1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
|
'''
Code snippet for reading data from the kuttypy
'''
import serial, struct, time, platform, os, sys, functools
from utilities import REGISTERS
from collections import OrderedDict
import numpy as np
if 'inux' in platform.system(): # Linux based system
import fcntl
Byte = struct.Struct("B") # size 1
ShortInt = struct.Struct("H") # size 2
Integer = struct.Struct("I") # size 4
def signit(combined_value):
if combined_value >= 0x8000: # 32768 in decimal, sign bit set
return combined_value - 0x10000 # Subtract 65536 to get the negative value
return combined_value
def _bv(x):
return 1 << x
def connect(**kwargs):
return KUTTYPY(**kwargs)
def listPorts():
'''
Make a list of available serial ports. For auto scanning and connecting
'''
import glob
system_name = platform.system()
if system_name == "Windows":
# Scan for available ports.
available = []
for i in range(256):
try:
s = serial.Serial('COM%d' % i)
available.append('COM%d' % i)
s.close()
except serial.SerialException:
pass
return available
elif system_name == "Darwin":
# Mac
return glob.glob('/dev/tty.usb*') + glob.glob('/dev/cu*')
else:
# Assume Linux or something else
return glob.glob('/dev/ttyACM*') + glob.glob('/dev/ttyUSB*') + glob.glob('/dev/rfcomm*')
def isPortFree(portname):
try:
fd = serial.Serial(portname, KUTTYPY.BAUD, stopbits=1, timeout=1.0)
if fd.isOpen():
if 'inux' in platform.system(): # Linux based system
try:
fcntl.flock(fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
fd.close()
return True # Port is available
except IOError:
fd.close()
return False # Port is not available
else:
fd.close()
return True # Port is available
else:
fd.close()
return False # Port is not available
except serial.SerialException as ex:
return False # Port is not available
def getFreePorts(openPort=None):
'''
Find out which ports are currently free
'''
portlist = {}
for a in listPorts():
if a != openPort:
portlist[a] = isPortFree(a)
else:
portlist[a] = False
return portlist
class KUTTYPY:
VERSIONNUM_168P = Byte.pack(98)
VERSIONNUM = Byte.pack(99)
VERSIONNUM_328P = Byte.pack(100)
VERSIONNUM_UNO = Byte.pack(101)
GET_VERSION = Byte.pack(1)
READB = Byte.pack(2)
WRITEB = Byte.pack(3)
I2C_READ = Byte.pack(4)
I2C_WRITE = Byte.pack(5)
I2C_SCAN = Byte.pack(6)
BAUD = 38400
version = 0
portname = None
REGS = REGISTERS.VERSIONS[99]['REGISTERS'] # A map of alphanumeric port names to the 8-bit register locations
REGSTATES = {} # Store the last written state of the registers
SPECIALS = REGISTERS.VERSIONS[99]['SPECIALS']
nano = False # check if atmega328p is found instead of 32
blockingSocket = None
PCF_text_options = ['hello', 'one', 'two', 'three']
def __init__(self, **kwargs):
self.bootloaderfirmware = True
self.sensors = {
0x39: {
'name': 'TSL2561',
'init': self.TSL2561_init,
'read': self.TSL2561_all,
'fields': ['total', 'IR'],
'min': [0, 0],
'max': [2 ** 15, 2 ** 15],
'config': [{
'name': 'gain',
'options': ['1x', '16x'],
'function': self.TSL2561_gain
},
{
'name': 'Integration Time',
'options': ['3 mS', '101 mS', '402 mS'],
'function': self.TSL2561_timing
}
]},
0x1E: {
'name': 'HMC5883L',
'init': self.HMC5883L_init,
'read': self.HMC5883L_all,
'fields': ['Mx', 'My', 'Mz'],
'min': [-5000, -5000, -5000],
'max': [5000, 5000, 5000],
'config': [{
'name': 'gain',
'options': ['1x', '16x'],
'function': self.TSL2561_gain
},
{
'name': 'Integration Time',
'options': ['3 mS', '101 mS', '402 mS'],
'function': self.TSL2561_timing
}
]},
0x48: {
'name': 'ADS1115',
'init': self.ADS1115_init,
'read': self.ADS1115_read,
'fields': ['Voltage'],
'min': [-5],
'max': [5],
'config': [{
'name': 'channel',
'options': ['UNI_0', 'UNI_1', 'UNI_2', 'UNI_3', 'DIFF_01', 'DIFF_23'],
'function': self.ADS1115_channel
},
{
'name': 'Data Rate',
'options': ['8', '16', '32', '64', '128', '250', '475', '860'],
'function': self.ADS1115_rate
},
{
'name': 'Gain',
'options': ['GAIN_TWOTHIRDS', 'GAIN_ONE', 'GAIN_TWO', 'GAIN_FOUR', 'GAIN_EIGHT',
'GAIN_SIXTEEN'],
'function': self.ADS1115_gain
}
]},
0x68: {
'name': 'MPU6050',
'init': self.MPU6050_init,
'read': self.MPU6050_all,
'fields': ['Ax', 'Ay', 'Az', 'Temp', 'Gx', 'Gy', 'Gz'],
'min': [-1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15, 0, -1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15],
'max': [2 ** 15, 2 ** 15, 2 ** 15, 2 ** 16, 2 ** 15, 2 ** 15, 2 ** 15],
'config': [{
'name': 'Gyroscope Range',
'options': ['250', '500', '1000', '2000'],
'function': self.MPU6050_gyro_range
},
{
'name': 'Accelerometer Range',
'options': ['2x', '4x', '8x', '16x'],
'function': self.MPU6050_accel_range
},
{
'name': 'Kalman',
'options': ['OFF', '0.001', '0.01', '0.1', '1', '10'],
'function': self.MPU6050_kalman_set
}
]},
41: {
'name': 'TCS34725: RGB Sensor',
'init': self.TCS34725_init,
'RGB': True,
'read': self.TCS34725_all,
'fields': ['RED', 'GREEN', 'BLUE'],
'min': [0, 0, 0, 0],
'max': [2 ** 16, 2 ** 16, 2 ** 16],
'config': [{
'name': 'Gain',
'options': ['1', '4', '16', '60'],
'function': self.TCS34725_gain
}
]},
118: {
'name': 'BMP280',
'init': self.BMP280_init,
'read': self.BMP280_all,
'fields': ['Pressure', 'Temp', 'Alt'],
'min': [0, 0, 0],
'max': [1600, 100, 100],
},
12: { # 0xc
'name': 'AK8963 Mag',
'init': self.AK8963_init,
'read': self.AK8963_all,
'fields': ['X', 'Y', 'Z'],
'min': [-32767, -32767, -32767],
'max': [32767, 32767, 32767],
},
119: {
'name': 'MS5611',
'init': self.MS5611_init,
'read': self.MS5611_all,
'fields': ['Pressure', 'Temp', 'Alt'],
'min': [0, 0, 0],
'max': [1600, 100, 10],
},
119: {
'name': 'BMP180',
'init': self.BMP180_init,
'read': self.BMP180_all,
'fields': ['Pressure', 'Temp'],
'min': [0, 0],
'max': [1600, 100],
},
0x41: { # A0 pin connected to Vs . Otherwise address 0x40 conflicts with PCA board.
