1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
/*
* Copyright (C) 2017-2025 Red Hat, Inc. All rights reserved.
*
* Author: Fabio M. Di Nitto <fabbione@kronosnet.org>
*
* This software licensed under LGPL-2.0+
*/
#define KNET_MODULE
#include "config.h"
#include <string.h>
#include <errno.h>
#include <dlfcn.h>
#include <stdlib.h>
#include <openssl/conf.h>
#include <openssl/evp.h>
#if (OPENSSL_VERSION_NUMBER < 0x30000000L)
#include <openssl/hmac.h>
#endif
#include <openssl/rand.h>
#include <openssl/err.h>
#include "logging.h"
#include "crypto_model.h"
/*
* 1.0.2 requires at least 120 bytes
* 1.1.0 requires at least 256 bytes
*/
#define SSLERR_BUF_SIZE 512
/*
* crypto definitions and conversion tables
*/
#define SALT_SIZE 16
/*
* required by OSSL_PARAM_construct_*
* making them global and cost, saves 2 strncpy and some memory on each config
*/
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
static const char *hash = "digest";
#endif
struct opensslcrypto_instance {
void *private_key;
int private_key_len;
const EVP_CIPHER *crypto_cipher_type;
const EVP_MD *crypto_hash_type;
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
EVP_MAC *crypto_hash_mac;
OSSL_PARAM params[3];
char hash_type[16]; /* Need to store a copy from knet_handle_crypto_cfg for OSSL_PARAM_construct_* */
#endif
};
static int openssl_is_init = 0;
/*
* crypt/decrypt functions openssl1.0
*/
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
static int encrypt_openssl(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const struct iovec *iov,
int iovcnt,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
EVP_CIPHER_CTX ctx;
int tmplen = 0, offset = 0;
unsigned char *salt = buf_out;
unsigned char *data = buf_out + SALT_SIZE;
int err = 0;
int i;
char sslerr[SSLERR_BUF_SIZE];
EVP_CIPHER_CTX_init(&ctx);
if (!RAND_bytes(salt, SALT_SIZE)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr);
err = -1;
goto out;
}
/*
* add warning re keylength
*/
EVP_EncryptInit_ex(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt);
for (i=0; i<iovcnt; i++) {
if (!EVP_EncryptUpdate(&ctx,
data + offset, &tmplen,
(unsigned char *)iov[i].iov_base, iov[i].iov_len)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to encrypt: %s", sslerr);
err = -1;
goto out;
}
offset = offset + tmplen;
}
if (!EVP_EncryptFinal_ex(&ctx, data + offset, &tmplen)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize encrypt: %s", sslerr);
err = -1;
goto out;
}
*buf_out_len = offset + tmplen + SALT_SIZE;
out:
EVP_CIPHER_CTX_cleanup(&ctx);
return err;
}
static int decrypt_openssl (
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len,
uint8_t log_level)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
EVP_CIPHER_CTX ctx;
int tmplen1 = 0, tmplen2 = 0;
unsigned char *salt = (unsigned char *)buf_in;
unsigned char *data = salt + SALT_SIZE;
int datalen = buf_in_len - SALT_SIZE;
int err = 0;
char sslerr[SSLERR_BUF_SIZE];
EVP_CIPHER_CTX_init(&ctx);
/*
* add warning re keylength
*/
EVP_DecryptInit_ex(&ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt);
if (!EVP_DecryptUpdate(&ctx, buf_out, &tmplen1, data, datalen)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr);
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr);
}
err = -1;
goto out;
}
if (!EVP_DecryptFinal_ex(&ctx, buf_out + tmplen1, &tmplen2)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr);
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr);
}
err = -1;
goto out;
}
*buf_out_len = tmplen1 + tmplen2;
out:
EVP_CIPHER_CTX_cleanup(&ctx);
return err;
}
#else /* (OPENSSL_VERSION_NUMBER < 0x10100000L) */
static int encrypt_openssl(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const struct iovec *iov,
int iovcnt,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
EVP_CIPHER_CTX *ctx;
int tmplen = 0, offset = 0;
unsigned char *salt = buf_out;
unsigned char *data = buf_out + SALT_SIZE;
int err = 0;
int i;
char sslerr[SSLERR_BUF_SIZE];
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory: %s", sslerr);
err = -1;
goto out;
}
if (!RAND_bytes(salt, SALT_SIZE)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to get random salt data: %s", sslerr);
err = -1;
goto out;
}
/*
* add warning re keylength
*/
if (EVP_EncryptInit_ex(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt) <= 0) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "EVP_EncryptInit_ex failed: %s", sslerr);
