1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
|
/*
* Copyright (C) 1998-2002 Tom Holroyd <tomh@kurage.nimh.nih.gov>
* Copyright (C) 2006-2009 Stephan Kulow <coolo@kde.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "patsolve.h"
#include "../patpile.h"
#include "KCardDeck"
#include <KDebug>
#include <cctype>
#include <cmath>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <sys/types.h>
#ifdef ERR
#undef ERR
#endif
long all_moves = 0;
/* This is a 32 bit FNV hash. For more information, see
http://www.isthe.com/chongo/tech/comp/fnv/index.html */
#define FNV1_32_INIT 0x811C9DC5
#define FNV_32_PRIME 0x01000193
#define fnv_hash(x, hash) (((hash) * FNV_32_PRIME) ^ (x))
/* Hash a buffer. */
static inline quint32 fnv_hash_buf(quint8 *s, int len)
{
int i;
quint32 h;
h = FNV1_32_INIT;
for (i = 0; i < len; i++) {
h = fnv_hash(*s++, h);
}
return h;
}
/* Hash a 0 terminated string. */
static inline quint32 fnv_hash_str(quint8 *s)
{
quint32 h;
h = FNV1_32_INIT;
while (*s) {
h = fnv_hash(*s++, h);
}
return h;
}
/* Hash a pile. */
void Solver::hashpile(int w)
{
W[w][Wlen[w]] = 0;
Whash[w] = fnv_hash_str(W[w]);
/* Invalidate this pile's id. We'll calculate it later. */
Wpilenum[w] = -1;
}
#define MAXDEPTH 400
bool Solver::recursive(POSITION *parent)
{
int i, alln, a, numout = 0;
if ( parent == NULL ) {
init();
recu_pos.clear();
delete Stack;
Stack = new POSITION[MAXDEPTH];
memset( Stack, 0, sizeof( POSITION ) * MAXDEPTH );
}
/* Fill in the Possible array. */
alln = get_possible_moves(&a, &numout);
assert(alln < MAXMOVES);
if (alln == 0) {
if ( isWon() ) {
Status = SolutionExists;
Q_ASSERT(parent); // it just is never called with a won game
win(parent);
return true;
}
return false;
}
/* Prioritize these moves. Automoves don't get queued, so they
don't need a priority. */
if (!a) {
prioritize(Possible, alln);
}
/* Now copy to safe storage and return. Non-auto moves out get put
at the end. Queueing them isn't a good idea because they are still
good moves, even if they didn't pass the automove test. So we still
do the recursive solve() on them, but only after queueing the other
moves. */
if ( parent && parent->depth >= MAXDEPTH - 2 )
return false;
MOVE *mp0 = new_array(MOVE, alln+1);
if (mp0 == NULL) {
return false;
}
MOVE *mp = mp0;
for (i = 0; i < alln; ++i) {
if (Possible[i].card_index != -1) {
*mp = Possible[i]; /* struct copy */
mp++;
}
}
mp->card_index = -1;
++alln;
bool fit = false;
for (mp = mp0; mp->card_index != -1; ++mp) {
int depth = 0;
if (parent != NULL)
depth = parent->depth + 1;
make_move(mp);
/* Calculate indices for the new piles. */
pilesort();
/* See if this is a new position. */
Total_generated++;
POSITION *pos = &Stack[depth];
pos->queue = NULL;
pos->parent = parent;
pos->node = pack_position();
quint8 *key = (quint8 *)pos->node + sizeof(TREE);
#if 0
qint32 hash = fnv_hash_buf(key, mm->Pilebytes);
if ( recu_pos.contains( hash ) )
{
undo_move( mp );
mm->give_back_block( (quint8 *)pos->node );
continue;
}
recu_pos[hash] = true;
#else
for ( int i = 0; i < depth; ++i )
{
quint8 *tkey = (quint8 *)Stack[i].node + sizeof(TREE);
if ( !memcmp( key, tkey, mm->Pilebytes ) )
{
key = 0;
break;
}
}
if ( !key )
{
undo_move( mp );
mm->give_back_block( (quint8 *)pos->node );
continue;
}
#endif
Total_positions++;
if ( Total_positions % 10000 == 0 )
kDebug() << "positions" << Total_positions;
pos->move = *mp; /* struct copy */