'name': 'INA3221',
'init': self.INA3221_init,
'read': self.INA3221_all,
'fields': ['CH1', 'CH2', 'CH3'],
'min': [0, 0, 0],
'max': [1000, 1000, 1000],
},
0x5A: {
'name': 'MLX90614',
'init': self.MLX90614_init,
'read': self.MLX90614_all,
'fields': ['TEMP'],
'min': [0],
'max': [350]},
39: {
'name': 'PCF_LCD',
'init': self.PCF_LCD_init,
'read': self.PCF_LCD_all,
'fields': ['Dummy'],
'min': [0],
'max': [1],
'config': [{
'name': 'text',
'options': ['hello', 'one', 'two', 'three'],
'function': self.PCF_LCD_text
},
{
'name': 'row',
'options': ['1', '2'],
'function': self.PCF_LCD_row
},
{
'name': 'backlight',
'options': ['OFF', 'ON'],
'function': self.PCF_LCD_backlight
}
]}
}
self.namedsensors = {
'GMCOUNTER': {
'address': [0xe, 0xf, 0x10, 0x11, 0x12],
'name': 'GMCOUNTER CSpark Geiger Counter',
'init': self.CSGM_init,
'read': self.CSGM_all,
'fields': ['count', 'voltage'],
'min': [0, 0],
'max': [65535, 1000],
'config': [{
'name': 'Set Voltage',
'widget': 'spinbox',
'min': 0,
'max': 900,
'readbackfunction': self.CSGM_voltage,
'function': self.CSGM_config
}, {
'name': 'Set Time Limit(0 for inf)',
'widget': 'spinbox',
'min': 0,
'max': 9000,
'function': self.CSGM_timelimit
},
{
'name': 'Save To Flash',
'widget': 'button',
'function': self.CSGM_save
}, {
'name': 'Start',
'widget': 'button',
'function': self.CSGM_start
},
{
'name': 'Stop',
'widget': 'button',
'function': self.CSGM_stop
},
{
'name': 'Reset',
'widget': 'button',
'function': self.CSGM_reset
}
]},
'BH1750': {
'address': [35],
'name': 'BH1750 Luminosity Sensor',
'init': self.BH1750_init,
'read': self.BH1750_all,
'fields': ['luminosity(mLx)'],
'min': [0, 0],
'max': [32767],
'config': [{
'name': 'sensitivity',
'options': ['500mLx', '1000mLx', '4000mLx'],
'function': self.BH1750_gain
}
]},
'TSL2561': {
'address': [0x29, 0x39, 0x49],
'name': 'TSL2561 Luminosity Sensor',
'init': self.TSL2561_init,
'read': self.TSL2561_all,
'fields': ['total', 'IR'],
'min': [0, 0],
'max': [2 ** 15, 2 ** 15],
'config': [{
'name': 'gain',
'options': ['1x', '16x'],
'function': self.TSL2561_gain
},
{
'name': 'Integration Time',
'options': ['3 mS', '101 mS', '402 mS'],
'function': self.TSL2561_timing
}
]},
'AHT21B': {
'address': [56],
'name': 'AHT21B Humidity and Temperature',
'init': self.AHT21B_init,
'read': self.AHT21B_all,
'fields': ['%%RH', 'T'],
'min': [0, -20, ],
'max': [100, 100]
},
'HMC5883L': {
'address': [0x1E, 0x3D, 0x3C],
'name': 'HMC5883L 3 Axis Magnetometer ',
'init': self.HMC5883L_init,
'read': self.HMC5883L_all,
'fields': ['Mx', 'My', 'Mz'],
'min': [-8, -8, -8],
'max': [8, 8, 8]
},
'QMC3883': {
'address': [0x13],
'name': 'QMC5883L 3 Axis Magnetometer ',
'init': self.QMC5883L_init,
'read': self.QMC5883L_all,
'fields': ['Mx', 'My', 'Mz'],
'min': [-8, -8, -8],
'max': [8, 8, 8],
'config': [{
'name': 'range',
'options': ['2g', '8g'],
'function': self.QMC_RANGE
}
]},
'ADS1115': {
'address': [0x48, 0x49, 0x4A, 0x4B],
'name': 'ADS1115',
'init': self.ADS1115_init,
'read': self.ADS1115_read,
'fields': ['Voltage'],
'min': [-20],
'max': [20],
'config': [{
'name': 'channel',
'options': ['UNI_0', 'UNI_1', 'UNI_2', 'UNI_3', 'DIFF_01', 'DIFF_23'],
'function': self.ADS1115_channel
},
{
'name': 'Data Rate',
'options': ['8', '16', '32', '64', '128', '250', '475', '860'],
'function': self.ADS1115_rate
},
{
'name': 'Gain',
'options': ['GAIN_TWOTHIRDS', 'GAIN_ONE', 'GAIN_TWO', 'GAIN_FOUR', 'GAIN_EIGHT',
'GAIN_SIXTEEN'],
'function': self.ADS1115_gain
}
]},
'MPU6050': {
'address': [0x68, 0x69],
'name': 'MPU6050 3 Axis Accelerometer and Gyro (Ax, Ay, Az, Temp, Gx, Gy, Gz) ',
'init': self.MPU6050_init,
'read': self.MPU6050_all,
'fields': ['Ax', 'Ay', 'Az', 'Temp', 'Gx', 'Gy', 'Gz'],
'min': [-1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15, 0, -1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15],
'max': [2 ** 15, 2 ** 15, 2 ** 15, 2 ** 16, 2 ** 15, 2 ** 15, 2 ** 15],
'config': [{
'name': 'Gyroscope Range',
'options': ['250', '500', '1000', '2000'],
'function': self.MPU6050_gyro_range
},
{
'name': 'Accelerometer Range',
'options': ['2x', '4x', '8x', '16x'],
'function': self.MPU6050_accel_range
},
{
'name': 'Kalman',
'options': ['OFF', '0.001', '0.01', '0.1', '1', '10'],
'function': self.MPU6050_kalman_set
}
]},
'BMP180': {
'address': [0x77],
'name': 'BMP180 Pressure and Temperature sensor',
'init': self.BMP180_init,
'read': self.BMP180_all,
'fields': ['Pressure', 'Temp'],
'min': [0, 0],
'max': [1600, 100],
'config': [{
'name': 'Oversampling',
'options': ['0', '1', '2', '3'],
'function': self.BMP180_setOversampling
}]
},
'BMP280': {
'address': [0x76],
'name': 'BMP280 Pressure and Temperature sensor',
'init': self.BMP280_init,
'read': self.BMP280_all,
'fields': ['Pressure', 'Temp', 'rH %%'],
'min': [0, 0, 0],
'max': [1600, 100, 100],
},
'AK8963': { # 0xc
'address': [12],
'name': 'AK8963 Mag',
'init': self.AK8963_init,
'read': self.AK8963_all,
'fields': ['X', 'Y', 'Z'],
'min': [-32767, -32767, -32767],
'max': [32767, 32767, 32767],
},
'MS5611': {
'address': [119],
'name': 'MS5611 Pressure and Temperature Sensor',
'init': self.MS5611_init,
'read': self.MS5611_all,
'fields': ['Pressure', 'Temp', 'Alt'],
'min': [0, 0, 0],
'max': [1600, 100, 10],
},
'INA3221': { # A0 pin connected to Vs . Otherwise address 0x40 conflicts with PCA board.
'address': [0x40, 0x41],
'name': 'INA3221 Current Sensor',
'init': self.INA3221_init,
'read': self.INA3221_all,
'fields': ['CH1', 'CH2', 'CH3'],
'min': [0, 0, 0],
'max': [1000, 1000, 1000],
},
'TSL2591': {
'address': [0x29],
'name': 'TSL2591 Luminosity Sensor',
'init': self.TSL2591_init,
'read': self.TSL2591_all,
'fields': ['Raw', 'full', 'IR'],
'min': [0, 0, 0],
'max': [37889, 88000, 88000],
'config': [{
'name': 'gain',
'options': ['1x', '25x', '428x', '9876x'],
'function': self.TSL2591_gain
},
{
'name': 'Integration Time',
'options': ['100 mS', '200 mS', '300 mS', '400 mS', '500 mS', '600 mS'],
'function': self.TSL2591_timing
}
]},
'VL53L0X': { # VL53L0X.
'address': [0x29],
'name': 'VL53L0X time of flight sensor',
'init': self.VL53L0X_init,
'read': self.VL53L0X_all,
'fields': ['mm'],
'min': [0],
'max': [1000],
},
'MLX90614': {
'address': [0x5A],
'name': 'MLX90614 Passive IR thermometer',
'init': self.MLX90614_init,
'read': self.MLX90614_all,
'fields': ['TEMP'],
'min': [0],
'max': [350]},
'MPR1221': { # Overrides MLX(0x5A). revise this address:sensor map to sensor:[addr.., options] map
'address': [0x5A],
'name': 'MPR1221 capacitive touch sensor',
'init': self.MPR121_init,
'read': self.MPR121_all,
'fields': ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'],
'min': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'max': [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]},
'PCF_LCD': {
'address': [39,63],
'name': 'PCF_LCD: I2C LCD Display',
'init': self.PCF_LCD_init,
'read': self.PCF_LCD_all,
'fields': ['Dummy'],
'min': [0],
'max': [1],
'config': [{
'name': 'text',
'options': self.PCF_text_options,
'function': self.PCF_LCD_text
},
{
'name': 'row',
'options': ['1', '2'],
'function': self.PCF_LCD_row
}
]}
}
self.controllers = {
self.MCP5725_ADDRESS: {
'name': 'MCP4725',
'init': self.MCP4725_init,
'write': [['CH0', 0, 4095, 0, self.MCP4725_set]],
},
}
self.special = {
0x40: {
'name': 'PCA9685 PWM',
'init': self.PCA9685_init,
'write': [['Channel 1', 0, 180, 90, functools.partial(self.PCA9685_set, 1)],
# name, start, stop, default, function
['Channel 2', 0, 180, 90, functools.partial(self.PCA9685_set, 2)],
['Channel 3', 0, 180, 90, functools.partial(self.PCA9685_set, 3)],
['Channel 4', 0, 180, 90, functools.partial(self.PCA9685_set, 4)],
['Channel 5', 0, 180, 90, functools.partial(self.PCA9685_set, 5)],
['Channel 6', 0, 180, 90, functools.partial(self.PCA9685_set, 6)],
['Channel 7', 0, 180, 90, functools.partial(self.PCA9685_set, 7)],
['Channel 8', 0, 180, 90, functools.partial(self.PCA9685_set, 8)],
],
}
}
self.connected = False
self.sensormap = {}
self.addressmap = {}
for a in range(128):
self.sensormap[a] = []
for a in self.namedsensors:
for addr in self.namedsensors[a]['address']:
self.sensormap[addr].append(a)
if addr in self.addressmap:
self.addressmap[addr] += '/' + a
else:
self.addressmap[addr] = a
if 'port' in kwargs:
self.portname = kwargs.get('port', None)
try:
self.fd, self.version, self.connected = self.connectToPort(self.portname)
if self.connected:
# self.fd.setRTS(0)
if self.nano:
