1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#include <gtest/gtest.h>
#include <Kokkos_Core.hpp>
#if defined(_WIN32)
#include <windows.h>
unsigned getBytesPerPage() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwPageSize;
}
#else // unix/posix system
#include <unistd.h>
unsigned getBytesPerPage() { return sysconf(_SC_PAGESIZE); }
#endif
#include <algorithm>
#include <numeric>
#include <iostream>
namespace {
void printTimings(std::ostream& out, std::vector<uint64_t> const& tr,
uint64_t threshold = (std::numeric_limits<uint64_t>::max)()) {
out << "TimingResult contains " << tr.size() << " results:\n";
for (auto it = tr.begin(); it != tr.end(); ++it) {
out << "Duration of loop " << it - tr.begin() << " is " << *it
<< " clock cycles. ";
if ((*it) > threshold) out << "Migration assumed.";
out << "\n";
}
}
template <typename T>
T computeMean(std::vector<T> const& results) {
return std::accumulate(results.begin(), results.end(), T{}) / results.size();
}
template <typename ViewType>
class IncrementFunctor {
private:
using index_type = decltype(std::declval<ViewType>().size());
ViewType view_;
public:
IncrementFunctor() = delete;
explicit IncrementFunctor(ViewType view) : view_(view) {}
KOKKOS_INLINE_FUNCTION
void operator()(const index_type idx, uint64_t& clockTics) const {
uint64_t start = Kokkos::Impl::clock_tic();
++view_(idx);
clockTics += Kokkos::Impl::clock_tic() - start;
}
};
// TIMING CAPTURED KERNEL
// PREMISE: This kernel should always be memory bound, as we are measuring
// memory access times. The compute load of an increment is small enough on
// current hardware but this could be different for new hardware. As we count
// the clocks in the kernel, the core frequency of the device has to be fast
// enough to guarante that the kernel stays memory bound.
template <typename ExecSpace, typename ViewType>
std::vector<uint64_t> incrementInLoop(ViewType& view,
unsigned int numRepetitions) {
using index_type = decltype(view.size());
std::vector<uint64_t> results;
Kokkos::fence();
for (unsigned i = 0; i < numRepetitions; ++i) {
uint64_t sum_clockTics;
IncrementFunctor<ViewType> func(view);
Kokkos::parallel_reduce(
"increment",
Kokkos::RangePolicy<ExecSpace, Kokkos::IndexType<index_type>>{
0, view.size()},
func, sum_clockTics);
Kokkos::fence();
results.push_back(sum_clockTics / view.size());
}
return results;
}
TEST(defaultdevicetype, shared_space) {
ASSERT_TRUE(Kokkos::has_shared_space);
if constexpr (std::is_same_v<Kokkos::DefaultExecutionSpace,
Kokkos::DefaultHostExecutionSpace>)
GTEST_SKIP() << "Skipping as host and device are the same space";
#if defined(KOKKOS_ARCH_AMD_GPU) && defined(KOKKOS_ENABLE_HIP)
if (!Kokkos::SharedSpace().impl_hip_driver_check_page_migration())
GTEST_SKIP()
<< "skipping because specified arch does not support page migration";
#endif
#if defined(KOKKOS_ENABLE_SYCL) && \
(!defined(KOKKOS_ARCH_INTEL_GPU) || \
!defined(KOKKOS_ENABLE_SYCL_RELOCATABLE_DEVICE_CODE))
GTEST_SKIP() << "skipping because clock_tic is only defined for sycl+intel "
"gpu and with rdc support";
#endif
#if defined(KOKKOS_ENABLE_DEBUG)
GTEST_SKIP()
<< "skipping due to spurious failures when compiling in Debug mode";
#endif
const unsigned int numRepetitions = 10;
const unsigned int numDeviceHostCycles = 3;
const double threshold = 1.5;
const size_t numPages = 100;
const size_t numBytes = numPages * getBytesPerPage();
using DeviceExecutionSpace = Kokkos::DefaultExecutionSpace;
using HostExecutionSpace = Kokkos::DefaultHostExecutionSpace;
std::vector<uint64_t> deviceLocalTimings{};
