File: activitylevel.cpp

package info (click to toggle)
kst 2.0.8-3
  • links: PTS
  • area: main
  • in suites: buster
  • size: 30,712 kB
  • sloc: cpp: 97,085; ansic: 13,364; python: 2,970; sh: 761; yacc: 184; lex: 143; makefile: 140; perl: 30; xml: 30
file content (443 lines) | stat: -rw-r--r-- 17,769 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
/***************************************************************************
 *                                                                         *
 *   copyright : (C) 2013 The Kst Team                                     *
 *                   kst@kde.org                                           *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 ***************************************************************************/


#include "activitylevel.h"
#include "objectstore.h"
#include "ui_activitylevel.h"

static const QString& VECTOR_IN = "Vector In";
static const QString& SCALAR_IN_SAMPLING = "Sampling";
static const QString& SCALAR_IN_WINDOWWIDTH = "Window Width";
static const QString& SCALAR_IN_THRESHOLD = "Threshold";
static const QString& VECTOR_OUT_ACTIVITY = "Activity";
static const QString& VECTOR_OUT_REVERSALS = "Nb Reversals";
static const QString& VECTOR_OUT_STDDEV = "Sliding Standard Deviation";
static const QString& VECTOR_OUT_DENOISED = "Denoised Input";

class ConfigWidgetActivityLevelPlugin : public Kst::DataObjectConfigWidget, public Ui_ActivityLevelConfig {
  public:
    ConfigWidgetActivityLevelPlugin(QSettings* cfg) : DataObjectConfigWidget(cfg), Ui_ActivityLevelConfig() {
      setupUi(this);
    }

    ~ConfigWidgetActivityLevelPlugin() {}

    void setObjectStore(Kst::ObjectStore* store) { 
      _store = store; 
      _vector->setObjectStore(store);
      _windowWidth->setObjectStore(store);
      _windowWidth->setDefaultValue(3);
      _samplingTime->setObjectStore(store);
      _samplingTime->setDefaultValue(0.025);
      _noiseThreshold->setObjectStore(store);
      _noiseThreshold->setDefaultValue(0.2);
    }

    void setupSlots(QWidget* dialog) {
      if (dialog) {
        connect(_vector, SIGNAL(selectionChanged(QString)), dialog, SIGNAL(modified()));
        connect(_samplingTime, SIGNAL(selectionChanged(QString)), dialog, SIGNAL(modified()));
        connect(_windowWidth, SIGNAL(selectionChanged(QString)), dialog, SIGNAL(modified()));
        connect(_noiseThreshold, SIGNAL(selectionChanged(QString)), dialog, SIGNAL(modified()));
      }
    }

    Kst::VectorPtr selectedVector() { return _vector->selectedVector(); };
    void setSelectedVector(Kst::VectorPtr vector) { return _vector->setSelectedVector(vector); };

    Kst::ScalarPtr selectedSamplingTime() { return _samplingTime->selectedScalar(); };
    void setSelectedSamplingTime(Kst::ScalarPtr scalar) { return _samplingTime->setSelectedScalar(scalar); };

    Kst::ScalarPtr selectedWindowWidth() { return _windowWidth->selectedScalar(); };
    void setSelectedWindowWidth(Kst::ScalarPtr scalar) { return _windowWidth->setSelectedScalar(scalar); };

    Kst::ScalarPtr selectedNoiseThreshold() { return _noiseThreshold->selectedScalar(); };
    void setSelectedNoiseThreshold(Kst::ScalarPtr scalar) { return _noiseThreshold->setSelectedScalar(scalar); };

    virtual void setupFromObject(Kst::Object* dataObject) {
      if (ActivityLevelSource* source = static_cast<ActivityLevelSource*>(dataObject)) {
        setSelectedVector(source->vector());
        setSelectedSamplingTime(source->samplingTime());
        setSelectedWindowWidth(source->windowWidth());
        setSelectedNoiseThreshold(source->noiseThreshold());
      }
    }

    virtual bool configurePropertiesFromXml(Kst::ObjectStore *store, QXmlStreamAttributes& attrs) {
      Q_UNUSED(store);
      Q_UNUSED(attrs);

      bool validTag = true;