pos->cluster = 0;
pos->depth = depth;
pos->nchild = 0;
bool ret = recursive(pos);
fit |= ret;
undo_move(mp);
mm->give_back_block( (quint8 *)pos->node );
if ( ret )
break;
}
MemoryManager::free_array(mp0, alln);
if ( parent == NULL ) {
printf( "Total %ld\n", Total_generated );
delete [] Stack;
Stack = 0;
}
return fit;
}
/* Generate an array of the moves we can make from this position. */
MOVE *Solver::get_moves(int *nmoves)
{
int i, n, alln, a = 0, numout = 0;
MOVE *mp, *mp0;
/* Fill in the Possible array. */
alln = n = get_possible_moves(&a, &numout);
if (debug)
{
print_layout();
fprintf( stderr, "moves %d\n", n );
for (int j = 0; j < n; j++) {
fprintf( stderr, " " );
if ( Possible[j].totype == O_Type )
fprintf( stderr, "move from %d out (at %d) Prio: %d\n", Possible[j].from,
Possible[j].turn_index, Possible[j].pri );
else
fprintf( stderr, "move %d from %d to %d (%d) Prio: %d\n", Possible[j].card_index,
Possible[j].from, Possible[j].to,
Possible[j].turn_index, Possible[j].pri );
}
}
/* No moves? Maybe we won. */
if (n == 0) {
/* No more moves - won or lost */
//print_layout();
return NULL;
}
/* Prioritize these moves. Automoves don't get queued, so they
don't need a priority. */
if (!a) {
prioritize(Possible, alln);
}
/* Now copy to safe storage and return. Non-auto moves out get put
at the end. Queueing them isn't a good idea because they are still
good moves, even if they didn't pass the automove test. So we still
do the recursive solve() on them, but only after queueing the other
moves. */
mp = mp0 = new_array(MOVE, n);
if (mp == NULL) {
return NULL;
}
*nmoves = n;
i = 0;
if (a || numout == 0) {
for (i = 0; i < alln; ++i) {
if (Possible[i].card_index != -1) {
*mp = Possible[i]; /* struct copy */
mp++;
}
}
} else {
for (i = numout; i < alln; ++i) {
if (Possible[i].card_index != -1) {
*mp = Possible[i]; /* struct copy */
mp++;
}
}
for (i = 0; i < numout; ++i) {
if (Possible[i].card_index != -1) {
*mp = Possible[i]; /* struct copy */
mp++;
}
}
}
return mp0;
}
/* Test the current position to see if it's new (or better). If it is, save
it, along with the pointer to its parent and the move we used to get here. */
int Posbytes;
/* Comparison function for sorting the W piles. */
int Solver::wcmp(int a, int b)
{
if (m_newer_piles_first) {
return Wpilenum[b] - Wpilenum[a]; /* newer piles first */
} else {
return Wpilenum[a] - Wpilenum[b]; /* older piles first */
}
}
void Solver::pilesort(void)
{
/* Make sure all the piles have id numbers. */
for (int w = 0; w < m_number_piles; w++) {
if (Wpilenum[w] < 0) {
Wpilenum[w] = get_pilenum(w);
if (Wpilenum[w] < 0) {
return;
}
}
//fprintf( stderr, "%d ", Wpilenum[w] );
}
//fprintf( stderr, "\n" );
}
#define NBUCKETS 65521 /* the largest 16 bit prime */
#define NPILES 65536 /* a 16 bit code */
typedef struct bucketlist {
quint8 *pile; /* 0 terminated copy of the pile */
quint32 hash; /* the pile's hash code */
int pilenum; /* the unique id for this pile */
struct bucketlist *next;
} BUCKETLIST;
BUCKETLIST *Bucketlist[NBUCKETS];
int Pilenum; /* the next pile number to be assigned */
BUCKETLIST *Pilebucket[NPILES]; /* reverse lookup for unpack to get the bucket
from the pile */
/* Compact position representation. The position is stored as an
array with the following format:
pile0# pile1# ... pileN# (N = Nwpiles)
where each pile number is packed into 16 bits (so a pile take 2 bytes).
