dataView might not deep copyable (e.g. strided layout) so to prepare it
  // correclty, we make a new view that is for sure deep copyable, modify it
  // on the host, deep copy to device and then launch a kernel to copy to
  // dataView
  auto dataView_dc =
      create_deep_copyable_compatible_view_with_same_extent(dataView);
  auto dataView_dc_h = create_mirror_view(Kokkos::HostSpace(), dataView_dc);

  if (sequencesExist) {
    const std::size_t dataBegin = halfCols - seqSize;
    for (std::size_t i = 0; i < searchedValuesView.extent(0); ++i) {
      const ValueType searchedVal = dataView_dc_h(i, dataBegin);
      searchedValuesView_h(i)     = searchedVal;

      for (std::size_t j = dataBegin + 1; j < seqSize; ++j) {
        dataView_dc_h(i, j) = searchedVal;
      }
    }

    // copy to dataView_dc and then to dataView
    Kokkos::deep_copy(dataView_dc, dataView_dc_h);

    CopyFunctorRank2 cpFun(dataView_dc, dataView);
    Kokkos::parallel_for("copy", dataView.extent(0) * dataView.extent(1),
                         cpFun);
  } else {
    using rand_pool =
        Kokkos::Random_XorShift64_Pool<Kokkos::DefaultHostExecutionSpace>;
    rand_pool pool(lowerBound * upperBound);
    Kokkos::fill_random(searchedValuesView_h, pool, upperBound, upperBound * 2);
  }

  Kokkos::deep_copy(searchedValuesView, searchedValuesView_h);

  // -----------------------------------------------
  // launch kokkos kernel
  // -----------------------------------------------
  using space_t = Kokkos::DefaultExecutionSpace;
  Kokkos::TeamPolicy<space_t> policy(numTeams, Kokkos::AUTO());

  // search_n returns an iterator so to verify that it is correct each team
  // stores the distance of the returned iterator from the beginning of the
  // interval that team operates on and then we check that these distances match
  // the std result
  Kokkos::View<std::size_t*> distancesView("distancesView", numTeams);
  // sentinel to check if all members of the team compute the same result
  Kokkos::View<bool*> intraTeamSentinelView("intraTeamSameResult", numTeams);

  EqualFunctor<ValueType> binaryPred;

  // use CTAD for functor
  TestFunctorA fnc(dataView, seqSize, searchedValuesView, distancesView,
                   intraTeamSentinelView, binaryPred, apiId);
  Kokkos::parallel_for(policy, fnc);

  // -----------------------------------------------
  // run cpp-std kernel and check
  // -----------------------------------------------
  auto distancesView_h         = create_host_space_copy(distancesView);
  auto intraTeamSentinelView_h = create_host_space_copy(intraTeamSentinelView);

  for (std::size_t i = 0; i < dataView.extent(0); ++i) {
    auto rowFrom = Kokkos::subview(dataView_dc_h, i, Kokkos::ALL());

    const auto rowFromBegin = KE::cbegin(rowFrom);
    const auto rowFromEnd   = KE::cend(rowFrom);

    const ValueType searchedVal = searchedValuesView_h(i);

    const std::size_t beginEndDist = KE::distance(rowFromBegin, rowFromEnd);

    switch (apiId) {
      case 0:
      case 1: {
        const auto it =
            std::search_n(rowFromBegin, rowFromEnd, seqSize, searchedVal);
        const std::size_t stdDistance = KE::distance(rowFromBegin, it);

        if (sequencesExist) {
          EXPECT_LT(distancesView_h(i), beginEndDist);
        } else {
          ASSERT_EQ(distancesView_h(i), beginEndDist);
        }

        ASSERT_EQ(stdDistance, distancesView_h(i));
        ASSERT_TRUE(intraTeamSentinelView_h(i));
        break;
      }

      case 2:
      case 3: {
        const auto it = std::search_n(rowFromBegin, rowFromEnd, seqSize,
                                      searchedVal, binaryPred);
        const std::size_t stdDistance = KE::distance(rowFromBegin, it);

        if (sequencesExist) {
          EXPECT_LT(distancesView_h(i), beginEndDist);
        } else {
          ASSERT_EQ(distancesView_h(i), beginEndDist);
        }

        ASSERT_EQ(stdDistance, distancesView_h(i));
        ASSERT_TRUE(intraTeamSentinelView_h(i));

        break;
      }
      default: Kokkos::abort("unreachable");
    }
  }
}

template <class LayoutTag, class ValueType>
void run_all_scenarios(const bool sequencesExist) {
  for (int numTeams : teamSizesToTest) {
    for (const auto& numCols : {2, 13, 101, 1444, 8153}) {
      for (int apiId : {0, 1}) {
        test_A<LayoutTag, ValueType>(sequencesExist, numTeams, numCols, apiId);
      }
    }
  }
}

TEST(std_algorithms_search_n_team_test, sequences_of_equal_elements_exist) {
  constexpr bool sequencesExist = true;

  run_all_scenarios<DynamicTag, double>(sequencesExist);
  run_all_scenarios<StridedTwoRowsTag, int>(sequencesExist);
  run_all_scenarios<StridedThreeRowsTag, unsigned>(sequencesExist);
}

TEST(std_algorithms_search_n_team_test,
     sequences_of_equal_elements_probably_does_not_exist) {
  constexpr bool sequencesExist = false;

  run_all_scenarios<DynamicTag, double>(sequencesExist);
  run_all_scenarios<StridedTwoRowsTag, int>(sequencesExist);
  run_all_scenarios<StridedThreeRowsTag, unsigned>(sequencesExist);
}

}  // namespace TeamSearchN
}  // namespace stdalgos
}  // namespace Test