1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/*
* Copyright (C) 2013, 2014, 2015 by the Konclude Developer Team.
*
* This file is part of the reasoning system Konclude.
* For details and support, see <http://konclude.com/>.
*
* Konclude is free software: you can redistribute it and/or modify it under
* the terms of version 2.1 of the GNU Lesser General Public License (LGPL2.1)
* as published by the Free Software Foundation.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Konclude. If not, see <http://www.gnu.org/licenses/>.
*
* Konclude is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more
* details, see GNU Lesser General Public License.
*
*/
#include "CConcreteConceptProcessingOperatorPriorityStrategy.h"
namespace Konclude {
namespace Reasoner {
namespace Kernel {
namespace Strategy {
CConcreteConceptProcessingOperatorPriorityStrategy::CConcreteConceptProcessingOperatorPriorityStrategy() {
priCount = 200;
priorities = new double[priCount];
symAccessPri = priorities+priCount/2;
for (int i = 0; i < priCount; ++i) {
priorities[i] = 0;
}
// The following priorities are similar to the FaCT++ standard IAOEFLG options and have the same meaning.
// FaCT++ register "IAOEFLG" option:
// Option 'IAOEFLG' define the priorities of different operations in TODO list. Possible values are
// 7-digit strings with only possible digit are 0-6. The digits on the places 1, 2, ..., 7 are for
// priority of Id, And, Or, Exists, Forall, LE and GE operations respectively. The smaller number means
// the higher priority. All other constructions (TOP, BOTTOM, etc) has priority 0.
// The operations are ordered in a priority queue and are applied also from lower to highest priority.
//symAccessPri[CCATOM] = 2;
//symAccessPri[CCAND] = 3;
//symAccessPri[CCOR] = 7;
//symAccessPri[CCSOME] = 4;
//symAccessPri[CCALL] = 1;
//symAccessPri[CCATLEAST] = 1;
//symAccessPri[CCATMOST] = 6;
cint64 nextPriority = 14;
symAccessPri[CCTOP] = nextPriority;
symAccessPri[-CCBOTTOM] = nextPriority;
symAccessPri[CCATOM] = nextPriority;
symAccessPri[-CCATOM] = nextPriority;
nextPriority = 13;
symAccessPri[CCAND] = nextPriority;
symAccessPri[-CCOR] = nextPriority;
symAccessPri[CCSUB] = nextPriority;
symAccessPri[CCEQ] = nextPriority;
symAccessPri[CCIMPLTRIG] = nextPriority;
symAccessPri[CCBRANCHTRIG] = nextPriority;
symAccessPri[CCPBINDTRIG] = nextPriority;
symAccessPri[CCPBINDAND] = nextPriority;
symAccessPri[CCVARBINDTRIG] = nextPriority;
symAccessPri[CCVARBINDAND] = nextPriority;
symAccessPri[CCVARPBACKTRIG] = nextPriority;
symAccessPri[CCBACKACTIVTRIG] = nextPriority;
symAccessPri[CCOR] = nextPriority;
symAccessPri[-CCAND] = nextPriority;
symAccessPri[-CCEQ] = nextPriority;
symAccessPri[CCDATATYPE] = nextPriority;
symAccessPri[-CCDATATYPE] = nextPriority;
symAccessPri[CCDATALITERAL] = nextPriority;
symAccessPri[-CCDATALITERAL] = nextPriority;
symAccessPri[CCDATARESTRICTION] = nextPriority;
symAccessPri[-CCDATARESTRICTION]= nextPriority;
mDisjDelConsidPriOffset = -11.0;
mDisjDelProcessPriOffset = -11.5;
nextPriority = 12;
symAccessPri[CCALL] = nextPriority;
symAccessPri[-CCSOME] = nextPriority;
symAccessPri[CCAQALL] = nextPriority;
symAccessPri[CCIMPLALL] = nextPriority;
symAccessPri[CCBRANCHALL] = nextPriority;
symAccessPri[CCIMPLAQALL] = nextPriority;
symAccessPri[CCBRANCHAQALL] = nextPriority;
symAccessPri[CCPBINDALL] = nextPriority;
symAccessPri[CCVARBINDALL] = nextPriority;
symAccessPri[CCVARBINDAQALL] = nextPriority;
symAccessPri[CCVARPBACKAQALL] = nextPriority;