Positions in this format are unique can be compared with memcmp(). The O
cells are encoded as a cluster number: no two positions with different
cluster numbers can ever be the same, so we store different clusters in
different trees. */
int Treebytes;
TREE *Solver::pack_position(void)
{
int j, k, w;
quint8 *p;
TREE *node;
/* Allocate space and store the pile numbers. The tree node
will get filled in later, by insert_node(). */
p = mm->new_from_block(Treebytes);
if (p == NULL) {
Status = UnableToDetermineSolvability;
return NULL;
}
node = (TREE *)p;
p += sizeof(TREE);
/* Pack the pile numers j into bytes p.
j j
+--------+----:----+--------+
|76543210|7654:3210|76543210|
+--------+----:----+--------+
p p p
*/
k = 0;
quint16 *p2 = ( quint16* ) p;
for (w = 0; w < m_number_piles; ++w) {
j = Wpilenum[w];
if ( j < 0 )
{
mm->give_back_block( p );
return NULL;
}
*p2++ = j;
}
return node;
}
/* Like strcpy() but return the length of the string. */
static inline int strecpy(unsigned char *d, unsigned char *s)
{
int i;
i = 0;
while ((*d++ = *s++) != '\0') {
i++;
}
return i;
}
/* Unpack a compact position rep. T cells must be restored from the
array following the POSITION struct. */
void Solver::unpack_position(POSITION *pos)
{
int i, k, w;
quint8 c;
BUCKETLIST *l;
unpack_cluster(pos->cluster);
/* Unpack bytes p into pile numbers j.
p p p
+--------+----:----+--------+
|76543210|7654:3210|76543210|
+--------+----:----+--------+
j j
*/
k = w = i = c = 0;
quint16 *p2 = ( quint16* )( (quint8 *)(pos->node) + sizeof(TREE) );
while (w < m_number_piles) {
i = *p2++;
Wpilenum[w] = i;
l = Pilebucket[i];
i = strecpy(W[w], l->pile);
Wp[w] = &W[w][i - 1];
Wlen[w] = i;
Whash[w] = l->hash;
w++;
}
}
void Solver::printcard(card_t card, FILE *outfile)
{
static char Rank[] = " A23456789TJQK";
static char Suit[] = "DCHS";
if (RANK(card) == NONE) {
fprintf(outfile, " ");
} else {
if ( DOWN(card ) )
fprintf(outfile, "|%c%c ", Rank[RANK(card)], Suit[SUIT(card)]);
else
fprintf(outfile, "%c%c ", Rank[RANK(card)], Suit[SUIT(card)]);
}
}
/* Win. Print out the move stack. */
void Solver::win(POSITION *pos)
{
int i, nmoves;
POSITION *p;
MOVE **mpp, **mpp0;
/* Go back up the chain of parents and store the moves
in reverse order. */
i = 0;
for (p = pos; p->parent; p = p->parent) {
i++;
}
nmoves = i;
//printf("Winning in %d moves.\n", nmoves);
mpp0 = new_array(MOVE *, nmoves);
if (mpp0 == NULL) {
Status = UnableToDetermineSolvability;
return; /* how sad, so close... */
}
mpp = mpp0 + nmoves - 1;
for (p = pos; p->parent; p = p->parent) {
*mpp-- = &p->move;
}
for (i = 0, mpp = mpp0; i < nmoves; ++i, ++mpp)
winMoves.append( **mpp );
MemoryManager::free_array(mpp0, nmoves);
}
/* Initialize the hash buckets. */
void Solver::init_buckets(void)
{
int i;
/* Packed positions need 3 bytes for every 2 piles. */
i = ( m_number_piles ) * sizeof( quint16 );
i += ( m_number_piles ) & 0x1;