//       QStringRef av;
//       av = attrs.value("value");
//       if (!av.isNull()) {
//         _configValue = QVariant(av.toString()).toBool();
//       }

      return validTag;
    }

  public slots:
    virtual void save() {
      if (_cfg) {
        _cfg->beginGroup("Activity Level DataObject Plugin");
        _cfg->setValue("Input Vector", _vector->selectedVector()->Name());
        _cfg->setValue("Input Scalar Sampling Time", _samplingTime->selectedScalar()->Name());
        _cfg->setValue("Input Scalar Window Width", _windowWidth->selectedScalar()->Name());
        _cfg->setValue("Input Scalar Noise Threshold", _noiseThreshold->selectedScalar()->Name());
        _cfg->endGroup();
      }
    }

    virtual void load() {
      if (_cfg && _store) {
        _cfg->beginGroup("Activity Level DataObject Plugin");
        QString vectorName = _cfg->value("Input Vector").toString();
        Kst::Object* object = _store->retrieveObject(vectorName);
        Kst::Vector* vector = static_cast<Kst::Vector*>(object);
        if (vector) {
          setSelectedVector(vector);
        }
        // Sampling Time
        QString scalarName = _cfg->value("Input Scalar Sampling Time").toString();
        object = _store->retrieveObject(scalarName);
        Kst::Scalar* scalar = static_cast<Kst::Scalar*>(object);
        if (scalar) {
          setSelectedSamplingTime(scalar);
        }
        // Window Width
        scalarName = _cfg->value("Input Scalar Window Width").toString();
        object = _store->retrieveObject(scalarName);
        scalar = static_cast<Kst::Scalar*>(object);
        if (scalar) {
          setSelectedWindowWidth(scalar);
        }
        // Noise Threshold
        scalarName = _cfg->value("Input Scalar Noise Threshold").toString();
        object = _store->retrieveObject(scalarName);
        scalar = static_cast<Kst::Scalar*>(object);
        if (scalar) {
          setSelectedNoiseThreshold(scalar);
        }
        _cfg->endGroup();
      }
    }

  private:
    Kst::ObjectStore *_store;

};


ActivityLevelSource::ActivityLevelSource(Kst::ObjectStore *store)
: Kst::BasicPlugin(store) {
}


ActivityLevelSource::~ActivityLevelSource() {
}


QString ActivityLevelSource::_automaticDescriptiveName() const {
  if (vector()) {
    return tr("%1 Activity Level").arg(vector()->descriptiveName());
  } else {
    return tr("Activity Level");
  }
}


QString ActivityLevelSource::descriptionTip() const {
  QString tip;
  tip = tr("Activity Level: %1\n  Sampling Time: %2 (s)\n  Window width: %3 (s)\n  Noise Threshold: %4 \n").
                              arg(Name()).arg(samplingTime()->value()).arg(windowWidth()->value()).arg(noiseThreshold()->value());
  tip += tr("\nInput: %1").arg(vector()->descriptionTip());
  return tip;
}


void ActivityLevelSource::change(Kst::DataObjectConfigWidget *configWidget) {
  if (ConfigWidgetActivityLevelPlugin* config = static_cast<ConfigWidgetActivityLevelPlugin*>(configWidget)) {
    setInputVector(VECTOR_IN, config->selectedVector());
    setInputScalar(SCALAR_IN_SAMPLING, config->selectedSamplingTime());
    setInputScalar(SCALAR_IN_WINDOWWIDTH, config->selectedWindowWidth());
    setInputScalar(SCALAR_IN_THRESHOLD, config->selectedNoiseThreshold());
  }
}


void ActivityLevelSource::setupOutputs() {
  setOutputVector(VECTOR_OUT_ACTIVITY, "");
  setOutputVector(VECTOR_OUT_REVERSALS, "");
  setOutputVector(VECTOR_OUT_STDDEV, "");
  setOutputVector(VECTOR_OUT_DENOISED, "");
}