symAccessPri[CCVARPBACKALL] = nextPriority;
nextPriority = 11;
symAccessPri[CCAQAND] = nextPriority;
symAccessPri[CCIMPLAQAND] = nextPriority;
symAccessPri[CCBRANCHAQAND] = nextPriority;
symAccessPri[CCPBINDAQAND] = nextPriority;
symAccessPri[CCVARBINDAQAND] = nextPriority;
symAccessPri[CCVARPBACKAQAND] = nextPriority;
nextPriority = 10;
symAccessPri[CCAQCHOOCE] = nextPriority;
symAccessPri[-CCAQCHOOCE] = nextPriority;
nextPriority = 9;
symAccessPri[CCIMPL] = nextPriority;
symAccessPri[CCBRANCHIMPL] = nextPriority;
symAccessPri[CCPBINDIMPL] = nextPriority;
symAccessPri[CCPBINDVARIABLE] = nextPriority;
symAccessPri[CCPBINDCYCLE] = nextPriority;
symAccessPri[CCVARBINDJOIN] = nextPriority;
symAccessPri[CCVARBINDVARIABLE] = nextPriority;
symAccessPri[CCBACKACTIVIMPL] = nextPriority;
symAccessPri[CCVARBINDIMPL] = nextPriority;
nextPriority = 8;
symAccessPri[CCSELF] = nextPriority;
symAccessPri[-CCSELF] = nextPriority;
symAccessPri[CCVALUE] = nextPriority;
symAccessPri[-CCVALUE] = nextPriority;
// intermediately processing limit
nextPriority = 7;
symAccessPri[CCNOMINAL] = nextPriority;
symAccessPri[-CCNOMINAL] = nextPriority;
nextPriority = 6;
symAccessPri[CCPBINDGROUND] = nextPriority;
symAccessPri[CCVARBINDGROUND] = nextPriority;
symAccessPri[-CCPBINDGROUND] = nextPriority;
symAccessPri[-CCVARBINDGROUND] = nextPriority;
nextPriority = 5;
symAccessPri[CCATLEAST] = nextPriority;
symAccessPri[-CCATMOST] = nextPriority;
nextPriority = 4;
symAccessPri[CCSOME] = nextPriority;
symAccessPri[-CCALL] = nextPriority;
symAccessPri[CCAQSOME] = nextPriority;
// deterministic processing limit
nextPriority = 3;
symAccessPri[CCATMOST] = nextPriority;
symAccessPri[-CCATLEAST] = nextPriority;
nextPriority = 2;
// disjunctions + processing offsets
}
CConcreteConceptProcessingOperatorPriorityStrategy::~CConcreteConceptProcessingOperatorPriorityStrategy() {
delete [] priorities;
}
double CConcreteConceptProcessingOperatorPriorityStrategy::getPriorityOffsetForDisjunctionDelayedConsidering(CConceptDescriptor *conceptDescriptor, CIndividualProcessNode *individual) {
return mDisjDelConsidPriOffset;
}
double CConcreteConceptProcessingOperatorPriorityStrategy::getPriorityOffsetForDisjunctionDelayedProcessing(CConceptDescriptor *conceptDescriptor, CIndividualProcessNode *individual) {
return mDisjDelProcessPriOffset;
}
CConceptProcessPriority CConcreteConceptProcessingOperatorPriorityStrategy::getPriorityForConcept(CConceptDescriptor *conceptDescriptor, CIndividualProcessNode *individual) {
qint64 cCode = conceptDescriptor->getData()->getOperatorCode();
bool negated = false;
if (conceptDescriptor->isNegated()) {
cCode *= -1;
negated = true;
}
double priority = 0;
priority = symAccessPri[cCode];
CSortedNegLinker<CConcept *> *opConLinkerIt = conceptDescriptor->getData()->getOperandList();
if (cCode == CCATMOST) {
qint64 param = conceptDescriptor->getData()->getParameter();
param = param - 1*negated;
if (param <= 1 && !opConLinkerIt) {
priority = 5.5;
} else {
double priorityOffset = (exp(-param / 1000.)) * 0.5;
priority += priorityOffset;
}
} else if (cCode == CCATLEAST) {
qint64 param = conceptDescriptor->getData()->getParameter();
param = param + 1*negated;
if (param <= 2 && !opConLinkerIt) {
priority = 5.0;
} else {
double priorityOffset = (1. - exp(-param / 1000.)) * 0.5;
priority += priorityOffset;
}
}
return CConceptProcessPriority(priority);
}
}; // end namespace Strategy
}; // end namespace Kernel
}; // end namespace Reasoner
}; // end namespace Konclude
|