mm->Pilebytes = i;
memset(Bucketlist, 0, sizeof(Bucketlist));
Pilenum = 0;
Treebytes = sizeof(TREE) + mm->Pilebytes;
/* In order to keep the TREE structure aligned, we need to add
up to 7 bytes on Alpha or 3 bytes on Intel -- but this is still
better than storing the TREE nodes and keys separately, as that
requires a pointer. On Intel for -f Treebytes winds up being
a multiple of 8 currently anyway so it doesn't matter. */
#define ALIGN_BITS 0x7
if (Treebytes & ALIGN_BITS) {
Treebytes |= ALIGN_BITS;
Treebytes++;
}
Posbytes = sizeof(POSITION);
if (Posbytes & ALIGN_BITS) {
Posbytes |= ALIGN_BITS;
Posbytes++;
}
}
/* For each pile, return a unique identifier. Although there are a
large number of possible piles, generally fewer than 1000 different
piles appear in any given game. We'll use the pile's hash to find
a hash bucket that contains a short list of piles, along with their
identifiers. */
int Solver::get_pilenum(int w)
{
int bucket, pilenum;
BUCKETLIST *l, *last;
/* For a given pile, get its unique pile id. If it doesn't have
one, add it to the appropriate list and give it one. First, get
the hash bucket. */
bucket = Whash[w] % NBUCKETS;
/* Look for the pile in this bucket. */
last = NULL;
for (l = Bucketlist[bucket]; l; l = l->next) {
if (l->hash == Whash[w] &&
strncmp((char*)l->pile, (char*)W[w], Wlen[w]) == 0) {
break;
}
last = l;
}
/* If we didn't find it, make a new one and add it to the list. */
if (l == NULL) {
if (Pilenum >= NPILES ) {
Status = UnableToDetermineSolvability;
//qDebug() << "out of piles";
return -1;
}
l = mm_allocate(BUCKETLIST);
if (l == NULL) {
Status = UnableToDetermineSolvability;
//qDebug() << "out of buckets";
return -1;
}
l->pile = new_array(quint8, Wlen[w] + 1);
if (l->pile == NULL) {
Status = UnableToDetermineSolvability;
MemoryManager::free_ptr(l);
//qDebug() << "out of memory";
return -1;
}
/* Store the new pile along with its hash. Maintain
a reverse mapping so we can unpack the piles swiftly. */
strncpy((char*)l->pile, (char*)W[w], Wlen[w] + 1);
l->hash = Whash[w];
l->pilenum = pilenum = Pilenum++;
l->next = NULL;
if (last == NULL) {
Bucketlist[bucket] = l;
} else {
last->next = l;
}
Pilebucket[pilenum] = l;
}
#if 0
if (w < 4) {
fprintf( stderr, "get_pile_num %d ", l->pilenum );
for (int i = 0; i < Wlen[w]; ++i) {
printcard(W[w][i], stderr);
}
fprintf( stderr, "\n" );
}
#endif
return l->pilenum;
}
void Solver::free_buckets(void)
{
int i, j;
BUCKETLIST *l, *n;
for (i = 0; i < NBUCKETS; i++) {
l = Bucketlist[i];
while (l) {
n = l->next;
j = strlen((char*)l->pile); /* @@@ use block? */
MemoryManager::free_array(l->pile, j + 1);
MemoryManager::free_ptr(l);
l = n;
}
}
}
/* Solve patience games. Prioritized breadth-first search. Simple breadth-
first uses exponential memory. Here the work queue is kept sorted to give
priority to positions with more cards out, so the solution found is not