bool ActivityLevelSource::algorithm() {
  Kst::VectorPtr inputVector = _inputVectors[VECTOR_IN];
  Kst::ScalarPtr samplingTime = _inputScalars[SCALAR_IN_SAMPLING];
  Kst::ScalarPtr windowWidth = _inputScalars[SCALAR_IN_WINDOWWIDTH];
  Kst::ScalarPtr noiseThreshold = _inputScalars[SCALAR_IN_THRESHOLD];
  Kst::VectorPtr outputVectorActivity = _outputVectors[VECTOR_OUT_ACTIVITY];
  Kst::VectorPtr outputVectorReversals = _outputVectors[VECTOR_OUT_REVERSALS];
  Kst::VectorPtr outputVectorStdDeviation = _outputVectors[VECTOR_OUT_STDDEV];
  Kst::VectorPtr outputVectorDenoised = _outputVectors[VECTOR_OUT_DENOISED];

  int i, length;
  // Check for consistent values
  if (windowWidth->value() < samplingTime->value() || samplingTime->value() == 0.0) {
    return false;
  }

  int iSamplesForWindow = (int) (windowWidth->value() / samplingTime->value());
  double dStandardDeviation = 0.0, dTotal = 0.0, dVariance = 0.0, dSquaredTotal = 0.0;
  int iTrendPrevious = 0, iTrend = 0;
  double dNbReversals = 0.0; // Compute as a double since we output a vector of doubles anyway
  length = inputVector->length();
  /* The metric is computed over a couple of seconds, let us compute the corresponding number of samples */
  if (iSamplesForWindow > length) {
    _errorString = tr("Error: Input vector too short.");
    return false;
  }
  if (iSamplesForWindow < 2) {
    _errorString = tr("Error: the window must be broader.");
    return false;
  }

  /* Array allocations */
  outputVectorActivity->resize(length, true);
  outputVectorReversals->resize(length, true);
  outputVectorStdDeviation->resize(length, true);
  outputVectorDenoised->resize(length, true);

//  /* Requantize to avoid noise creating many unwanted sign changes */
//  if (noiseThreshold->value() > 0.0) {
//    for (i = 0; i < length; ++i) {
//      outputVectorDenoised->value()[i] = (double) rint( inputVector->value()[i] / noiseThreshold->value() ) * noiseThreshold->value();
//    }
//  }
  /* Recompute input data, taking direction changes only when they exceed a given threshold */
  if (noiseThreshold->value() > 0.0) {
    iTrendPrevious = (inputVector->value()[1]-inputVector->value()[0] > 0) ? 1 : -1;
    outputVectorDenoised->value()[0] = inputVector->value()[0];
    bool bFreeze = false;
    for (i = 1; i < length; ++i) {
      // Update current trend
      if (inputVector->value()[i] == inputVector->value()[i-1]) {
        iTrend = 0;
      } else {
        iTrend = ( (inputVector->value()[i]-inputVector->value()[i-1]) > 0) ? 1 : -1;
      }
      // Check what to do with the value
      if ( iTrendPrevious * iTrend >= 0 && !bFreeze) {
        outputVectorDenoised->value()[i] = inputVector->value()[i];
        iTrendPrevious = iTrend;
      } else { // Change of direction: check whether the delta is significant, otherwise freeze the value
        if ( qAbs(inputVector->value()[i] - outputVectorDenoised->value()[i-1]) >= noiseThreshold->value() ) { // Delta is significant: keep value
          outputVectorDenoised->value()[i] = inputVector->value()[i];
          bFreeze = false;
          iTrendPrevious = iTrend;
        } else {
          outputVectorDenoised->value()[i] = outputVectorDenoised->value()[i-1];
          bFreeze = true;
        }
      }
    }
  }