err = -1;
goto out;
}
for (i=0; i<iovcnt; i++) {
if (!EVP_EncryptUpdate(ctx,
data + offset, &tmplen,
(unsigned char *)iov[i].iov_base, iov[i].iov_len)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to encrypt: %s", sslerr);
err = -1;
goto out;
}
offset = offset + tmplen;
}
if (!EVP_EncryptFinal_ex(ctx, data + offset, &tmplen)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize encrypt: %s", sslerr);
err = -1;
goto out;
}
*buf_out_len = offset + tmplen + SALT_SIZE;
out:
EVP_CIPHER_CTX_free(ctx);
return err;
}
static int decrypt_openssl (
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len,
uint8_t log_level)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
EVP_CIPHER_CTX *ctx = NULL;
int tmplen1 = 0, tmplen2 = 0;
unsigned char *salt = (unsigned char *)buf_in;
unsigned char *data = salt + SALT_SIZE;
int datalen = buf_in_len - SALT_SIZE;
int err = 0;
char sslerr[SSLERR_BUF_SIZE];
if (datalen <= 0) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Packet is too short");
err = -1;
goto out;
}
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory: %s", sslerr);
err = -1;
goto out;
}
/*
* add warning re keylength
*/
if (EVP_DecryptInit_ex(ctx, instance->crypto_cipher_type, NULL, instance->private_key, salt) <= 0) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "EVP_DecryptInit_ex failed: %s", sslerr);
err = -1;
goto out;
}
if (!EVP_DecryptUpdate(ctx, buf_out, &tmplen1, data, datalen)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr);
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to decrypt: %s", sslerr);
}
err = -1;
goto out;
}
if (!EVP_DecryptFinal_ex(ctx, buf_out + tmplen1, &tmplen2)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr);
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize decrypt: %s", sslerr);
}
err = -1;
goto out;
}
*buf_out_len = tmplen1 + tmplen2;
out:
if (ctx) {
EVP_CIPHER_CTX_free(ctx);
}
return err;
}
#endif
/*
* hash/hmac/digest functions
*/
#if (OPENSSL_VERSION_NUMBER < 0x30000000L)
static int calculate_openssl_hash(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf,
const size_t buf_len,
unsigned char *hash,
uint8_t log_level)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
unsigned int hash_len = 0;
unsigned char *hash_out = NULL;
char sslerr[SSLERR_BUF_SIZE];
hash_out = HMAC(instance->crypto_hash_type,
instance->private_key, instance->private_key_len,
buf, buf_len,
hash, &hash_len);
if ((!hash_out) || (hash_len != crypto_instance->sec_hash_size)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to calculate hash: %s", sslerr);
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to calculate hash: %s", sslerr);
}
return -1;
}
return 0;
}
#else
static int calculate_openssl_hash(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf,
const size_t buf_len,
unsigned char *hash,
uint8_t log_level)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
EVP_MAC_CTX *ctx = NULL;
char sslerr[SSLERR_BUF_SIZE];
int err = 0;
size_t outlen = 0;
ctx = EVP_MAC_CTX_new(instance->crypto_hash_mac);
if (!ctx) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate openssl context: %s", sslerr);
err = -1;
goto out_err;
}
if (!EVP_MAC_init(ctx, instance->private_key, instance->private_key_len, instance->params)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to set openssl context parameters: %s", sslerr);
err = -1;
goto out_err;
}
if (!EVP_MAC_update(ctx, buf, buf_len)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to update hash: %s", sslerr);
err = -1;
goto out_err;
}
if (!EVP_MAC_final(ctx, hash, &outlen, crypto_instance->sec_hash_size)) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to finalize hash: %s", sslerr);
err = -1;
goto out_err;
}
out_err:
if (ctx) {
EVP_MAC_CTX_free(ctx);
}
return err;
}
#endif
/*
* exported API
*/
static int opensslcrypto_encrypt_and_signv (
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const struct iovec *iov_in,
int iovcnt_in,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
int i;
if (instance->crypto_cipher_type) {
if (encrypt_openssl(knet_h, crypto_instance, iov_in, iovcnt_in, buf_out, buf_out_len) < 0) {
return -1;
}
} else {
*buf_out_len = 0;
for (i=0; i<iovcnt_in; i++) {
memmove(buf_out + *buf_out_len, iov_in[i].iov_base, iov_in[i].iov_len);
*buf_out_len = *buf_out_len + iov_in[i].iov_len;