guaranteed to be the shortest, but it'll be better than with a depth-first
search. */
void Solver::doit()
{
int i, q;
POSITION *pos;
MOVE m;
memset( &m, 0, sizeof( MOVE ) );
/* Init the queues. */
for (i = 0; i < NQUEUES; ++i) {
Qhead[i] = NULL;
}
Maxq = 0;
/* Queue the initial position to get started. */
hash_layout();
pilesort();
m.card_index = -1;
m.turn_index = -1;
pos = new_position(NULL, &m);
if ( pos == NULL )
{
Status = UnableToDetermineSolvability;
return;
}
queue_position(pos, 0);
/* Solve it. */
while ((pos = dequeue_position()) != NULL) {
q = solve(pos);
if (!q) {
free_position(pos, true);
}
}
}
/* Generate all the successors to a position and either queue them or
recursively solve them. Return whether any of the child nodes, or their
descendents, were queued or not (if not, the position can be freed). */
bool Solver::solve(POSITION *parent)
{
int i, nmoves, qq;
MOVE *mp, *mp0;
POSITION *pos;
bool q;
all_moves++;
/* If we've won already (or failed), we just go through the motions
but always return false from any position. This enables the cleanup
of the move stack and eventual destruction of the position store. */
if (Status != NoSolutionExists) {
return false;
}
{
QMutexLocker lock( &endMutex );
if ( m_shouldEnd )
{
Status = SearchAborted;
return false;
}
}
if ( max_positions != -1 && Total_positions > ( unsigned long )max_positions )
{
Status = MemoryLimitReached;
return false;
}
/* Generate an array of all the moves we can make. */
if ((mp0 = get_moves(&nmoves)) == NULL) {
if ( isWon() ) {
Status = SolutionExists;
win( parent );
}
return false;
}
if ( parent->depth == 0 )
{
Q_ASSERT( firstMoves.count() == 0 );
for (int j = 0; j < nmoves; ++j)
firstMoves.append( Possible[j] );
}
parent->nchild = nmoves;
/* Make each move and either solve or queue the result. */
q = false;
for (i = 0, mp = mp0; i < nmoves; ++i, ++mp) {
make_move(mp);
/* Calculate indices for the new piles. */
pilesort();
/* See if this is a new position. */
if ((pos = new_position(parent, mp)) == NULL) {
undo_move(mp);
parent->nchild--;
continue;
}
/* If this position is in a new cluster, a card went out.
Don't queue it, just keep going. A larger cutoff can also
force a recursive call, which can help speed things up (but
reduces the quality of solutions). Otherwise, save it for
later. */
if (pos->cluster != parent->cluster || !nmoves) {
qq = solve(pos);
undo_move(mp);
if (!qq) {
free_position(pos, false);
}
q |= (bool)qq;
} else {
queue_position(pos, mp->pri);
undo_move(mp);
q = true;
}
}
MemoryManager::free_array(mp0, nmoves);
/* Return true if this position needs to be kept around. */
return q;
}
/* We can't free the stored piles in the trees, but we can free some of the
POSITION structs. We have to be careful, though, because there are many
threads running through the game tree starting from the queued positions.