self.REGS = REGISTERS.VERSIONS[self.version][
'REGISTERS'] # A map of alphanumeric port names to the 8-bit register locations
self.REGSTATES = {} # Store the last written state of the registers
self.SPECIALS = REGISTERS.VERSIONS[self.version]['SPECIALS']
for a in ['B', 'C', 'D']: # Initialize all inputs
self.setReg('DDR' + a, 0) # All inputs
self.setReg('PORT' + a, 0) # No Pullup
self.setReg('PORTC', (1 << 4) | (1 << 5)) # I2C Pull-Up
else:
for a in ['A', 'B', 'C', 'D']: # Initialize all inputs
self.setReg('DDR' + a, 0)
return
except Exception as ex:
print('Failed to connect to ', self.portname, ex.message)
elif kwargs.get('autoscan', False): # Scan and pick a port
portList = getFreePorts()
for a in portList:
if portList[a]:
try:
self.portname = a
self.fd, self.version, self.connected = self.connectToPort(self.portname)
if self.connected:
# self.fd.setRTS(0)
if self.nano:
print('kuttypy nano with version', self.version)
self.REGS = REGISTERS.VERSIONS[self.version][
'REGISTERS'] # A map of alphanumeric port names to the 8-bit register locations
self.REGSTATES = {} # Store the last written state of the registers
self.SPECIALS = REGISTERS.VERSIONS[self.version]['SPECIALS']
for a in ['B', 'C', 'D']: # Initialize all inputs
self.setReg('DDR' + a, 0) # All inputs
self.setReg('PORT' + a, 0) # No Pullup
self.setReg('PORTC', (1 << 4) | (1 << 5)) # I2C Pull-Up
else:
for a in ['A', 'B', 'C', 'D']: # Initialize all inputs
self.setReg('DDR' + a, 0) # All inputs
self.setReg('PORT' + a, 0) # No Pullup
self.setReg('PORTC', 3) # I2C Pull-Up
return
except Exception as e:
print(e)
else:
print(a, ' is busy')
def __get_version__(self, fd):
fd.flush()
if self.bootloaderfirmware:
fd.setRTS(0)
fd.setDTR(0)
time.sleep(0.01)
fd.setRTS(1)
fd.setDTR(1)
st = time.time()
while fd.in_waiting:
fd.read(fd.in_waiting)
time.sleep(max(0, 0.25 - (time.time() - st)))
fd.write(self.GET_VERSION)
x = fd.read()
return x
def get_version(self):
return self.__get_version__(self.fd)
def connectToPort(self, portname):
'''
connect to a port, and check for the right version
'''
try:
if 'inux' in platform.system(): # Linux based system
try:
# try to lock down the serial port
import socket
self.blockingSocket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
self.blockingSocket.bind('\0eyesj2%s' % portname)
self.blockingSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
if 'rfcomm' in portname:
self.BAUD = 9600
fd = serial.Serial(portname, self.BAUD, timeout=0.2)
if not fd.isOpen():
return None, '', False
except socket.error as e:
# print ('Port {0} is busy'.format(portname))
return None, '', False
# raise RuntimeError("Another program is using %s (%d)" % (portname) )
else:
fd = serial.Serial(portname, self.BAUD, timeout=0.5)
# print ('not on linux',platform.system())
if (fd.in_waiting):
fd.flush()
fd.readall()
except serial.SerialException as ex:
print('Port {0} is unavailable: {1}'.format(portname, ex))
return None, '', False
version = self.__get_version__(fd)
self.nano = False
if len(version) == 1:
if ord(version) == ord(self.VERSIONNUM):
return fd, ord(version), True
elif ord(version) in [ord(self.VERSIONNUM_168P), ord(self.VERSIONNUM_328P),
ord(self.VERSIONNUM_UNO)]: # assume it is mega32. will work with glitches
self.nano = True
return fd, ord(self.VERSIONNUM), True
elif ord(version) in [42]: # bluetooth
self.nano = True
self.bootloaderfirmware = False
print('Bluetooth Enabled', portname, self.BAUD, ord(version), 'bootfirm:', self.bootloaderfirmware)
return fd, ord(self.VERSIONNUM_328P), True
print('version check failed', len(version), ord(version))
return None, '', False
def close(self):
self.fd.close()
self.portname = None
self.connected = False
if self.blockingSocket:
self.blockingSocket.shutdown(1)
self.blockingSocket.close()
self.blockingSocket = None
def __sendByte__(self, val):
"""
transmits a BYTE
val - byte to send
"""
# print (val)
try:
if type(val) == int:
#print('w',val)
self.fd.write(Byte.pack(val))
else:
self.fd.write(val)
except:
self.connected = False
def __getByte__(self):
"""
reads a byte from the serial port and returns it
"""
try:
ss = self.fd.read(1)
#print('r', ss)
except:
self.connected = False
print('No byte received. Disconnected?', time.ctime())
return 0
if len(ss):
return Byte.unpack(ss)[0]
else:
print('byte communication error.', time.ctime())
self.get_version()
return None
def setReg(self, reg, data):
# print(reg,data)
if reg not in self.REGS and type(reg) == str: return False
self.REGSTATES[reg] = data
self.__sendByte__(self.WRITEB)
if reg in self.REGS:
self.__sendByte__(self.REGS[reg])
else:
# print('missing register',reg)
self.__sendByte__(reg)
self.__sendByte__(data)
def getReg(self, reg):
if (reg not in self.REGS) and type(reg) == str:
print('unknown register', reg)
return 0
self.__sendByte__(self.READB)
if reg in self.REGS:
self.__sendByte__(self.REGS[reg])
else:
# print('missing register',reg)
self.__sendByte__(reg)
val = self.__getByte__()
self.REGSTATES[reg] = val
return val
def readADC(self, ch): # Read the ADC channel
self.setReg(self.REGS['ADMUX'], 64 | ch)
self.setReg(self.REGS['ADCSRA'], 197) # Enable the ADC
low = self.getReg(self.REGS['ADCL'])
hi = self.getReg(self.REGS['ADCH'])
return (hi << 8) | low
'''
def writeEEPROM(self,data):
addr=0
for a in data:
timeout=20 #20mS
while ((self.getReg('EECR') & 2)):
timeout-=1
if timeout==0:
print ('wait timeout!')
break
time.sleep(0.001)
self.setReg('EEARL',addr)
self.setReg('EEARH',0)
self.setReg('EEDR',a)
self.setReg('EECR',4) ##EEMPE master write enable
self.setReg('EECR',6) # EEPE write
addr+=1
def readEEPROM(self,total):
addr=0; b = []
for a in range(total):
timeout=20 #20mS
while ((self.getReg('EECR') & 2)):
timeout-=1
if timeout==0:
print ('wait timeout!')
break
time.sleep(0.001)
self.setReg('EEARL',addr)
self.setReg('EEARH',0)
self.setReg('EECR',1) ##EERE. Read
b.append(self.getReg('EEDR'))
addr+=1
return b
'''
# I2C Calls. Will be replaced with firmware level implementation
'''
def initI2C(self): # Initialize I2C
self.setReg('TWSR',0x00)
self.setReg('TWBR',0x46)
self.setReg('TWCR',0x04)
def startI2C(self):
self.setReg('TWCR',(1<<7)|(1<<5) | (1<<2))
timeout=10 #20mS
time.sleep(0.001)
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
print('waiy')
if timeout==0:
print('start timeout')
break
time.sleep(0.001)
def stopI2C(self):
self.setReg('TWCR',(1<<7) | (1<<4) | (1<<2))
timeout=10 #20mS
time.sleep(0.001)
def writeI2C(self,val):
self.setReg('TWDR',val)
self.setReg('TWCR',(1<<7) | (1<<2))
timeout=20 #20mS
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
if timeout==0:
print ('write timeout')
break
time.sleep(0.001)
def readI2C(self,ack):
self.setReg('TWCR',(1<<7) | (1<<2) | (ack<<6))
timeout=20 #20mS
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
if timeout==0:
print ('read timeout')
break
time.sleep(0.001)
if timeout:
return self.getReg('TWDR')
else:
return None
def I2CWriteBulk(self,address,bytestream):
# Individual register write based writing. takes a few hundred milliseconds
self.startI2C()
self.writeI2C(address<<1)
for a in bytestream:
self.writeI2C(a)
self.stopI2C()
def I2CReadBulk(self,address,register,total):
# Individual register write based reading. takes a few hundred milliseconds
self.startI2C()
self.writeI2C(address<<1)
self.writeI2C(register)
self.startI2C()
self.writeI2C((address<<1)|1) #Read
b=[]
for a in range(total-1):
b.append(self.readI2C(1) )
b.append(self.readI2C(0))
self.stopI2C()
return b
# Individual register write based scan. takes a few seconds
def I2CScan(self):
found = []
for a in range(127):
self.startI2C()
time.sleep(0.005)
self.writeI2C(a<<1)
time.sleep(0.005)
if self.getReg('TWSR') == 0x18:
found.append(a)
self.stopI2C()
return found
'''
def I2CScan(self):
self.__sendByte__(self.I2C_SCAN)
addrs = []
val = self.__getByte__()
if val is None:
return []
while val < 254:
addrs.append(val)
val = self.__getByte__()
if (val == 254):
print('timed out')
else:
print('completed')
self.setReg('TWBR',0xFF) #I2C speed minimal. testing purposes
return addrs
def I2CWriteBulk(self, address, bytestream):
self.__sendByte__(self.I2C_WRITE)
self.__sendByte__(address) # address
self.__sendByte__(len(bytestream)) # Total bytes to write. <=255
for a in bytestream:
self.__sendByte__(Byte.pack(a))
tmt = self.__getByte__()
if tmt:
return True # Hasn't Timed out.
