1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/***************************************************************************
* Copyright (C) 2005 by David Saxton *
* david@bluehaze.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
***************************************************************************/
#include "instruction.h"
#include "optimizer.h"
#include <kdebug.h>
#include <assert.h>
#include <iostream>
using namespace std;
QString binary( uchar val )
{
QString bin = QString::number( val, 2 );
QString pad;
pad.fill( '0', 8-bin.length() );
return pad + bin;
}
Optimizer::Optimizer()
{
m_pCode = 0l;
}
Optimizer::~Optimizer()
{
}
void Optimizer::optimize( Code * code )
{
// return;
m_pCode = code;
bool changed;
do
{
changed = false;
// Repeatedly generate links and states until
// we know as much as possible about the system.
propagateLinksAndStates();
// Remove instructions without input links
changed |= pruneInstructions();
// Perform optimizations based on processor states
changed |= optimizeInstructions();
}
while ( changed );
}
void Optimizer::propagateLinksAndStates()
{
int count = 0;
do
{
count++;
m_pCode->generateLinksAndStates();
}
while ( giveInputStates() );
// cout << "count="<<count<<endl;
}
bool Optimizer::giveInputStates()
{
bool changed = false;
Code::iterator end = m_pCode->end();
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
// Now, build up the most specific known processor state from the instructins
// that could be executed immediately before this instruction.
// This is done by taking the output state of the first input link, and
// then reducing it to the greatest common denominator of all the input states.
const InstructionList list = (*it)->inputLinks();
if ( list.isEmpty() )
continue;
InstructionList::const_iterator inputIt = list.begin();
InstructionList::const_iterator inputsEnd = list.end();
ProcessorState input = (*(inputIt++))->outputState();
while ( inputIt != inputsEnd )
input.merge( (*inputIt++)->outputState() );
if ( !changed )
{
ProcessorState before = (*it)->inputState();
bool stateChanged = ( before != input );
changed |= stateChanged;
}
(*it)->setInputState( input );
}
return changed;
}
bool Optimizer::pruneInstructions()
{
bool removed = false;
//BEGIN remove instructions without any input links
Code::iterator it = m_pCode->begin();
Code::iterator end = m_pCode->end();
// Jump past the first instruction, as nothing (necessarily) points to that
if ( it != end )
++it;
while ( it != end )
{
if ( (*it)->inputLinks().isEmpty() )
{
// cout << "Removing: " << (*it)->code() << endl;
it.removeAndIncrement();
removed = true;
}
else
++it;
}
end = m_pCode->end(); // Reset end as instructions may have been removed
//END remove instructions without any input links
//BEGIN remove labels without any reference to them
// First: build up a list of labels which are referenced
QStringList referencedLabels;
for ( it = m_pCode->begin(); it != end; ++it )
{
if ( Instr_goto * ins = dynamic_cast<Instr_goto*>(*it) )
referencedLabels << ins->label();
else if ( Instr_call * ins = dynamic_cast<Instr_call*>(*it) )
referencedLabels << ins->label();
}
// Now remove labels from instructions that aren't in the referencedLabels list
for ( it = m_pCode->begin(); it != end; ++it )
{
QStringList labels = (*it)->labels();
QStringList::iterator labelsEnd = labels.end();
for ( QStringList::iterator labelsIt = labels.begin(); labelsIt != labelsEnd; )
{
if ( !referencedLabels.contains( *labelsIt ) )
{
labelsIt = labels.erase( labelsIt );
removed = true;
}
else
++labelsIt;
}
(*it)->setLabels( labels);
}
//END remove labels without any reference to them
return removed;
}
bool Optimizer::optimizeInstructions()
{
//BEGIN Optimization 1: Concatenate chained GOTOs
// We go through the instructions looking for GOTO statements. If we find any, then
// we trace back through their input links to any other GOTO statements - any that
// are found are then redirected to point to the label that the original GOTO statement
// was pointing at.
Code::iterator end = m_pCode->end();
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
Instr_goto * gotoIns = dynamic_cast<Instr_goto*>(*it);
if ( !gotoIns )
continue;
if ( redirectGotos( gotoIns, gotoIns->label() ) )
return true;
m_pCode->setAllUnused();
}
//END Optimization 1: Concatenate chained GOTOs
//BEGIN Optimization 2: Remove GOTOs when jumping to the subsequent instruction
// Any GOTO instructions that just jump to the next instruction can be removed.
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
Instruction * next = *(++Code::iterator(it));
Instruction * gotoIns = dynamic_cast<Instr_goto*>(*it);
if ( !gotoIns || !next || (gotoIns->outputLinks().first() != next) )
continue;
// cout << "Removing: " << gotoIns->code() << endl;
it.removeAndIncrement();
return true;
}
end = m_pCode->end();
//END Optimization 2: Remove GOTOs when jumping to the subsequent instruction
//BEGIN Optimization 3: Replace MOVWF with CLRF with W is 0
// We look for MOVWF instructions where the working register holds zero.