The nchild element keeps track of descendents, and when there are none left
in the parent we can free it too after solve() returns and we get called
recursively (rec == true). */
void Solver::free_position(POSITION *pos, int rec)
{
/* We don't really free anything here, we just push it onto a
freelist (using the queue member), so we can use it again later. */
if (!rec) {
pos->queue = Freepos;
Freepos = pos;
pos->parent->nchild--;
} else {
do {
pos->queue = Freepos;
Freepos = pos;
pos = pos->parent;
if (pos == NULL) {
return;
}
pos->nchild--;
} while (pos->nchild == 0);
}
}
/* Save positions for consideration later. pri is the priority of the move
that got us here. The work queue is kept sorted by priority (simply by
having separate queues). */
void Solver::queue_position(POSITION *pos, int pri)
{
/* In addition to the priority of a move, a position gets an
additional priority depending on the number of cards out. We use a
"queue squashing function" to map nout to priority. */
int nout = getOuts();
static qreal Yparam[] = { 0.0032, 0.32, -3.0 };
qreal x = (Yparam[0] * nout + Yparam[1]) * nout + Yparam[2];
pri += (int)floor(x + .5);
if (pri < 0) {
pri = 0;
} else if (pri >= NQUEUES) {
pri = NQUEUES - 1;
}
if (pri > Maxq) {
Maxq = pri;
}
/* We always dequeue from the head. Here we either stick the move
at the head or tail of the queue, depending on whether we're
pretending it's a stack or a queue. */
pos->queue = NULL;
if (Qhead[pri] == NULL) {
Qhead[pri] = pos;
} else {
pos->queue = Qhead[pri];
Qhead[pri] = pos;
}
}
/* Return the position on the head of the queue, or NULL if there isn't one. */
POSITION *Solver::dequeue_position()
{
int last;
POSITION *pos;
static int qpos = 0;
static int minpos = 0;
/* This is a kind of prioritized round robin. We make sweeps
through the queues, starting at the highest priority and
working downwards; each time through the sweeps get longer.
That way the highest priority queues get serviced the most,
but we still get lots of low priority action (instead of
ignoring it completely). */
last = false;
do {
qpos--;
if (qpos < minpos) {
if (last) {
return NULL;
}
qpos = Maxq;
minpos--;
if (minpos < 0) {
minpos = Maxq;
}
if (minpos == 0) {
last = true;
}
}
} while (Qhead[qpos] == NULL);
pos = Qhead[qpos];
Qhead[qpos] = pos->queue;
/* Decrease Maxq if that queue emptied. */
while (Qhead[qpos] == NULL && qpos == Maxq && Maxq > 0) {
Maxq--;
qpos--;
if (qpos < minpos) {
minpos = qpos;
}
}
/* Unpack the position into the work arrays. */
unpack_position(pos);
return pos;
}
Solver::Solver()
{
mm = new MemoryManager();
Freepos = NULL;
m_newer_piles_first = true;
/* Work arrays. */
W = 0;
Wp = 0;
Wlen = 0;
Whash = 0;
Wpilenum = 0;
Stack = 0;
}
Solver::~Solver()
{
delete mm;
for ( int i = 0; i < m_number_piles; ++i )
{
delete [] W[i];
}
delete [] W;
delete [] Wp;
delete [] Wlen;
delete [] Whash;
delete [] Wpilenum;
}
void Solver::init()
{
m_shouldEnd = false;
init_buckets();
mm->init_clusters();
winMoves.clear();
firstMoves.clear();
/* Reset stats. */
Status = NoSolutionExists;
Total_positions = 0;
Total_generated = 0;
depth_sum = 0;
}
void Solver::free()
{
free_buckets();
mm->free_clusters();
mm->free_blocks();
Freepos = NULL;
}
Solver::ExitStatus Solver::patsolve( int _max_positions, bool _debug )
{
max_positions = _max_positions;
debug = _debug;
/* Initialize the suitable() macro variables. */
init();
/* Go to it. */
doit();
if ( Status == SearchAborted ) // thread quit
{
firstMoves.clear();
winMoves.clear();