else:
return False # Timeout occured
def I2CReadBulk(self, address, register, total):
self.__sendByte__(self.I2C_READ)
self.__sendByte__(address) # address
self.__sendByte__(register) # device register address
self.__sendByte__(total) # Total bytes to read. <=255
data = []
for a in range(total):
val = self.__getByte__()
data.append(val)
tmt = self.__getByte__()
return data, True if not tmt else False
####################### CSPARK GM COUNTER ###############
CSGM_ADDRESS = 0x10
CSGM_START_LOCATION = 100
CSGM_STOP_LOCATION = 101
CSGM_RESET_LOCATION = 102
CSGM_SAVE_LOCATION = 103
CSGM_VOLTS_READ_LOCATION = 104
CSGM_VOLTS_WRITE_LOCATION = 105
CSGM_COUNT_READ_LOCATION = 106
CSGM_TIMELIMIT_WRITE = 107
def set_device(self, d):
self.p = d
def CSGM_init(self, **kwargs):
self.CSGM_ADDRESS = kwargs.get('address', self.CSGM_ADDRESS)
def CSGM_all(self):
retlist = []
vals = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_COUNT_READ_LOCATION, 4)
if vals:
if len(vals) >= 4:
retlist.append((vals[3] << 24) | (vals[2] << 16) | (vals[1] << 8) | vals[0]) # long
vals2, tmt = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_VOLTS_READ_LOCATION, 2)
if not tmt:
if len(vals2) == 2:
retlist.append((vals2[1] << 8) | vals2[0])
# print(retlist, vals, vals2)
return retlist
return False
def CSGM_voltage(self, **kwargs):
self.CSGM_ADDRESS = kwargs.get('address', self.CSGM_ADDRESS)
vals, tmt = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_VOLTS_READ_LOCATION, 2)
if not tmt:
if len(vals) == 2:
# print('readback:', (vals[1] << 8) | vals[0])
return (vals[1] << 8) | vals[0]
else:
return 0
else:
return False
def CSGM_config(self, volts):
self.I2CWriteBulk(self.CSGM_ADDRESS,
[self.CSGM_VOLTS_WRITE_LOCATION, int(volts) & 0xFF, int(volts >> 8) & 0xFF])
def CSGM_timelimit(self, t):
t = int(t)
self.I2CWriteBulk(self.CSGM_ADDRESS,
[self.CSGM_TIMELIMIT_WRITE, int(t) & 0xFF, int(t >> 8) & 0xFF])
def CSGM_start(self):
self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_START_LOCATION])
def CSGM_stop(self):
self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_STOP_LOCATION])
def CSGM_reset(self):
self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_RESET_LOCATION])
def CSGM_save(self):
self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_SAVE_LOCATION])
time.sleep(0.1) # Wait for save.
class KalmanFilter(object):
'''
Credits:http://scottlobdell.me/2014/08/kalman-filtering-python-reading-sensor-input/
'''
def __init__(self, var, est, initial_values): # var = process variance. est = estimated measurement var
self.var = np.array(var)
self.est = np.array(est)
self.posteri_estimate = np.array(initial_values)
self.posteri_error_estimate = np.ones(len(var), dtype=np.float16)
def input(self, vals):
vals = np.array(vals)
priori_estimate = self.posteri_estimate
priori_error_estimate = self.posteri_error_estimate + self.var
blending_factor = priori_error_estimate / (priori_error_estimate + self.est)
self.posteri_estimate = priori_estimate + blending_factor * (vals - priori_estimate)
self.posteri_error_estimate = (1 - blending_factor) * priori_error_estimate
def output(self):
return self.posteri_estimate
MPU6050_kalman = 0
MPU6050_address = 0x68
def MPU6050_init(self, **kwargs):
self.MPU6050_address = kwargs.get('address', self.MPU6050_address)
self.I2CWriteBulk(0x68, [0x1B, 0 << 3]) # Gyro Range . 250
self.I2CWriteBulk(0x68, [0x1C, 0 << 3]) # Accelerometer Range. 2
self.I2CWriteBulk(0x68, [0x6B, 0x00]) # poweron
v, tmt = self.I2CReadBulk(0x68, 0x75, 1)
self.mag = False
if v[0] in [0x71, 0x73]: # MPU9255, MPU9250. Has magnetometer. Enable it.
self.mag = True
self.I2CWriteBulk(0x68,
[0x37, 0x22]) # INT_PIN_CFG . I2C passthrough enabled. Rescan to detect magnetometer.
def MPU6050_gyro_range(self, val):
self.I2CWriteBulk(0x68,
[0x1B, val << 3]) # Gyro Range . 250,500,1000,2000 -> 0,1,2,3 -> shift left by 3 positions
def MPU6050_accel_range(self, val):
print(val)
self.I2CWriteBulk(0x68,
[0x1C, val << 3]) # Accelerometer Range. 2,4,8,16 -> 0,1,2,3 -> shift left by 3 positions
def MPU6050_kalman_set(self, val):
if not val:
self.MPU6050_kalman = 0
return
noise = []
for a in range(50):
noise.append(np.array(self.MPU6050_all(disableKalman=True)))
noise = np.array(noise)
self.MPU6050_kalman = self.KalmanFilter(1e6 * np.ones(noise.shape[1]) / (10 ** val), np.std(noise, 0) ** 2,
noise[-1])
def MPU6050_accel(self):
b, tmt = self.I2CReadBulk(0x68, 0x3B, 6)
if tmt: return None
if None not in b:
return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(3)] # X,Y,Z
def MPU6050_gyro(self):
b, tmt = self.I2CReadBulk(0x68, 0x3B + 6, 6)
if tmt: return None
if None not in b:
return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(3)] # X,Y,Z
def MPU6050_all(self, disableKalman=False):
'''
returns a 7 element list. Ax,Ay,Az,T,Gx,Gy,Gz
returns None if communication timed out with I2C sensor
disableKalman can be set to True if Kalman was previously enabled.
'''
b, tmt = self.I2CReadBulk(0x68, 0x3B, 14)
if tmt: return None
if None not in b:
if (not self.MPU6050_kalman) or disableKalman:
return [np.int32(signit((b[x * 2] << 8) | b[x * 2 + 1])) for x in range(7)] # Ax,Ay,Az, Temp, Gx, Gy,Gz
else:
self.MPU6050_kalman.input([np.int16(signit((b[x * 2] << 8) | b[x * 2 + 1])) for x in range(7)])
return self.MPU6050_kalman.output()
######## AK8963 magnetometer attacched to MPU925x #######
AK8963_ADDRESS = 0x0C
_AK8963_CNTL = 0x0A
def AK8963_init(self, **kwargs):
self.AK8963_ADDRESS = kwargs.get('address', self.AK8963_ADDRESS)
self.I2CWriteBulk(self.AK8963_ADDRESS, [self._AK8963_CNTL, 0]) # power down mag
self.I2CWriteBulk(self.AK8963_ADDRESS,
[self._AK8963_CNTL, (1 << 4) | 6]) # mode (0=14bits,1=16bits) <<4 | (2=8Hz , 6=100Hz)
def AK8963_all(self, disableKalman=False):
vals, tmt = self.I2CReadBulk(self.AK8963_ADDRESS, 0x03,
7) # 6+1 . 1(ST2) should not have bit 4 (0x8) true. It's ideally 16 . overflow bit
if tmt: return None
ax, ay, az = struct.unpack('hhh', bytes(vals[:6]))
if not vals[6] & 0x08:
return [ax, ay, az]
else:
return None
########## BMP180 ##############
BMP180_ADDRESS = 0x77
BMP180_REG_CONTROL = 0xF4
BMP180_REG_RESULT = 0xF6
BMP180_CMD_TEMP = 0x2E
BMP180_CMD_P0 = 0x34
BMP180_CMD_P1 = 0x74
BMP180_CMD_P2 = 0xB4
BMP180_CMD_P3 = 0xF4
BMP180_oversampling = 0
BMP180_NUMPLOTS = 2
BMP180_PLOTNAMES = ['Temperature', 'Pressure', 'Altitude']
BMP180_name = 'Altimeter BMP180'
BMP180_params = {'setOversampling': [0, 1, 2, 3]}
BMP180_c3 = 0
BMP180_c4 = 0
BMP180_b1 = 0
BMP180_c5 = 0
BMP180_c6 = 0
BMP180_mc = 0
BMP180_md = 0
BMP180_x0 = 0
BMP180_x1 = 0
BMP180_x2 = 0
BMP180_y0 = 0
BMP180_y1 = 0
BMP180_y2 = 0
BMP180_p0 = 0
BMP180_p1 = 0
BMP180_p2 = 0
BMP180_P = 1000
BMP180_T = 25
def BMP180_init(self, **kwargs):
self.BMP180_ADDRESS = kwargs.get('address', self.BMP180_ADDRESS)
MB = self.__readInt__(0xBA)
self.BMP180_c3 = 160.0 * pow(2, -15) * self.__readInt__(0xAE)
self.BMP180_c4 = pow(10, -3) * pow(2, -15) * self.__readUInt__(0xB0)
self.BMP180_b1 = pow(160, 2) * pow(2, -30) * self.__readInt__(0xB6)
self.BMP180_c5 = (pow(2, -15) / 160) * self.__readUInt__(0xB2)
self.BMP180_c6 = self.__readUInt__(0xB4)
self.BMP180_mc = (pow(2, 11) / pow(160, 2)) * self.__readInt__(0xBC)
self.BMP180_md = self.__readInt__(0xBE) / 160.0
self.BMP180_x0 = self.__readInt__(0xAA)
self.BMP180_x1 = 160.0 * pow(2, -13) * self.__readInt__(0xAC)
self.BMP180_x2 = pow(160, 2) * pow(2, -25) * self.__readInt__(0xB8)
self.BMP180_y0 = self.BMP180_c4 * pow(2, 15)
self.BMP180_y1 = self.BMP180_c4 * self.BMP180_c3
self.BMP180_y2 = self.BMP180_c4 * self.BMP180_b1
self.BMP180_p0 = (3791.0 - 8.0) / 1600.0
self.BMP180_p1 = 1.0 - 7357.0 * pow(2, -20)
self.BMP180_p2 = 3038.0 * 100.0 * pow(2, -36)
self.BMP180_T = 25
print('calib:', self.BMP180_x0, self.BMP180_x1, self.BMP180_x2,
self.BMP180_y0, self.BMP180_y1, self.BMP180_p0, self.BMP180_p1, self.BMP180_p2)
self.BMP180_initTemperature()
self.BMP180_readTemperature()
self.BMP180_initPressure()
def __readInt__(self, addr):
return np.int16(signit(self.__readUInt__(addr)))
