1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright Contributors to the Kokkos project
#ifndef KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP
#define KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP
#include <Kokkos_Timer.hpp>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
namespace Perf {
template <typename Device, bool Near>
struct UnorderedMapTest {
using execution_space = Device;
using map_type = Kokkos::UnorderedMap<uint32_t, uint32_t, execution_space>;
using histogram_type = typename map_type::histogram_type;
struct value_type {
uint32_t failed_count;
uint32_t max_list;
};
uint32_t capacity;
uint32_t inserts;
uint32_t collisions;
double seconds;
map_type map;
histogram_type histogram;
UnorderedMapTest(uint32_t arg_capacity, uint32_t arg_inserts,
uint32_t arg_collisions)
: capacity(arg_capacity),
inserts(arg_inserts),
collisions(arg_collisions),
seconds(0),
map(capacity),
histogram(map.get_histogram()) {
Kokkos::Timer wall_clock;
wall_clock.reset();
value_type v = {};
int loop_count = 0;
do {
++loop_count;
v = value_type();
Kokkos::parallel_reduce(inserts, *this, v);
if (v.failed_count > 0u) {
const uint32_t new_capacity = map.capacity() +
((map.capacity() * 3ull) / 20u) +
v.failed_count / collisions;
map.rehash(new_capacity);
}
} while (v.failed_count > 0u);
seconds = wall_clock.seconds();
switch (loop_count) {
case 1u: std::cout << " \033[0;32m" << loop_count << "\033[0m "; break;
case 2u: std::cout << " \033[1;31m" << loop_count << "\033[0m "; break;
default: std::cout << " \033[0;31m" << loop_count << "\033[0m "; break;
}
std::cout << std::setprecision(2) << std::fixed << std::setw(5)
<< (1e9 * (seconds / (inserts))) << "; " << std::flush;
histogram.calculate();
Device().fence();
}
void print(std::ostream& metrics_out, std::ostream& length_out,
std::ostream& distance_out, std::ostream& block_distance_out) {
metrics_out << map.capacity() << " , ";
metrics_out << inserts / collisions << " , ";
metrics_out << (100.0 * inserts / collisions) / map.capacity() << " , ";
metrics_out << inserts << " , ";
metrics_out << (map.failed_insert() ? "true" : "false") << " , ";
metrics_out << collisions << " , ";
metrics_out << 1e9 * (seconds / inserts) << " , ";
metrics_out << seconds << std::endl;
length_out << map.capacity() << " , ";
length_out << ((100.0 * inserts / collisions) / map.capacity()) << " , ";
length_out << collisions << " , ";
histogram.print_length(length_out);
distance_out << map.capacity() << " , ";
distance_out << ((100.0 * inserts / collisions) / map.capacity()) << " , ";
distance_out << collisions << " , ";
histogram.print_distance(distance_out);
block_distance_out << map.capacity() << " , ";
block_distance_out << ((100.0 * inserts / collisions) / map.capacity())
<< " , ";
block_distance_out << collisions << " , ";
histogram.print_block_distance(block_distance_out);
}
KOKKOS_INLINE_FUNCTION
void init(value_type& v) const {
v.failed_count = 0;
v.max_list = 0;
}
KOKKOS_INLINE_FUNCTION
void join(value_type& dst, const value_type& src) const {
dst.failed_count += src.failed_count;
dst.max_list = src.max_list < dst.max_list ? dst.max_list : src.max_list;
}
KOKKOS_INLINE_FUNCTION
void operator()(uint32_t i, value_type& v) const {
const uint32_t key = Near ? i / collisions : i % (inserts / collisions);
typename map_type::insert_result result = map.insert(key, i);
v.failed_count += !result.failed() ? 0 : 1;
v.max_list = result.list_position() < v.max_list ? v.max_list
: result.list_position();
}
};
template <typename Device, bool Near>
void run_performance_tests(std::string const& base_file_name) {
#if 0
std::string metrics_file_name = base_file_name + std::string("-metrics.csv");
std::string length_file_name = base_file_name + std::string("-length.csv");
std::string distance_file_name = base_file_name + std::string("-distance.csv");
std::string block_distance_file_name = base_file_name + std::string("-block_distance.csv");
std::ofstream metrics_out( metrics_file_name.c_str(), std::ofstream::out );
std::ofstream length_out( length_file_name.c_str(), std::ofstream::out );
std::ofstream distance_out( distance_file_name.c_str(), std::ofstream::out );
std::ofstream block_distance_out( block_distance_file_name.c_str(), std::ofstream::out );
/*
const double test_ratios[] = {
0.50
, 0.75
, 0.80
, 0.85
, 0.90
, 0.95
, 1.00
, 1.25
, 2.00
};
*/
const double test_ratios[] = { 1.00 };
const int num_ratios = sizeof(test_ratios) / sizeof(double);
/*
const uint32_t collisions[] {
1
, 4
, 16
, 64
};
*/
const uint32_t collisions[] = { 16 };
const int num_collisions = sizeof(collisions) / sizeof(uint32_t);
// set up file headers
metrics_out << "Capacity , Unique , Percent Full , Attempted Inserts , Failed Inserts , Collision Ratio , Nanoseconds/Inserts, Seconds" << std::endl;
length_out << "Capacity , Percent Full , ";
distance_out << "Capacity , Percent Full , ";
block_distance_out << "Capacity , Percent Full , ";
for (int i=0; i<100; ++i) {
length_out << i << " , ";
distance_out << i << " , ";
block_distance_out << i << " , ";
}
length_out << "\b\b\b " << std::endl;
distance_out << "\b\b\b " << std::endl;
block_distance_out << "\b\b\b " << std::endl;
Kokkos::Timer wall_clock ;
for (int i=0; i < num_collisions ; ++i) {
wall_clock.reset();
std::cout << "Collisions: " << collisions[i] << std::endl;
for (int j = 0; j < num_ratios; ++j) {
std::cout << std::setprecision(1) << std::fixed << std::setw(5) << (100.0*test_ratios[j]) << "% " << std::flush;
for (uint32_t capacity = 1<<14; capacity < 1<<25; capacity = capacity << 1) {
uint32_t inserts = static_cast<uint32_t>(test_ratios[j]*(capacity));
std::cout << capacity << std::flush;
UnorderedMapTest<Device, Near> test(capacity, inserts*collisions[i], collisions[i]);
Device().fence();
test.print(metrics_out, length_out, distance_out, block_distance_out);
}
std::cout << "\b\b " << std::endl;
}
std::cout << " " << wall_clock.seconds() << " secs" << std::endl;
}
metrics_out.close();
length_out.close();
distance_out.close();
block_distance_out.close();
#else
(void)base_file_name;
std::cout << "skipping test" << std::endl;
#endif
}
} // namespace Perf
#endif // KOKKOS_TEST_UNORDERED_MAP_PERFORMANCE_HPP
|