}
#if 0
printf("%ld positions generated (%f).\n", Total_generated, depth_sum / Total_positions);
printf("%ld unique positions.\n", Total_positions);
printf("Mem_remain = %ld\n", ( long int )mm->Mem_remain);
#endif
free();
return Status;
}
void Solver::print_layout()
{
}
void Solver::setNumberPiles( int p )
{
m_number_piles = p;
/* Work arrays. */
W = new card_t*[m_number_piles];
for ( int i = 0; i < m_number_piles; ++i )
{
W[i] = new card_t[84];
memset( W[i], 0, sizeof( card_t ) * 84 );
}
Wp = new card_t*[m_number_piles];
Wlen = new int[m_number_piles];
Whash = new quint32[m_number_piles];
Wpilenum = new int[m_number_piles];
memset( Wpilenum, 0, sizeof( int ) * m_number_piles );
}
int Solver::translateSuit( int s )
{
int suit = s * 0x10;
if ( suit == PS_DIAMOND )
return PS_CLUB;
else if ( suit == PS_CLUB )
return PS_DIAMOND;
return suit;
}
int Solver::translate_pile(const KCardPile *pile, card_t *w, int size)
{
Q_UNUSED( size );
Q_ASSERT( pile->count() <= size );
card_t rank, suit;
rank = suit = NONE;
for ( int i = 0; i < pile->count(); ++i )
{
KCard *c = pile->at( i );
*w = + translateSuit( c->suit() ) + c->rank();
if ( !c->isFaceUp() )
*w += 1 << 7;
w++;
}
return pile->count();
}
/* Insert key into the tree unless it's already there. Return true if
it was new. */
MemoryManager::inscode Solver::insert(unsigned int *cluster, int d, TREE **node)
{
/* Get the cluster number from the Out cell contents. */
unsigned int k = getClusterNumber();
*cluster = k;
/* Get the tree for this cluster. */
TREELIST *tl = mm->cluster_tree(k);
if (tl == NULL) {
return MemoryManager::ERR;
}
/* Create a compact position representation. */
TREE *newtree = pack_position();
if (newtree == NULL) {
return MemoryManager::ERR;
}
Total_generated++;
MemoryManager::inscode i2 = mm->insert_node(newtree, d, &tl->tree, node);
if (i2 != MemoryManager::NEW) {
mm->give_back_block((quint8 *)newtree);
}
return i2;
}
POSITION *Solver::new_position(POSITION *parent, MOVE *m)
{
unsigned int depth, cluster;
quint8 *p;
POSITION *pos;
TREE *node;
/* Search the list of stored positions. If this position is found,
then ignore it and return (unless this position is better). */
if (parent == NULL) {
depth = 0;
} else {
depth = parent->depth + 1;
}
MemoryManager::inscode i = insert(&cluster, depth, &node);
if (i == MemoryManager::NEW) {
Total_positions++;
depth_sum += depth;
} else
return NULL;
/* A new or better position. insert() already stashed it in the
tree, we just have to wrap a POSITION struct around it, and link it
into the move stack. Store the temp cells after the POSITION. */
if (Freepos) {
p = (quint8 *)Freepos;
Freepos = Freepos->queue;
} else {
p = mm->new_from_block(Posbytes);
if (p == NULL) {
Status = UnableToDetermineSolvability;
return NULL;
}
}
pos = (POSITION *)p;
pos->queue = NULL;
pos->parent = parent;
pos->node = node;
pos->move = *m; /* struct copy */
pos->cluster = cluster;
pos->depth = depth;
pos->nchild = 0;
#if 0
QString dummy;
quint16 *t = ( quint16* )( ( char* )node + sizeof( TREE ) );
for ( int i = 0; i < m_number_piles; ++i )
{
QString s = " " + QString( "%1" ).arg( ( int )t[i] );
dummy += s.right( 5 );
}
if ( Total_positions % 1000 == 1000 )
print_layout();
kDebug() << "new" << dummy;
#endif
p += sizeof(POSITION);
return pos;
}
/* Hash the whole layout. This is called once, at the start. */
void Solver::hash_layout(void)
{
int w;
for (w = 0; w < m_number_piles; w++) {
hashpile(w);
}
}
void Solver::prioritize(MOVE *, int )
{
}
|