// We then replace the MOVWf instruction with a CLRF instruction.
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
Instr_movwf * ins = dynamic_cast<Instr_movwf*>(*it);
if ( !ins )
continue;
ProcessorState inputState = ins->inputState();
RegisterState working = inputState.working;
if ( (working.value != 0x0) || (working.known != 0xff) )
continue;
// CLRF sets the Z flag of STATUS to 1, but MOVWF does not set any flags.
// So we need to check for dependence of the Z flag if we are possibly
// changing the flag by replacing the instruction.
if ( !(inputState.status.definiteOnes() & (1 << RegisterBit::Z)) )
{
// Input state of Z flag is either unknown or low.
uchar depends = generateRegisterDepends( *it, Register::STATUS );
if ( depends & (1 << RegisterBit::Z) )
{
// Looks like there's some instruction that depends on the zero bit,
// and we about potentially about to change it.
continue;
}
}
Instr_clrf * instr_clrf = new Instr_clrf( ins->file() );
// cout << "Replacing \""<<(*it)->code()<<"\" with \""<<instr_clrf->code()<<"\"\n";
it.insertBefore( instr_clrf );
it.removeAndIncrement();
return true;
}
//END Optimization 3: Replace MOVWF with CLRF with W is 0
//BEGIN Optimization 4: Replace writes to W with MOVLW when value is known
// We look for instructions with AssemblyType either WorkingOriented, or FileOriented
// and writing to W. Then, if the value is known and there are no instructions that
// depend on the STATUS bits set by the instruction, then we replace it with a MOVLW
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
if ( dynamic_cast<Instr_movlw*>(*it) )
{
// If we don't catch this condition, we'll end up in an infinite loop,
// repeatedly replacing the first MOVLW that we come across.
continue;
}
bool workingOriented = (*it)->assemblyType() == Instruction::WorkingOriented;
bool fileOriented = (*it)->assemblyType() == Instruction::FileOriented;
if ( !workingOriented && (!fileOriented || ((*it)->dest() != 0)) )
continue;
// So can now assume that workingOriented and fileOriented are logical opposites
RegisterState outputState = (*it)->outputState().working;
if ( outputState.known != 0xff )
continue;
ProcessorBehaviour behaviour = (*it)->behaviour();
// MOVLW does not set any STATUS flags, but the instruction that we are replacing
// might. So we must check if any of these STATUS flags are depended upon, and if so
// only allow replacement if the STATUS flags are not being changed.
if ( !canRemove( *it, Register::STATUS, behaviour.reg( Register::STATUS ).indep ) )
continue;
Instr_movlw * movlw = new Instr_movlw( outputState.value );
// cout << "Replacing \""<<(*it)->code()<<"\" with \""<<movlw->code()<<"\"\n";
it.insertBefore( movlw );
it.removeAndIncrement();
return true;
}
//END Optimization 4: Replace writes to W with MOVLW when value is known
//BEGIN Optimization 5: Remove writes to a bit when the value is ignored and overwritten again
// We go through the instructions looking for statements that write to a bit (bcf, bsf).
// If we find any, then we trace through their output links to see if their value is
// overwritten before it is used - and if so, the instruction can be removed.
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
if ( (*it)->assemblyType() != Instruction::BitOriented )
continue;
const Register regSet = (*it)->file();
if ( regSet.affectsExternal() )
continue;
uchar bitPos = (*it)->bit().bitPos();
ProcessorState inputState = (*it)->inputState();
ProcessorState outputState = (*it)->outputState();
ProcessorBehaviour behaviour = (*it)->behaviour();
// Are we rewriting over a bit that already has the same value?
// (Note this check is just for the bit changing instructions, as there is a similar
// check for register changing actions later on when we know which bits care about
// being overwritten).
if ( inputState.reg( regSet ).known & (1 << bitPos) )
{
bool beforeVal = (inputState.reg( regSet ).value & (1 << bitPos));
bool afterVal = (outputState.reg( regSet ).value & (1 << bitPos));
if ( beforeVal == afterVal )
{
// cout << "Removing: " << (*it)->code() << endl;
it.removeAndIncrement();
return true;
}
}
uchar depends = generateRegisterDepends( *it, regSet );
if ( !(depends & (1 << bitPos)) )
{
// Bit is overwritten before being used - so lets remove this instruction :)
// cout << "Removing: " << (*it)->code() << endl;
it.removeAndIncrement();
return true;
}
}
m_pCode->setAllUnused();
//END Optimization 5: Remove writes to a bit when the value is ignored and overwritten again
//BEGIN Optimization 6: Remove writes to a register when the value is ignored and overwritten again
// We go through the instructions looking for statements that write to a register (such as MOVLW).