  /* Compute initial values for first windowWidth seconds */
  dTotal = outputVectorDenoised->value()[0] + outputVectorDenoised->value()[1];
  dSquaredTotal += outputVectorDenoised->value()[0] * outputVectorDenoised->value()[0] + outputVectorDenoised->value()[1] * outputVectorDenoised->value()[1];
  outputVectorReversals->value()[1] = outputVectorReversals->value()[0] = 0.0;
  outputVectorStdDeviation->value()[1] = outputVectorStdDeviation->value()[0] = 0.0;
  outputVectorActivity->value()[1] = outputVectorActivity->value()[0] = 0.0;
  for (i = 2; i < iSamplesForWindow; ++i) {
    /* Update previous sign if needed */
    if (outputVectorDenoised->value()[i-1] != outputVectorDenoised->value()[i-2]) {
      iTrendPrevious = ( (outputVectorDenoised->value()[i-1] - outputVectorDenoised->value()[i-2]) > 0 ) ? 1 : -1;
    }
    /* Compute current sign */
    if (outputVectorDenoised->value()[i] != outputVectorDenoised->value()[i-1]) {
      iTrend = ( (outputVectorDenoised->value()[i] - outputVectorDenoised->value()[i-1]) > 0 ) ? 1 : -1;
    } else {
      iTrend = 0;
    }
    /* Check for reversal */
    if ( iTrend * iTrendPrevious < 0 ) {
      dNbReversals += 1.0;
    }
    dTotal += outputVectorDenoised->value()[i];
    dSquaredTotal += outputVectorDenoised->value()[i] * outputVectorDenoised->value()[i];
    /* Store zeros as long as we do not have enough values */
    outputVectorReversals->value()[i] = 0.0;
    outputVectorStdDeviation->value()[i] = 0.0;
    outputVectorActivity->value()[i] = 0.0;
  }
  dVariance  = 1.0 / ( (double)iSamplesForWindow - 1.0 );
  dVariance *= dSquaredTotal - ( dTotal * dTotal / (double)iSamplesForWindow );
  if( dVariance > 0.0 ) { // The computation method can have numerical artefacts leading to negative values here!
    dStandardDeviation = sqrt( dVariance );
  } else {
    dVariance = 0.0;
    dStandardDeviation = 0.0;
  }
  /* Now, we can actually store the first useful value (exactly the right number of samples processed) */
  outputVectorReversals->value()[i] = dNbReversals;
  outputVectorStdDeviation->value()[i] = dStandardDeviation;
  outputVectorActivity->value()[i] = dNbReversals * dStandardDeviation;

  /* Finally, update continuously for each new value for the rest of values */
  double outgoingValue, outgoingValuePrev, outgoingValueNext, incomingValue, incomingValuePrev, incomingValueNext;
  for (i = iSamplesForWindow; i < length; ++i) {
    dTotal += outputVectorDenoised->value()[i] - outputVectorDenoised->value()[i-iSamplesForWindow];
    dSquaredTotal += outputVectorDenoised->value()[i] * outputVectorDenoised->value()[i] - outputVectorDenoised->value()[i-iSamplesForWindow] * outputVectorDenoised->value()[i-iSamplesForWindow];
    dVariance  = 1.0 / ( (double)iSamplesForWindow - 1.0 );
    dVariance *= dSquaredTotal - ( dTotal * dTotal / (double)iSamplesForWindow );
    if( dVariance > 0.0 ) {
      dStandardDeviation = sqrt( dVariance );
    } else {
      dVariance = 0.0;
      dStandardDeviation = 0.0;
    }
    /* Update the number of reversals, by removing 1 if the outgoing data point was a reversal and adding 1 if the incoming point is one */
    outgoingValue = outputVectorDenoised->value()[i-iSamplesForWindow];
    outgoingValuePrev = outputVectorDenoised->value()[i-iSamplesForWindow-1];
    outgoingValueNext = outputVectorDenoised->value()[i-iSamplesForWindow+1];
    incomingValue = outputVectorDenoised->value()[i];
    incomingValuePrev = outputVectorDenoised->value()[i-1];
    if (i == length-1) { // Protect against accessing past the boundary of the vector
      incomingValueNext = outputVectorDenoised->value()[i];
    } else {
      incomingValueNext = outputVectorDenoised->value()[i+1];
    }
    if ( (outgoingValue-outgoingValuePrev)*(outgoingValueNext-outgoingValue) < 0) {
      dNbReversals = qMax(dNbReversals - 1.0, double(0.0)); // Avoid getting negative values, which can happen
    }
    if ( (incomingValue-incomingValuePrev)*(incomingValueNext-incomingValue) < 0) {
      dNbReversals += 1.0;
    }