def __readUInt__(self, addr):
vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, addr, 2)
v = 1. * ((vals[0] << 8) | vals[1])
return v
def BMP180_initTemperature(self):
self.I2CWriteBulk(self.BMP180_ADDRESS, [self.BMP180_REG_CONTROL, self.BMP180_CMD_TEMP])
time.sleep(0.005)
def BMP180_readTemperature(self):
vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, self.BMP180_REG_RESULT, 2)
if tmt: return None
if vals:
if len(vals) == 2:
T = (vals[0] << 8) + vals[1]
a = self.BMP180_c5 * (T - self.BMP180_c6)
self.BMP180_T = a + (self.BMP180_mc / (a + self.BMP180_md))
return self.BMP180_T
return None
def BMP180_setOversampling(self, num):
self.BMP180_oversampling = int(num)
def BMP180_initPressure(self):
os = [0x34, 0x74, 0xb4, 0xf4]
delays = [0.005, 0.008, 0.014, 0.026]
self.I2CWriteBulk(self.BMP180_ADDRESS, [self.BMP180_REG_CONTROL, os[self.BMP180_oversampling]])
time.sleep(delays[self.BMP180_oversampling])
def BMP180_readPressure(self):
vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, self.BMP180_REG_RESULT, 3)
if tmt:
return None
if len(vals) == 3:
P = 1. * (vals[0] << 8) + vals[1] + (vals[2] / 256.0)
s = self.BMP180_T - 25.0
x = (self.BMP180_x2 * pow(s, 2)) + (self.BMP180_x1 * s) + self.BMP180_x0
y = (self.BMP180_y2 * pow(s, 2)) + (self.BMP180_y1 * s) + self.BMP180_y0
z = (P - x) / y
self.BMP180_P = (self.BMP180_p2 * pow(z, 2)) + (self.BMP180_p1 * z) + self.BMP180_p0
return self.BMP180_P
else:
return None
def BMP180_sealevel(self, P, A):
'''
given a calculated pressure and altitude, return the sealevel
'''
return P / pow(1 - (A / 44330.0), 5.255)
def BMP180_all(self):
self.BMP180_initTemperature()
self.BMP180_readTemperature()
self.BMP180_initPressure()
self.BMP180_readPressure()
return [self.BMP180_P, self.BMP180_T]
####### BMP280 ###################
# https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
## Partly from https://github.com/farmerkeith/BMP280-library/blob/master/farmerkeith_BMP280.cpp
BMP280_ADDRESS = 118
BMP280_REG_CONTROL = 0xF4
BMP280_REG_RESULT = 0xF6
BMP280_HUMIDITY_ENABLED = False
_BMP280_humidity_calib = [0] * 6
BMP280_oversampling = 0
_BMP280_PRESSURE_MIN_HPA = 0
_BMP280_PRESSURE_MAX_HPA = 1600
_BMP280_sea_level_pressure = 1013.25 # for calibration.. from circuitpython library
def BMP280_init(self, **kwargs):
self.BMP280_ADDRESS = kwargs.get('address', self.BMP280_ADDRESS)
b = self.I2CWriteBulk(self.BMP280_ADDRESS, [0xE0, 0xB6]) # reset
time.sleep(0.1)
self.BMP280_HUMIDITY_ENABLED = False
b, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xD0, 1)
print(b)
if b is None: return None
b = b[0]
if b in [0x58, 0x56, 0x57]:
print('BMP280. ID:', b)
elif b == 0x60:
self.BMP280_HUMIDITY_ENABLED = True
print('BME280 . includes humidity')
else:
print('ID unknown', b)
# get calibration data
b, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0x88, 24) # 24 bytes containing calibration data
coeff = list(struct.unpack('<HhhHhhhhhhhh', bytes(b)))
coeff = [float(i) for i in coeff]
self._BMP280_temp_calib = coeff[:3]
self._BMP280_pressure_calib = coeff[3:]
self._BMP280_t_fine = 0.
if self.BMP280_HUMIDITY_ENABLED:
self.I2CWriteBulk(self.BMP280_ADDRESS, [0xF2, 0b101]) # ctrl_hum. oversampling x 16
# humidity calibration read
self._BMP280_humidity_calib = [0] * 6
val, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xA1, 1)
self._BMP280_humidity_calib[0] = val[0] # H1
coeff, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xE1, 7)
coeff = list(struct.unpack('<hBbBbb', bytes(coeff)))
self._BMP280_humidity_calib[1] = float(coeff[0])
self._BMP280_humidity_calib[2] = float(coeff[1])
self._BMP280_humidity_calib[3] = float((coeff[2] << 4) | (coeff[3] & 0xF))
self._BMP280_humidity_calib[4] = float((coeff[4] << 4) | (coeff[3] >> 4))
self._BMP280_humidity_calib[5] = float(coeff[5])
print('calibration data: ', self._BMP280_temp_calib, self._BMP280_humidity_calib)
self.I2CWriteBulk(self.BMP280_ADDRESS, [0xF4, 0xFF]) # ctrl_meas (oversampling of pressure, temperature)
def _BMP280_calcTemperature(self, adc_t):
v1 = (adc_t / 16384.0 - self._BMP280_temp_calib[0] / 1024.0) * self._BMP280_temp_calib[1]
v2 = ((adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0) * (
adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0)) * self._BMP280_temp_calib[2]
self._BMP280_t_fine = int(v1 + v2)
return (v1 + v2) / 5120.0 # actual temperature.
def _BMP280_calcPressure(self, adc_p, adc_t):
self._BMP280_calcTemperature(adc_t) # t_fine has been set now.
# Algorithm from the BMP280 driver. adapted from adafruit adaptation
# https://github.com/BoschSensortec/BMP280_driver/blob/master/bmp280.c
var1 = self._BMP280_t_fine / 2.0 - 64000.0
var2 = var1 * var1 * self._BMP280_pressure_calib[5] / 32768.0
var2 = var2 + var1 * self._BMP280_pressure_calib[4] * 2.0
var2 = var2 / 4.0 + self._BMP280_pressure_calib[3] * 65536.0
var3 = self._BMP280_pressure_calib[2] * var1 * var1 / 524288.0
var1 = (var3 + self._BMP280_pressure_calib[1] * var1) / 524288.0
var1 = (1.0 + var1 / 32768.0) * self._BMP280_pressure_calib[0]
if not var1:
return _BMP280_PRESSURE_MIN_HPA
pressure = 1048576.0 - adc_p
pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1
var1 = self._BMP280_pressure_calib[8] * pressure * pressure / 2147483648.0
var2 = pressure * self._BMP280_pressure_calib[7] / 32768.0
pressure = pressure + (var1 + var2 + self._BMP280_pressure_calib[6]) / 16.0
pressure /= 100
if pressure < self._BMP280_PRESSURE_MIN_HPA:
return self._BMP280_PRESSURE_MIN_HPA
if pressure > self._BMP280_PRESSURE_MAX_HPA:
return self._BMP280_PRESSURE_MAX_HPA
return pressure
def _BMP280_calcHumidity(self, adc_h, adc_t):
self._BMP280_calcTemperature(adc_t) # t fine set.
var1 = float(self._BMP280_t_fine) - 76800.0
var2 = (self._BMP280_humidity_calib[3] * 64.0 + (self._BMP280_humidity_calib[4] / 16384.0) * var1)
var3 = adc_h - var2
var4 = self._BMP280_humidity_calib[1] / 65536.0
var5 = (1.0 + (self._BMP280_humidity_calib[2] / 67108864.0) * var1)
var6 = 1.0 + (self._BMP280_humidity_calib[5] / 67108864.0) * var1 * var5
var6 = var3 * var4 * (var5 * var6)
humidity = var6 * (1.0 - self._BMP280_humidity_calib[0] * var6 / 524288.0)
if humidity > 100:
return 100
if humidity < 0:
return 0
return humidity
def BMP280_all(self):
if self.BMP280_HUMIDITY_ENABLED:
data, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xF7, 8)
else:
data, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xF7, 6)
# os = [0x34,0x74,0xb4,0xf4]
# delays=[0.005,0.008,0.014,0.026]
# self.I2CWriteBulk(self.BMP280_ADDRESS,[self.BMP280_REG_CONTROL,os[self.BMP280_oversampling] ])
# time.sleep(delays[self.BMP280_oversampling])
if tmt: return None
if data is None: return None
if None not in data:
# Convert pressure and temperature data to 19-bits
adc_p = (((data[0] & 0xFF) * 65536.) + ((data[1] & 0xFF) * 256.) + (data[2] & 0xF0)) / 16.
adc_t = (((data[3] & 0xFF) * 65536.) + ((data[4] & 0xFF) * 256.) + (data[5] & 0xF0)) / 16.
if self.BMP280_HUMIDITY_ENABLED:
adc_h = (data[6] * 256.) + data[7]
return [self._BMP280_calcPressure(adc_p, adc_t), self._BMP280_calcTemperature(adc_t),
self._BMP280_calcHumidity(adc_h, adc_t)]
else:
return [self._BMP280_calcPressure(adc_p, adc_t), self._BMP280_calcTemperature(adc_t), 0]
return None
# BH1750
BH1750_GAIN = 0x11 # 0x11=500 , 0x10 = 1000, 0x13 = 4000mLx
BH1750_ADDRESS = 35
BH1750_SCALING = 1.0
def BH1750_init(self, **kwargs):
self.BH1750_ADDRESS = kwargs.get('address', self.BH1750_ADDRESS)
self.BH1750_gain(0) # 500mLx range
time.sleep(0.1)
return self.BH1750_all()
def BH1750_gain(self, gain):
self.BH1750_GAIN = [0x11, 0x10, 0x13][gain]
if gain == 0: # 500 mLx
self.BH1750_SCALING = 1.
else: # 1000mLx or 4000mLx
self.BH1750_SCALING = 2.
self.I2CWriteBulk(self.BH1750_ADDRESS, [self.BH1750_GAIN]) # poweron
def BH1750_all(self):
'''
returns a 2 element list. total,IR
returns None if communication timed out with I2C sensor
'''
b, tmt = self.I2CReadBulk(self.BH1750_ADDRESS, 0x00, 2) #Todo. implement simpleread. 0x00 does nothing.