// If we find any, then we trace through their output links to see if their value is
// overwritten before it is used - and if so, the instruction can be removed.
for ( Code::iterator it = m_pCode->begin(); it != end; ++it )
{
bool noFile = false;
switch ( (*it)->assemblyType() )
{
case Instruction::WorkingOriented:
noFile = true;
// (no break)
case Instruction::FileOriented:
break;
case Instruction::BitOriented:
case Instruction::Other:
case Instruction::None:
continue;
}
const Register regSet = noFile ? Register( Register::WORKING ) : (*it)->outputReg();
if ( regSet.affectsExternal() )
continue;
ProcessorState inputState = (*it)->inputState();
ProcessorState outputState = (*it)->outputState();
ProcessorBehaviour behaviour = (*it)->behaviour();
// All ins_file instructions will affect at most two registers; the
// register it is writing to (regSet) and the status register.
// In i==0, test regSet
// In i==1, test STATUS
bool ok = true;
for ( unsigned i = 0; i < 2; ++ i)
{
// If we are testing STATUS, then we assume that the bits changed
// are only those that are marked as independent.
uchar bitmask = ( i == 1 ) ? behaviour.reg( Register::STATUS ).indep : 0xff;
if ( !canRemove( *it, (i == 0) ? regSet : Register::STATUS, bitmask ) )
{
ok = false;
break;
}
}
if ( !ok )
continue;
// Looks like we're free to remove the instruction :);
// cout << "Removing: " << (*it)->code() << endl;
it.removeAndIncrement();
return true;
}
m_pCode->setAllUnused();
//END Optimization 6: Remove writes to a register when the value is ignored and overwritten again
return false;
}
bool Optimizer::redirectGotos( Instruction * current, const QString & label )
{
if ( current->isUsed() )
return false;
current->setUsed( true );
bool changed = false;
const InstructionList list = current->inputLinks();
InstructionList::const_iterator end = list.end();
for ( InstructionList::const_iterator it = list.begin(); it != end; ++it )
{
Instr_goto * gotoIns = dynamic_cast<Instr_goto*>(*it);
if ( !gotoIns || (gotoIns->label() == label) )
continue;
// cout << "Redirecting goto to label \"" << label << "\" : " << gotoIns->code() << endl;
gotoIns->setLabel( label );
changed = true;
}
return changed;
}
uchar Optimizer::generateRegisterDepends( Instruction * current, const Register & reg )
{
m_pCode->setAllUnused();
const InstructionList list = current->outputLinks();
InstructionList::const_iterator listEnd = list.end();
uchar depends = 0x0;
for ( InstructionList::const_iterator listIt = list.begin(); listIt != listEnd; ++listIt )
depends |= registerDepends( *listIt, reg );
return depends;
}
uchar Optimizer::registerDepends( Instruction * current, const Register & reg )
{
if ( current->isUsed() )
return current->registerDepends( reg );
current->setUsed( true );
uchar depends = 0x0;
const InstructionList list = current->outputLinks();
InstructionList::const_iterator end = list.end();
for ( InstructionList::const_iterator it = list.begin(); it != end; ++it )
depends |= registerDepends( *it, reg );
RegisterBehaviour behaviour = current->behaviour().reg( reg );
depends &= ~(behaviour.indep); // Get rid of depend bits that are set in this instruction
depends |= behaviour.depends; // And add the ones that are dependent in this instruction
current->setRegisterDepends( depends, reg );
return depends;
}
bool Optimizer::canRemove( Instruction * ins, const Register & reg, uchar bitMask )
{
// The bits that are depended upon in the future for this register
uchar depends = generateRegisterDepends( ins, reg );
// Only interested in those bits allowed by the bit mask
depends &= bitMask;
RegisterState inputState = ins->inputState().reg( reg );
RegisterState outputState = ins->outputState().reg( reg );
if ( inputState.unknown() & depends )
{
// There's at least one bit whose value is depended on, but is not known before this
// instruction is executed. Therefore, it is not safe to remove this instruction.
return false;
}
if ( outputState.unknown() & depends )
{
// There's at least one bit whose value is depended on, but is not known after this
// instruction is executed. Therefore, it is not safe to remove this instruction.
return false;
}
uchar dependsInput = inputState.value & depends;
uchar dependsOutput = outputState.value & depends;
if ( dependsInput != dependsOutput )
{
// At least one bit whose value is depended upon was changed.
return false;
}
return true;
}
|