File: simple_reduce_lambda.cpp

package info (click to toggle)
kokkos 5.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 15,140 kB
  • sloc: cpp: 225,293; sh: 1,250; python: 78; makefile: 16; fortran: 4; ansic: 2
file content (49 lines) | stat: -rw-r--r-- 1,481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// SPDX-FileCopyrightText: Copyright Contributors to the Kokkos project

#include <Kokkos_Core.hpp>
#include <cstdio>

//
// First reduction (parallel_reduce) example:
//   1. Start up Kokkos
//   2. Execute a parallel_reduce loop in the default execution space,
//      using a C++11 lambda to define the loop body
//   3. Shut down Kokkos
//
// Compare this example to 02_simple_reduce, which uses a functor to
// define the loop body of the parallel_reduce.
//

int main(int argc, char* argv[]) {
  Kokkos::initialize(argc, argv);
  const int n = 10;

  // Compute the sum of squares of integers from 0 to n-1, in
  // parallel, using Kokkos.  This time, use a lambda instead of a
  // functor.  The lambda takes the same arguments as the functor's
  // operator().
  int sum = 0;
  // The KOKKOS_LAMBDA macro replaces the capture-by-value clause [=].
  // It also handles any other syntax needed for CUDA.
  Kokkos::parallel_reduce(
      n, KOKKOS_LAMBDA(const int i, int& lsum) { lsum += i * i; }, sum);

  printf(
      "Sum of squares of integers from 0 to %i, "
      "computed in parallel, is %i\n",
      n - 1, sum);

  // Compare to a sequential loop.
  int seqSum = 0;
  for (int i = 0; i < n; ++i) {
    seqSum += i * i;
  }
  printf(
      "Sum of squares of integers from 0 to %i, "
      "computed sequentially, is %i\n",
      n - 1, seqSum);
  Kokkos::finalize();

  return (sum == seqSum) ? 0 : -1;
}