if tmt:
return None
if None not in b:
return [float((b[0] << 8) | b[1]) * self.BH1750_SCALING / 2.] # total lux
########## TCS34725 RGB sensor ###########
_TCS34725_COMMAND_BIT = 0x80
_TCS34725_REGISTER_STATUS = 0x13
_TCS34725_REGISTER_CDATA = 0x14
_TCS34725_REGISTER_RDATA = 0x16
_TCS34725_REGISTER_GDATA = 0x18
_TCS34725_REGISTER_BDATA = 0x1a
_TCS34725_REGISTER_ENABLE = 0x00
_TCS34725_REGISTER_ATIME = 0x01
_TCS34725_REGISTER_AILT = 0x04
_TCS34725_REGISTER_AIHT = 0x06
_TCS34725_REGISTER_ID = 0x12
_TCS34725_REGISTER_APERS = 0x0c
_TCS34725_REGISTER_CONTROL = 0x0f
_TCS34725_REGISTER_SENSORID = 0x12
_TCS34725_ENABLE_AIEN = 0x10
_TCS34725_ENABLE_WEN = 0x08
_TCS34725_ENABLE_AEN = 0x02
_TCS34725_ENABLE_PON = 0x01
_GAINS = (1, 4, 16, 60)
_CYCLES = (0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60)
_INTEGRATION_TIME_THRESHOLD_LOW = 2.4
_INTEGRATION_TIME_THRESHOLD_HIGH = 614.4
TCS34725_ADDRESS = 41
def TCS34725_init(self, **kwargs):
self.TCS34725_ADDRESS = kwargs.get('address', self.TCS34725_ADDRESS)
enable, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS,
self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ENABLE, 1)
enable = enable[0]
self.I2CWriteBulk(self.TCS34725_ADDRESS,
[self._TCS34725_REGISTER_ENABLE, enable | self._TCS34725_ENABLE_PON]) #
time.sleep(0.003)
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ENABLE,
enable | self._TCS34725_ENABLE_PON | self._TCS34725_ENABLE_AEN | self._TCS34725_ENABLE_AIEN]) #
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_APERS, 10])
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ATIME, 256 - 40])
def TCS34725_gain(self, g):
self.I2CWriteBulk(self.TCS34725_ADDRESS,
[self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_CONTROL, g]) # Gain
def TCS34725_all(self):
R, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_RDATA, 2)
G, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_GDATA, 2)
B, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_BDATA, 2)
if tmt: return None
return [R[0] | (R[1] << 8), G[0] | (G[1] << 8), B[0] | (B[1] << 8)]
def TCS34725_range(self):
pass
####### MS5611 Altimeter ###################
MS5611_ADDRESS = 119
def MS5611_init(self, **kwargs):
self.MS5611_ADDRESS = kwargs.get('address', self.MS5611_ADDRESS)
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x1E]) # reset
time.sleep(0.5)
self._MS5611_calib = np.zeros(6)
# calibration data.
# pressure gain, offset . T coeff of P gain, offset. Ref temp. T coeff of T. all unsigned shorts.
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA2, 2)
if tmt: return
self._MS5611_calib[0] = struct.unpack('!H', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA4, 2)
self._MS5611_calib[1] = struct.unpack('!H', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA6, 2)
self._MS5611_calib[2] = struct.unpack('!H', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA8, 2)
self._MS5611_calib[3] = struct.unpack('!H', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAA, 2)
self._MS5611_calib[4] = struct.unpack('!H', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAC, 2)
self._MS5611_calib[5] = struct.unpack('!H', bytes(b))[0]
print('Calibration for MS5611:', self._MS5611_calib)
#BMP180 pressure sensor
BMP180 = None
def BMP180_init(self, **kwargs):
import BMP180
self.BMP180 = BMP180.BMP180(self.I2CReadBulk, self.I2CWriteBulk)
def BMP180_all(self):
if self.BMP180 is not None:
return self.BMP180.getRaw()
def MS5611_all(self):
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x48]) # 0x48 Pressure conversion(OSR = 4096) command
time.sleep(0.01) # 10mS
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00, 3) # data.
D1 = b[0] * 65536 + b[1] * 256 + b[2] # msb2, msb1, lsb
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x58]) # 0x58 Temperature conversion(OSR = 4096) command
time.sleep(0.01)
b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00, 3) # data.
D2 = b[0] * 65536 + b[1] * 256 + b[2] # msb2, msb1, lsb
dT = D2 - self._MS5611_calib[4] * 256
TEMP = 2000 + dT * self._MS5611_calib[5] / 8388608
OFF = self._MS5611_calib[1] * 65536 + (self._MS5611_calib[3] * dT) / 128
SENS = self._MS5611_calib[0] * 32768 + (self._MS5611_calib[2] * dT) / 256
T2 = 0;
OFF2 = 0;
SENS2 = 0
if TEMP >= 2000:
T2 = 0
OFF2 = 0
SENS2 = 0
elif TEMP < 2000:
T2 = (dT * dT) / 2147483648
OFF2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 2
SENS2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 4
if TEMP < -1500:
OFF2 = OFF2 + 7 * ((TEMP + 1500) * (TEMP + 1500))
SENS2 = SENS2 + 11 * ((TEMP + 1500) * (TEMP + 1500)) / 2
TEMP = TEMP - T2
OFF = OFF - OFF2
SENS = SENS - SENS2
pressure = ((((D1 * SENS) / 2097152) - OFF) / 32768.0) / 100.0
cTemp = TEMP / 100.0
return [pressure, cTemp, 0]
### INA3221 3 channel , high side current sensor #############
INA3221_ADDRESS = 0x41
_INA3221_REG_CONFIG = 0x0
_INA3221_SHUNT_RESISTOR_VALUE = 0.1
_INA3221_REG_SHUNTVOLTAGE = 0x01
_INA3221_REG_BUSVOLTAGE = 0x02
def INA3221_init(self, **kwargs):
self.INA3221_ADDRESS = kwargs.get('address', self.INA3221_ADDRESS)
self.I2CWriteBulk(self.INA3221_ADDRESS, [self._INA3221_REG_CONFIG, 0b01110101, 0b00100111]) # cont shunt.
def INA3221_all(self):
I = [0., 0., 0.]
b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE, 2)
if tmt: return None
b[1] &= 0xF8;
I[0] = struct.unpack('!h', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE + 2, 2)
if tmt: return None
b[1] &= 0xF8;
I[1] = struct.unpack('!h', bytes(b))[0]
b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE + 4, 2)
if tmt: return None
b[1] &= 0xF8;
I[2] = struct.unpack('!h', bytes(b))[0]
return [0.005 * I[0] / self._INA3221_SHUNT_RESISTOR_VALUE, 0.005 * I[1] / self._INA3221_SHUNT_RESISTOR_VALUE,
0.005 * I[2] / self._INA3221_SHUNT_RESISTOR_VALUE]
### SHT21 HUMIDITY TEMPERATURE SENSOR #############
SHT21_ADDRESS = 0x41
_SHT21_TEMP = 0xf3
_SHT21_HUM = 0xf5
_SHT21_RESET = 0xFE
def SHT21_init(self, **kwargs):
self.SHT21_ADDRESS = kwargs.get('address', self.SHT21_ADDRESS)
self.I2CWriteBulk(self.SHT21_ADDRESS, [self._SHT21_RESET]) # reset
time.sleep(0.1)
def SHT21_all(self):
self.I2CWriteBulk(self.SHT21_ADDRESS, [self._SHT21_TEMP])
time.sleep(.1)
self.startI2C()
self.writeI2C((self.SHT21_ADDRESS << 1) | 1) # Read
b = []
for a in range(2): b.append(self.readI2C(1))
b.append(self.readI2C(0))
self.stopI2C()
temperature, checksum = struct.unpack('>HB', bytes(b))
return [temperature * 175.72 / 65536.0 - 46.85, 0]
# AHT 21 Humidity sensor
AHT21B_ADDRESS = 56
AHT_CMD_INIT = 0xBE # initialization cmd
AHT_CMD_TRIGGER = 0xAC # trigger measurement cmd
_buf = b''
def AHT21B_init(self, **kwargs):
self.AHT21B_ADDRESS = kwargs.get('address', self.AHT21B_ADDRESS)
self._buf = bytearray(6) # not using crc
self.I2CWriteBulk(self.AHT21B_ADDRESS, [self.AHT_CMD_INIT, 0x08, 0x00]) # calibrate
time.sleep(0.01) # Wait initialization process
def AHT21B_all(self):
self.I2CWriteBulk(self.AHT21B_ADDRESS, [self.AHT_CMD_TRIGGER, 0x33, 0x00]) # trigger measurement
time.sleep(0.08) # Wait measurement process
self._buf, tmt = self.I2CReadBulk(self.AHT21B_ADDRESS,0x00, 6) #TODO Implement simpleread
if tmt: return None
if len(self._buf) == 6:
hum = self._buf[1] << 12 | self._buf[2] << 4 | self._buf[3] >> 4
humidity = hum * 100. / 0x100000
temp = (self._buf[3] & 0xF) << 16 | self._buf[4] << 8 | self._buf[5]
temp = temp * 200.0 / 0x100000 - 50
return [humidity, temp]
return False
####### TSL2561 LIGHT SENSOR ###########
TSL_GAIN = 0x00 # 0x00=1x , 0x01 = 16x