}
}
if (instance->crypto_hash_type) {
if (calculate_openssl_hash(knet_h, crypto_instance, buf_out, *buf_out_len, buf_out + *buf_out_len, KNET_LOG_ERR) < 0) {
return -1;
}
*buf_out_len = *buf_out_len + crypto_instance->sec_hash_size;
}
return 0;
}
static int opensslcrypto_encrypt_and_sign (
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len)
{
struct iovec iov_in;
memset(&iov_in, 0, sizeof(iov_in));
iov_in.iov_base = (unsigned char *)buf_in;
iov_in.iov_len = buf_in_len;
return opensslcrypto_encrypt_and_signv(knet_h, crypto_instance, &iov_in, 1, buf_out, buf_out_len);
}
static int opensslcrypto_authenticate_and_decrypt (
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
const unsigned char *buf_in,
const ssize_t buf_in_len,
unsigned char *buf_out,
ssize_t *buf_out_len,
uint8_t log_level)
{
struct opensslcrypto_instance *instance = crypto_instance->model_instance;
ssize_t temp_len = buf_in_len;
if (instance->crypto_hash_type) {
unsigned char tmp_hash[crypto_instance->sec_hash_size];
ssize_t temp_buf_len = buf_in_len - crypto_instance->sec_hash_size;
memset(tmp_hash, 0, sizeof(tmp_hash));
if ((temp_buf_len <= 0) || (temp_buf_len > KNET_MAX_PACKET_SIZE)) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Received incorrect packet size: %zu for hash size: %zu", buf_in_len, crypto_instance->sec_hash_size);
return -1;
}
if (calculate_openssl_hash(knet_h, crypto_instance, buf_in, temp_buf_len, tmp_hash, log_level) < 0) {
return -1;
}
if (memcmp(tmp_hash, buf_in + temp_buf_len, crypto_instance->sec_hash_size) != 0) {
if (log_level == KNET_LOG_DEBUG) {
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO, "Digest does not match. Check crypto key and configuration.");
} else {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Digest does not match. Check crypto key and configuration.");
}
return -1;
}
temp_len = temp_len - crypto_instance->sec_hash_size;
*buf_out_len = temp_len;
}
if (instance->crypto_cipher_type) {
if (decrypt_openssl(knet_h, crypto_instance, buf_in, temp_len, buf_out, buf_out_len, log_level) < 0) {
return -1;
}
} else {
memmove(buf_out, buf_in, temp_len);
*buf_out_len = temp_len;
}
return 0;
}
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
static pthread_mutex_t *openssl_internal_lock;
static void openssl_internal_locking_callback(int mode, int type, char *file, int line)
{
if (mode & CRYPTO_LOCK) {
(void)pthread_mutex_lock(&(openssl_internal_lock[type]));
} else {
pthread_mutex_unlock(&(openssl_internal_lock[type]));
}
}
static pthread_t openssl_internal_thread_id(void)
{
return pthread_self();
}
static void openssl_internal_lock_cleanup(void)
{
int i;
CRYPTO_set_locking_callback(NULL);
CRYPTO_set_id_callback(NULL);
for (i = 0; i < CRYPTO_num_locks(); i++) {
pthread_mutex_destroy(&(openssl_internal_lock[i]));
}
if (openssl_internal_lock) {
free(openssl_internal_lock);
}
return;
}
static void openssl_atexit_handler(void)
{
openssl_internal_lock_cleanup();
}
static int openssl_internal_lock_setup(void)
{
int savederrno = 0, err = 0;
int i;
openssl_internal_lock = malloc(CRYPTO_num_locks() * sizeof(pthread_mutex_t));
if (!openssl_internal_lock) {
savederrno = errno;
err = -1;
goto out;
}
for (i = 0; i < CRYPTO_num_locks(); i++) {
savederrno = pthread_mutex_init(&(openssl_internal_lock[i]), NULL);
if (savederrno) {
err = -1;
goto out;
}
}
CRYPTO_set_id_callback((void *)openssl_internal_thread_id);
CRYPTO_set_locking_callback((void *)&openssl_internal_locking_callback);
if (atexit(openssl_atexit_handler)) {
err = -1;
}
out:
if (err) {
openssl_internal_lock_cleanup();
}
errno = savederrno;
return err;
}
#endif
static void opensslcrypto_fini(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance)
{
struct opensslcrypto_instance *opensslcrypto_instance = crypto_instance->model_instance;
if (opensslcrypto_instance) {
if (opensslcrypto_instance->private_key) {
free(opensslcrypto_instance->private_key);
opensslcrypto_instance->private_key = NULL;
}
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
if (opensslcrypto_instance->crypto_hash_mac) {
EVP_MAC_free(opensslcrypto_instance->crypto_hash_mac);
}
#endif
free(opensslcrypto_instance);
crypto_instance->model_instance = NULL;
}
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
ERR_free_strings();
#endif
return;
}
static int opensslcrypto_init(
knet_handle_t knet_h,