    /* Store values */
    outputVectorReversals->value()[i] = dNbReversals;
    outputVectorStdDeviation->value()[i] = dStandardDeviation;
    outputVectorActivity->value()[i] = dNbReversals * dStandardDeviation;
  }
  return true;
}


Kst::VectorPtr ActivityLevelSource::vector() const {
  return _inputVectors[VECTOR_IN];
}


Kst::ScalarPtr ActivityLevelSource::samplingTime() const {
  return _inputScalars[SCALAR_IN_SAMPLING];
}


Kst::ScalarPtr ActivityLevelSource::windowWidth() const {
  return _inputScalars[SCALAR_IN_WINDOWWIDTH];
}


Kst::ScalarPtr ActivityLevelSource::noiseThreshold() const {
  return _inputScalars[SCALAR_IN_THRESHOLD];
}


QStringList ActivityLevelSource::inputVectorList() const {
  return QStringList( VECTOR_IN );
}


QStringList ActivityLevelSource::inputScalarList() const {
  QStringList scalars( SCALAR_IN_SAMPLING );
  scalars += SCALAR_IN_WINDOWWIDTH;
  scalars += SCALAR_IN_THRESHOLD;
  return scalars;
}


QStringList ActivityLevelSource::inputStringList() const {
  return QStringList( /*STRING_IN*/ );
}


QStringList ActivityLevelSource::outputVectorList() const {
  QStringList vectors( VECTOR_OUT_ACTIVITY );
  vectors += VECTOR_OUT_REVERSALS;
  vectors += VECTOR_OUT_STDDEV;
  vectors += VECTOR_OUT_DENOISED;
  return vectors;
}


QStringList ActivityLevelSource::outputScalarList() const {
  return QStringList( /*SCALAR_OUT*/ );
}


QStringList ActivityLevelSource::outputStringList() const {
  return QStringList( /*STRING_OUT*/ );
}


void ActivityLevelSource::saveProperties(QXmlStreamWriter &s) {
  Q_UNUSED(s);
//   s.writeAttribute("value", _configValue);
}


QString ActivityLevelPlugin::pluginName() const { return tr("Activity Level"); }
QString ActivityLevelPlugin::pluginDescription() const { return tr("Computes the activity level of a signal as the product of standard deviation and number of reversals over a sliding window."); }


Kst::DataObject *ActivityLevelPlugin::create(Kst::ObjectStore *store, Kst::DataObjectConfigWidget *configWidget, bool setupInputsOutputs) const {

  if (ConfigWidgetActivityLevelPlugin* config = static_cast<ConfigWidgetActivityLevelPlugin*>(configWidget)) {

    ActivityLevelSource* object = store->createObject<ActivityLevelSource>();

    if (setupInputsOutputs) {
      object->setInputScalar(SCALAR_IN_SAMPLING, config->selectedSamplingTime());
      object->setInputScalar(SCALAR_IN_WINDOWWIDTH, config->selectedWindowWidth());
      object->setInputScalar(SCALAR_IN_THRESHOLD, config->selectedNoiseThreshold());
      object->setupOutputs();
      object->setInputVector(VECTOR_IN, config->selectedVector());
    }

    object->setPluginName(pluginName());

    object->writeLock();
    object->registerChange();
    object->unlock();

    return object;
  }
  return 0;
}


Kst::DataObjectConfigWidget *ActivityLevelPlugin::configWidget(QSettings *settingsObject) const {
  ConfigWidgetActivityLevelPlugin *widget = new ConfigWidgetActivityLevelPlugin(settingsObject);
  return widget;
}

#ifndef QT5
Q_EXPORT_PLUGIN2(kstplugin_ActivityLevelPlugin, ActivityLevelPlugin)
#endif

// vim: ts=2 sw=2 et