TSL_TIMING = 0x00 # 0x00=3 mS , 0x01 = 101 mS, 0x02 = 402mS
TSL2561_ADDRESS = 0x39
def TSL2561_init(self, **kwargs):
self.TSL2561_ADDRESS = kwargs.get('address', self.TSL2561_ADDRESS)
self.I2CWriteBulk(self.TSL2561_ADDRESS, [0x80, 0x03]) # poweron
self.I2CWriteBulk(self.TSL2561_ADDRESS, [0x80 | 0x01, self.TSL_GAIN | self.TSL_TIMING])
return self.TSL2561_all()
def TSL2561_gain(self, gain):
self.TSL_GAIN = gain << 4
self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)
def TSL2561_timing(self, timing):
self.TSL_TIMING = timing
self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)
def TSL2561_rate(self, timing):
self.TSL_TIMING = timing
self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)
def TSL2561_config(self, gain, timing):
self.I2CWriteBulk(self.TSL2561_ADDRESS,
[0x80 | 0x01, gain | timing]) # Timing register 0x01. gain[1x,16x] | timing[13mS,100mS,400mS]
def TSL2561_all(self):
'''
returns a 2 element list. total,IR
returns None if communication timed out with I2C sensor
'''
b, tmt = self.I2CReadBulk(self.TSL2561_ADDRESS, 0x80 | 0x20 | 0x0C, 4)
if tmt: return None
if None not in b:
return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(2)] # total, IR
TSL2591_GAIN = 0x00 # 0x00=1x , 0x10 = medium 25x, 0x20 428x , 0x30 Max 9876x
TSL2591_TIMING = 0x00 # 0x00=100 mS , 0x05 = 600mS
TSL2591_ADDRESS = 0x29
TSL2591_COMMAND_BIT = 0xA0
# Register (0x00)
TSL2591_ENABLE_REGISTER = 0x00
TSL2591_ENABLE_POWERON = 0x01
TSL2591_ENABLE_POWEROFF = 0x00
TSL2591_ENABLE_AEN = 0x02
TSL2591_ENABLE_AIEN = 0x10
TSL2591_ENABLE_SAI = 0x40
TSL2591_ENABLE_NPIEN = 0x80
TSL2591_CONTROL_REGISTER = 0x01
TSL2591_SRESET = 0x80
# AGAIN
TSL2591_LOW_AGAIN = 0X00 # Low gain (1x)
TSL2591_MEDIUM_AGAIN = 0X10 # Medium gain (25x)
TSL2591_HIGH_AGAIN = 0X20 # High gain (428x)
TSL2591_MAX_AGAIN = 0x30 # Max gain (9876x)
# ATIME
TSL2591_ATIME_100MS = 0x00 # 100 millis #MAX COUNT 36863
TSL2591_ATIME_200MS = 0x01 # 200 millis #MAX COUNT 65535
TSL2591_ATIME_300MS = 0x02 # 300 millis #MAX COUNT 65535
TSL2591_ATIME_400MS = 0x03 # 400 millis #MAX COUNT 65535
TSL2591_ATIME_500MS = 0x04 # 500 millis #MAX COUNT 65535
TSL2591_ATIME_600MS = 0x05 # 600 millis #MAX COUNT 65535
TSL2591_AILTL_REGISTER = 0x04
TSL2591_AILTH_REGISTER = 0x05
TSL2591_AIHTL_REGISTER = 0x06
TSL2591_AIHTH_REGISTER = 0x07
TSL2591_NPAILTL_REGISTER = 0x08
TSL2591_NPAILTH_REGISTER = 0x09
TSL2591_NPAIHTL_REGISTER = 0x0A
TSL2591_NPAIHTH_REGISTER = 0x0B
TSL2591_PERSIST_REGISTER = 0x0C
TSL2591_ID_REGISTER = 0x12
TSL2591_STATUS_REGISTER = 0x13
TSL2591_CHAN0_LOW = 0x14
TSL2591_CHAN0_HIGH = 0x15
TSL2591_CHAN1_LOW = 0x16
TSL2591_CHAN1_HIGH = 0x14
# LUX_DF = GA * 53 GA is the Glass Attenuation factor
TSL2591_LUX_DF = 408.0
TSL2591_LUX_COEFB = 1.64
TSL2591_LUX_COEFC = 0.59
TSL2591_LUX_COEFD = 0.86
# LUX_DF = 408.0
TSL2591_MAX_COUNT_100MS = (36863) # 0x8FFF
TSL2591_MAX_COUNT = (65535) # 0xFFFF
def TSL2591_init(self, **kwargs):
self.TSL2591_ADDRESS = kwargs.get('address', self.TSL2591_ADDRESS)
b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_ID_REGISTER, 1)
if tmt: return None
b = b[0]
if b != 0x50:
print('TSL. wrong ID:', b)
self.I2CWriteBulk(self.TSL2591_ADDRESS, [self.TSL2591_COMMAND_BIT | self.TSL2591_ENABLE_REGISTER,
self.TSL2591_ENABLE_AIEN | self.TSL2591_ENABLE_POWERON | self.TSL2591_ENABLE_AEN | self.TSL2591_ENABLE_NPIEN])
self.I2CWriteBulk(self.TSL2591_ADDRESS, [self.TSL2591_COMMAND_BIT | self.TSL2591_PERSIST_REGISTER, 0x01])
self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)
return self.TSL2591_all()
def TSL2591_gain(self, gain):
self.TSL2591_GAIN = gain << 4 # 0x00=1x , 0x10 = medium 25x, 0x20 428x , 0x30 Max 9876x
self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)
def TSL2591_timing(self, timing):
self.TSL2591_TIMING = timing
self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)
def TSL2591_config(self, gain, timing):
self.I2CWriteBulk(self.TSL2591_ADDRESS,
[self.TSL2591_COMMAND_BIT | self.TSL2591_CONTROL_REGISTER, gain | timing])
def TSL2591_Read_CHAN0(self):
b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN0_LOW, 2)
if tmt: return None
if None not in b:
return (b[1] << 8) | b[0]
def TSL2591_Read_CHAN1(self):
b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN1_LOW, 2)
if tmt: return None
if None not in b:
return (b[1] << 8) | b[0]
def TSL2591_Read_FullSpectrum(self):
"""Read the full spectrum (IR + visible) light and return its value"""
data = (self.TSL2591_Read_CHAN1() << 16) | self.TSL2591_Read_CHAN0()
return data
def TSL2591_Read_Infrared(self):
'''Read the infrared light and return its value as a 16-bit unsigned number'''
data = self.TSL2591_Read_CHAN0()
return data
def TSL2591_all(self):
b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN0_LOW, 4)
if tmt: return None
channel_0 = (b[1] << 8) | b[0]
channel_1 = (b[3] << 8) | b[2]
# channel_0 = self.TSL2591_Read_CHAN0()
# channel_1 = self.TSL2591_Read_CHAN1()
# for i in range(0, self.TSL2591_TIMING+2):
# time.sleep(0.1)
atime = 100.0 * self.TSL2591_TIMING + 100.0
# Set the maximum sensor counts based on the integration time (atime) setting
if self.TSL2591_TIMING == 0:
max_counts = self.TSL2591_MAX_COUNT_100MS
else:
max_counts = self.TSL2591_MAX_COUNT
'''
if channel_0 >= max_counts or channel_1 >= max_counts:
if(self.TSL2591_GAIN != self.TSL2591_LOW_AGAIN):
self.TSL2591_GAIN = ((self.TSL2591_GAIN>>4)-1)<<4
self.TSL2591_config(self.self.TSL2591_GAIN,self.TSL2591_TIMING)
channel_0 = 0
channel_1 = 0
while(channel_0 <= 0 and channel_1 <=0):
channel_0 = self.TSL2591_Read_CHAN0()
channel_1 = self.TSL2591_Read_CHAN1()
time.sleep(0.1)
else :
return 0
'''
if channel_0 >= max_counts or channel_1 >= max_counts:
return [(channel_1 & 0xFFFFFFFF << 16) | channel_0, 0, 0]
again = 1.0
if self.TSL2591_GAIN == self.TSL2591_MEDIUM_AGAIN:
again = 25.0
elif self.TSL2591_GAIN == self.TSL2591_HIGH_AGAIN:
again = 428.0
elif self.TSL2591_GAIN == self.TSL2591_MAX_AGAIN:
again = 9876.0
cpl = (atime * again) / self.TSL2591_LUX_DF
lux1 = (channel_0 - (self.TSL2591_LUX_COEFB * channel_1)) / cpl
lux2 = ((self.TSL2591_LUX_COEFC * channel_0) - (self.TSL2591_LUX_COEFD * channel_1)) / cpl
return [(channel_1 & 0xFFFFFFFF << 16) | channel_0, lux1, lux2]
MLX90614_ADDRESS= 0x5A
def MLX90614_init(self, **kwargs):
self.MLX90614_ADDRESS = kwargs.get('address', self.MLX90614_ADDRESS)
def MLX90614_all(self):
'''
return a single element list. None if failed
'''
vals, tmt = self.I2CReadBulk(self.MLX90614_ADDRESS, 0x07, 3)
if tmt: return None
if vals:
if len(vals) == 3:
return [((((vals[1] & 0x007f) << 8) + vals[0]) * 0.02) - 0.01 - 273.15]
else:
return None
else:
return None
MCP5725_ADDRESS = 0x60
def MCP4725_init(self, **kwargs):
self.MCP5725_ADDRESS = kwargs.get('address', self.MCP5725_ADDRESS)
def MCP4725_set(self, val):
'''
Set the DAC value. 0 - 4095
'''
self.I2CWriteBulk(self.MCP5725_ADDRESS, [0x40, (val >> 4) & 0xFF, (val & 0xF) << 4])
####################### HMC5883L MAGNETOMETER ###############
HMC5883L_ADDRESS = 0x1E
HMC_CONFA = 0x00
HMC_CONFB = 0x01
HMC_MODE = 0x02
HMC_STATUS = 0x09
# --------CONFA register bits. 0x00-----------
HMCSamplesToAverage = 0
HMCSamplesToAverage_choices = [1, 2, 4, 8]
HMCDataOutputRate = 6
HMCDataOutputRate_choices = [0.75, 1.5, 3, 7.5, 15, 30, 75]
HMCMeasurementConf = 0
# --------CONFB register bits. 0x01-----------
HMCGainValue = 7 # least sensitive
HMCGain_choices = [8, 7, 6, 5, 4, 3, 2, 1]
HMCGainScaling = [1370., 1090., 820., 660., 440., 390., 330., 230.]
