1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/*
* Copyright (C) 2013, 2014, 2015 by the Konclude Developer Team.
*
* This file is part of the reasoning system Konclude.
* For details and support, see <http://konclude.com/>.
*
* Konclude is free software: you can redistribute it and/or modify it under
* the terms of version 2.1 of the GNU Lesser General Public License (LGPL2.1)
* as published by the Free Software Foundation.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Konclude. If not, see <http://www.gnu.org/licenses/>.
*
* Konclude is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more
* details, see GNU Lesser General Public License.
*
*/
#include "CDatatypeDoubleValueSpaceMap.h"
namespace Konclude {
namespace Reasoner {
namespace Kernel {
namespace Process {
CDatatypeDoubleValueSpaceMap::CDatatypeDoubleValueSpaceMap(CProcessContext* processContext) : CDatatypeCompareValueSpaceMap(processContext) {
}
bool CDatatypeDoubleValueSpaceMap::representsInfinitelyManyValues(CDataLiteralCompareValue* leftValueExcluded, CDataLiteralCompareValue* rightValueExcluded) {
return false;
}
bool CDatatypeDoubleValueSpaceMap::representsInfinitelyManyValues(CDataLiteralCompareValue* value) {
return false;
}
bool CDatatypeDoubleValueSpaceMap::getValueCopy(CDataLiteralCompareValue* valueCopyInto, CDataLiteralCompareValue* valueCopyFrom) {
CDataLiteralDoubleValue* doubleValueCopyInto = dynamic_cast<CDataLiteralDoubleValue*>(valueCopyInto);
CDataLiteralDoubleValue* doubleValueCopyFrom = dynamic_cast<CDataLiteralDoubleValue*>(valueCopyFrom);
doubleValueCopyInto->initValue(doubleValueCopyFrom);
return true;
}
bool CDatatypeDoubleValueSpaceMap::isNaN(cint64 bits) {
return ((bits & Q_UINT64_C(0x7ff0000000000000)) == Q_UINT64_C(0x7ff0000000000000)) && ((bits & Q_UINT64_C(0x000fffffffffffff)) != 0);
}
bool CDatatypeDoubleValueSpaceMap::getValueNext(CDataLiteralCompareValue* valueNext, CDataLiteralCompareValue* valueLast) {
CDataLiteralDoubleValue* doubleValueNext = dynamic_cast<CDataLiteralDoubleValue*>(valueNext);
CDataLiteralDoubleValue* doubleValueLast = dynamic_cast<CDataLiteralDoubleValue*>(valueLast);
double nextDoubleValue = 0.;
double lastDoubleValue = doubleValueLast->getDouble();
cint64 bits = *reinterpret_cast<cint64*>(&lastDoubleValue);
cint64 magnitude = (bits & Q_UINT64_C(0x7fffffffffffffff));
bool positive = ((bits & Q_UINT64_C(0x8000000000000000))==0);
// The successors of NaN and +INF are these numbers themselves.
if (isNaN(bits) || (magnitude == Q_UINT64_C(0x7ff0000000000000) && positive)) {
doubleValueNext->initValueFromDouble(lastDoubleValue);
} else {
bool newPositive;
cint64 newMagnitude;
if (positive) {
newPositive = true;
newMagnitude = magnitude+1;
} else if (!positive && magnitude == 0) {
// The successor of -0 is +0
newPositive = true;
newMagnitude = 1; // skip +0 for now
} else { // if (!positive && magnitude != 0)
newPositive = false;
newMagnitude = magnitude-1;
}
cint64 newBits = newMagnitude | (newPositive ? 0 : Q_UINT64_C(0x8000000000000000));
nextDoubleValue = *reinterpret_cast<double*>(&newBits);
doubleValueNext->initValueFromDouble(nextDoubleValue);
return true;
}
return false;
}
cuint64 CDatatypeDoubleValueSpaceMap::getIntervalValueCount(CDataLiteralCompareValue* leftValueExcluded, CDataLiteralCompareValue* rightValueExcluded) {
CDataLiteralDoubleValue* doubleValueLeft = dynamic_cast<CDataLiteralDoubleValue*>(leftValueExcluded);
CDataLiteralDoubleValue* doubleValueRight = dynamic_cast<CDataLiteralDoubleValue*>(rightValueExcluded);
double leftDoubleValue = doubleValueLeft->getDouble();
double rightDoubleValue = doubleValueRight->getDouble();
cint64 bitsLowerBoundExclusive = *reinterpret_cast<cint64*>(&leftDoubleValue);
cint64 bitsUpperBoundExclusive = *reinterpret_cast<cint64*>(&rightDoubleValue);
if (isNaN(bitsLowerBoundExclusive) || isNaN(bitsUpperBoundExclusive))
return 0;
cuint64 valueCount = 0;
bool positiveLowerBoundExclusive = ((bitsLowerBoundExclusive & Q_UINT64_C(0x8000000000000000))==0);
bool positiveUpperBoundExclusive = ((bitsUpperBoundExclusive & Q_UINT64_C(0x8000000000000000))==0);
cint64 magnitudeLowerBoundExclusive = (bitsLowerBoundExclusive & Q_UINT64_C(0x7fffffffffffffff));
cint64 magnitudeUpperBoundExclusive = (bitsUpperBoundExclusive & Q_UINT64_C(0x7fffffffffffffff));
// Determine the number of elements. This works even if 'lowerBoundExclusive' or 'upperBoundExclusive' is +INF or -INF
if (positiveLowerBoundExclusive && positiveUpperBoundExclusive) {
// it must be that magnitudeLowerBoundExclusive < magnitudeUpperBoundExclusive
valueCount = magnitudeUpperBoundExclusive-magnitudeLowerBoundExclusive-1;
} else if (!positiveLowerBoundExclusive && !positiveUpperBoundExclusive) {
// it must be that magnitudeUpperBoundExclusive < magnitudeLowerBoundExclusive
valueCount = magnitudeLowerBoundExclusive-magnitudeUpperBoundExclusive-1;
} else if (!positiveLowerBoundExclusive && positiveUpperBoundExclusive) {
// the number of values from 'lowerBoundExclusive' to -0
cuint64 startToMinusZero = magnitudeLowerBoundExclusive;
// the number of values from +0 to 'upperBoundExclusive'
cint64 plusZeroToEnd = magnitudeUpperBoundExclusive;
valueCount = startToMinusZero+plusZeroToEnd -1; // extra -1 to count +0/-0 only once for now
}
return valueCount;
}
}; // end namespace Process
}; // end namespace Kernel
}; // end namespace Reasoner
}; // end namespace Konclude
|