std::vector<uint64_t> hostLocalTimings{};
std::vector<decltype(deviceLocalTimings)> deviceSharedTimings{};
std::vector<decltype(hostLocalTimings)> hostSharedTimings{};
int64_t deviceLocalMean;
int64_t hostLocalMean;
int testRepetition = 0;
bool passed = false;
bool fastAsLocalOnRepeatedAccess = false;
while (!passed && testRepetition < 3) {
// ALLOCATION
Kokkos::View<int*, Kokkos::SharedSpace> sharedData("sharedData",
numBytes / sizeof(int));
Kokkos::View<int*, DeviceExecutionSpace::memory_space> deviceData(
"deviceData", numBytes / sizeof(int));
Kokkos::View<int*, HostExecutionSpace::memory_space> hostData(
"hostData", numBytes / sizeof(int));
Kokkos::fence();
// GET DEFAULT EXECSPACE LOCAL TIMINGS
deviceLocalTimings =
incrementInLoop<DeviceExecutionSpace>(deviceData, numRepetitions);
// GET DEFAULT HOSTEXECSPACE LOCAL TIMINGS
hostLocalTimings =
incrementInLoop<HostExecutionSpace>(hostData, numRepetitions);
// GET PAGE MIGRATING TIMINGS DATA
deviceSharedTimings.clear();
hostSharedTimings.clear();
for (unsigned i = 0; i < numDeviceHostCycles; ++i) {
// GET RESULTS DEVICE
deviceSharedTimings.push_back(
incrementInLoop<DeviceExecutionSpace>(sharedData, numRepetitions));
// GET RESULTS HOST
hostSharedTimings.push_back(
incrementInLoop<HostExecutionSpace>(sharedData, numRepetitions));
}
// COMPUTE STATISTICS OF HOST AND DEVICE LOCAL KERNELS
deviceLocalMean = computeMean(deviceLocalTimings);
hostLocalMean = computeMean(hostLocalTimings);
// ASSESS RESULTS
fastAsLocalOnRepeatedAccess = true;
for (unsigned cycle = 0; cycle < numDeviceHostCycles; ++cycle) {
std::for_each(std::next(deviceSharedTimings[cycle].begin()),
deviceSharedTimings[cycle].end(),
[&](const uint64_t timing) {
(timing < threshold * deviceLocalMean)
? fastAsLocalOnRepeatedAccess &= true
: fastAsLocalOnRepeatedAccess &= false;
});
std::for_each(std::next(hostSharedTimings[cycle].begin()),
hostSharedTimings[cycle].end(), [&](const uint64_t timing) {
(timing < threshold * hostLocalMean)
? fastAsLocalOnRepeatedAccess &= true
: fastAsLocalOnRepeatedAccess &= false;
});
}
// CHECK IF PASSED
passed = (fastAsLocalOnRepeatedAccess);
++testRepetition;
}
// PRINT IF NOT PASSED
if (!passed) {
std::cout << "Page size as reported by os: " << getBytesPerPage()
<< " bytes \n";
std::cout << "Allocating " << numPages
<< " pages of memory in SharedSpace.\n";
std::cout << "Behavior found: \n";
std::cout << "SharedSpace is as fast as local space on repeated access: "
<< fastAsLocalOnRepeatedAccess << ", we expect true \n\n";
std::cout
<< "Please look at the following timings. The first access in a "
"different ExecutionSpace is not evaluated for the test. As we "
"expect the memory to migrate during the first access it might have "
"a higher cycle count than subsequent accesses, depending on your "
"hardware. If the cycles are more than "
<< threshold
<< " times the cycles for pure local memory access, we assume a page "
"migration happened.\n\n";
std::cout << "################SHARED SPACE####################\n";
for (unsigned cycle = 0; cycle < numDeviceHostCycles; ++cycle) {
std::cout << "DeviceExecutionSpace timings of run " << cycle << ":\n";
printTimings(std::cout, deviceSharedTimings[cycle],
threshold * deviceLocalMean);
std::cout << "HostExecutionSpace timings of run " << cycle << ":\n";
printTimings(std::cout, hostSharedTimings[cycle],
threshold * hostLocalMean);
}
std::cout << "################LOCAL SPACE####################\n";
printTimings(std::cout, deviceLocalTimings);
printTimings(std::cout, hostLocalTimings);
}
ASSERT_TRUE(passed);
}
} // namespace
|