struct crypto_instance *crypto_instance,
struct knet_handle_crypto_cfg *knet_handle_crypto_cfg)
{
struct opensslcrypto_instance *opensslcrypto_instance = NULL;
int savederrno;
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
char sslerr[SSLERR_BUF_SIZE];
size_t params_n = 0;
#endif
log_debug(knet_h, KNET_SUB_OPENSSLCRYPTO,
"Initializing openssl crypto module [%s/%s]",
knet_handle_crypto_cfg->crypto_cipher_type,
knet_handle_crypto_cfg->crypto_hash_type);
if (!openssl_is_init) {
#if (OPENSSL_VERSION_NUMBER < 0x10100000L)
ERR_load_crypto_strings();
OPENSSL_add_all_algorithms_noconf();
if (openssl_internal_lock_setup() < 0) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to init openssl");
errno = EAGAIN;
return -1;
}
#else
if (!OPENSSL_init_crypto(OPENSSL_INIT_ADD_ALL_CIPHERS \
| OPENSSL_INIT_ADD_ALL_DIGESTS, NULL)) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to init openssl");
errno = EAGAIN;
return -1;
}
#endif
openssl_is_init = 1;
}
crypto_instance->model_instance = malloc(sizeof(struct opensslcrypto_instance));
if (!crypto_instance->model_instance) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl model instance");
errno = ENOMEM;
return -1;
}
opensslcrypto_instance = crypto_instance->model_instance;
memset(opensslcrypto_instance, 0, sizeof(struct opensslcrypto_instance));
opensslcrypto_instance->private_key = malloc(knet_handle_crypto_cfg->private_key_len);
if (!opensslcrypto_instance->private_key) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "Unable to allocate memory for openssl private key");
savederrno = ENOMEM;
goto out_err;
}
memmove(opensslcrypto_instance->private_key, knet_handle_crypto_cfg->private_key, knet_handle_crypto_cfg->private_key_len);
opensslcrypto_instance->private_key_len = knet_handle_crypto_cfg->private_key_len;
if (strcmp(knet_handle_crypto_cfg->crypto_cipher_type, "none") == 0) {
opensslcrypto_instance->crypto_cipher_type = NULL;
} else {
opensslcrypto_instance->crypto_cipher_type = EVP_get_cipherbyname(knet_handle_crypto_cfg->crypto_cipher_type);
if (!opensslcrypto_instance->crypto_cipher_type) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto cipher type requested");
savederrno = ENXIO;
goto out_err;
}
}
if (strcmp(knet_handle_crypto_cfg->crypto_hash_type, "none") == 0) {
opensslcrypto_instance->crypto_hash_type = NULL;
} else {
opensslcrypto_instance->crypto_hash_type = EVP_get_digestbyname(knet_handle_crypto_cfg->crypto_hash_type);
if (!opensslcrypto_instance->crypto_hash_type) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unknown crypto hash type requested");
savederrno = ENXIO;
goto out_err;
}
#if (OPENSSL_VERSION_NUMBER >= 0x30000000L)
opensslcrypto_instance->crypto_hash_mac = EVP_MAC_fetch(NULL, "HMAC", NULL);
if (!opensslcrypto_instance->crypto_hash_mac) {
ERR_error_string_n(ERR_get_error(), sslerr, sizeof(sslerr));
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "unable to fetch HMAC: %s", sslerr);
savederrno = ENXIO;
goto out_err;
}
/*
* OSSL_PARAM_construct_* store pointers to the data, it´s important that the referenced data are per-instance
*/
memmove(opensslcrypto_instance->hash_type, knet_handle_crypto_cfg->crypto_hash_type, sizeof(opensslcrypto_instance->hash_type));
opensslcrypto_instance->params[params_n++] = OSSL_PARAM_construct_utf8_string(hash, opensslcrypto_instance->hash_type, 0);
opensslcrypto_instance->params[params_n] = OSSL_PARAM_construct_end();
#endif
}
if ((opensslcrypto_instance->crypto_cipher_type) &&
(!opensslcrypto_instance->crypto_hash_type)) {
log_err(knet_h, KNET_SUB_OPENSSLCRYPTO, "crypto communication requires hash specified");
savederrno = EINVAL;
goto out_err;
}
if (opensslcrypto_instance->crypto_hash_type) {
crypto_instance->sec_hash_size = EVP_MD_size(opensslcrypto_instance->crypto_hash_type);
}
if (opensslcrypto_instance->crypto_cipher_type) {
size_t block_size;
block_size = EVP_CIPHER_block_size(opensslcrypto_instance->crypto_cipher_type);
crypto_instance->sec_salt_size = SALT_SIZE;
crypto_instance->sec_block_size = block_size;
}
return 0;
out_err:
opensslcrypto_fini(knet_h, crypto_instance);
errno = savederrno;
return -1;
}
crypto_ops_t crypto_model = {
KNET_CRYPTO_MODEL_ABI,
opensslcrypto_init,
opensslcrypto_fini,
opensslcrypto_encrypt_and_sign,
opensslcrypto_encrypt_and_signv,
opensslcrypto_authenticate_and_decrypt
};
|