def HMC5883L_init(self, **kwargs):
self.HMC5883L_ADDRESS = kwargs.get('address', self.HMC5883L_ADDRESS)
self.__writeHMCCONFA__()
self.__writeHMCCONFB__()
self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_MODE, 0]) # enable continuous measurement mode
def __writeHMCCONFB__(self):
self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_CONFB, self.HMCGainValue << 5]) # set gain
def __writeHMCCONFA__(self):
self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_CONFA,
(self.HMCDataOutputRate << 2) | (self.HMCSamplesToAverage << 5) | (
self.HMCMeasurementConf)])
def HMC5883L_getVals(self, addr, bytes):
vals = self.I2CReadBulk(self.ADDRESS, addr, bytes)
return vals
def HMC5883L_all(self):
vals = self.HMC5883L_getVals(0x03, 6)
if vals:
if len(vals) == 6:
return [np.int16(signit(vals[a * 2] << 8 | vals[a * 2 + 1])) / self.HMCGainScaling[self.HMCGainValue] for a in
range(3)]
else:
return False
else:
return False
####################### QMC5883L MAGNETOMETER ###############
QMC5883L_ADDRESS = 13
QMC_scaling = 3000
def QMC5883L_init(self, **kwargs):
self.QMC5883L_ADDRESS = kwargs.get('address', self.QMC5883L_ADDRESS)
self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x0A, 0x80]) # 0x80=reset. 0x40= rollover
self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x0B, 0x01]) # init , set/reset period
self.QMC_RANGE(1)
def QMC_RANGE(self, r): # 0=2G, 1=8G
if r == 1:
self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x09,
0b001 | 0b000 | 0b100 | 0b10000]) # Mode. continuous|oversampling(512) | rate 50Hz | range(8g)
self.QMC_scaling = 3000
elif r == 0:
self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x09,
0b001 | 0b000 | 0b100 | 0b00000]) # Mode. continuous|oversampling(512) | rate 50Hz | range(2g)
self.QMC_scaling = 12000
def QMC5883L_getVals(self, addr, numbytes):
vals, tmt = self.I2CReadBulk(self.QMC5883L_ADDRESS, addr, numbytes)
return vals
def QMC5883L_all(self):
vals = self.QMC5883L_getVals(0x00, 6)
if vals:
if len(vals) == 6:
v = [np.int16(signit((vals[a * 2 + 1] << 8) | vals[a * 2])) / self.QMC_scaling for a in range(3)]
return v
else:
return False
else:
return False
PCA9685_address = 64
def PCA9685_init(self, **kwargs):
self.PCA9685_address = kwargs.get('address', self.PCA9685_address)
prescale_val = int((25000000.0 / 4096 / 60.) - 1) # default clock at 25MHz
# self.I2CWriteBulk(self.PCA9685_address, [0x00,0x10]) #MODE 1 , Sleep
print('clock set to,', prescale_val)
self.I2CWriteBulk(self.PCA9685_address, [0xFE, prescale_val]) # PRESCALE , prescale value
self.I2CWriteBulk(self.PCA9685_address, [0x00, 0x80]) # MODE 1 , restart
self.I2CWriteBulk(self.PCA9685_address, [0x01, 0x04]) # MODE 2 , Totem Pole
pass
CH0 = 0x6 # LED0 start register
CH0_ON_L = 0x6 # channel0 output and brightness control byte 0
CH0_ON_H = 0x7 # channel0 output and brightness control byte 1
CH0_OFF_L = 0x8 # channel0 output and brightness control byte 2
CH0_OFF_H = 0x9 # channel0 output and brightness control byte 3
CHAN_WIDTH = 4
def PCA9685_set(self, chan, angle):
'''
chan: 1-16
Set the servo angle for SG90: angle(0 - 180)
'''
Min = 180
Max = 650
val = int(((Max - Min) * (angle / 180.)) + Min)
print(chan, angle, val)
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_ON_L + self.CHAN_WIDTH * (chan - 1), 0]) #
self.I2CWriteBulk(self.PCA9685_address,
[self.CH0_ON_H + self.CHAN_WIDTH * (chan - 1), 0]) # Turn on immediately. At 0.
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_L + self.CHAN_WIDTH * (chan - 1),
val & 0xFF]) # Turn off after val width 0-4095
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_H + self.CHAN_WIDTH * (chan - 1), (val >> 8) & 0xFF])
## ADS1115
REG_POINTER_MASK = 0x3
REG_POINTER_CONVERT = 0
REG_POINTER_CONFIG = 1
REG_POINTER_LOWTHRESH = 2
REG_POINTER_HITHRESH = 3
REG_CONFIG_OS_MASK = 0x8000
REG_CONFIG_OS_SINGLE = 0x8000
REG_CONFIG_OS_BUSY = 0x0000
REG_CONFIG_OS_NOTBUSY = 0x8000
REG_CONFIG_MUX_MASK = 0x7000
REG_CONFIG_MUX_DIFF_0_1 = 0x0000 # Differential P = AIN0, N = AIN1 =default)
REG_CONFIG_MUX_DIFF_0_3 = 0x1000 # Differential P = AIN0, N = AIN3
REG_CONFIG_MUX_DIFF_1_3 = 0x2000 # Differential P = AIN1, N = AIN3
REG_CONFIG_MUX_DIFF_2_3 = 0x3000 # Differential P = AIN2, N = AIN3
REG_CONFIG_MUX_SINGLE_0 = 0x4000 # Single-ended AIN0
REG_CONFIG_MUX_SINGLE_1 = 0x5000 # Single-ended AIN1
REG_CONFIG_MUX_SINGLE_2 = 0x6000 # Single-ended AIN2
REG_CONFIG_MUX_SINGLE_3 = 0x7000 # Single-ended AIN3
REG_CONFIG_PGA_MASK = 0x0E00 # bits 11:9
REG_CONFIG_PGA_6_144V = (0 << 9) # +/-6.144V range = Gain 2/3
REG_CONFIG_PGA_4_096V = (1 << 9) # +/-4.096V range = Gain 1
REG_CONFIG_PGA_2_048V = (2 << 9) # +/-2.048V range = Gain 2 =default)
REG_CONFIG_PGA_1_024V = (3 << 9) # +/-1.024V range = Gain 4
REG_CONFIG_PGA_0_512V = (4 << 9) # +/-0.512V range = Gain 8
REG_CONFIG_PGA_0_256V = (5 << 9) # +/-0.256V range = Gain 16
REG_CONFIG_MODE_MASK = 0x0100 # bit 8
REG_CONFIG_MODE_CONTIN = (0 << 8) # Continuous conversion mode
REG_CONFIG_MODE_SINGLE = (1 << 8) # Power-down single-shot mode =default)
REG_CONFIG_DR_MASK = 0x00E0
REG_CONFIG_DR_8SPS = (0 << 5) # 8 SPS
REG_CONFIG_DR_16SPS = (1 << 5) # 16 SPS
REG_CONFIG_DR_32SPS = (2 << 5) # 32 SPS
REG_CONFIG_DR_64SPS = (3 << 5) # 64 SPS
REG_CONFIG_DR_128SPS = (4 << 5) # 128 SPS
REG_CONFIG_DR_250SPS = (5 << 5) # 260 SPS
REG_CONFIG_DR_475SPS = (6 << 5) # 475 SPS
REG_CONFIG_DR_860SPS = (7 << 5) # 860 SPS
REG_CONFIG_CMODE_MASK = 0x0010
REG_CONFIG_CMODE_TRAD = 0x0000
REG_CONFIG_CMODE_WINDOW = 0x0010
REG_CONFIG_CPOL_MASK = 0x0008
REG_CONFIG_CPOL_ACTVLOW = 0x0000
REG_CONFIG_CPOL_ACTVHI = 0x0008
REG_CONFIG_CLAT_MASK = 0x0004
REG_CONFIG_CLAT_NONLAT = 0x0000
REG_CONFIG_CLAT_LATCH = 0x0004
REG_CONFIG_CQUE_MASK = 0x0003
REG_CONFIG_CQUE_1CONV = 0x0000
REG_CONFIG_CQUE_2CONV = 0x0001
REG_CONFIG_CQUE_4CONV = 0x0002
REG_CONFIG_CQUE_NONE = 0x0003
ADS1115_gains = OrderedDict([('GAIN_TWOTHIRDS', REG_CONFIG_PGA_6_144V), ('GAIN_ONE', REG_CONFIG_PGA_4_096V),
('GAIN_TWO', REG_CONFIG_PGA_2_048V), ('GAIN_FOUR', REG_CONFIG_PGA_1_024V),
('GAIN_EIGHT', REG_CONFIG_PGA_0_512V), ('GAIN_SIXTEEN', REG_CONFIG_PGA_0_256V)])
ADS1115_gain_scaling = OrderedDict(
[('GAIN_TWOTHIRDS', 0.1875), ('GAIN_ONE', 0.125), ('GAIN_TWO', 0.0625), ('GAIN_FOUR', 0.03125),
('GAIN_EIGHT', 0.015625), ('GAIN_SIXTEEN', 0.0078125)])
ADS1115_scaling = 0.125
ADS1115_channels = OrderedDict(
[('UNI_0', 0), ('UNI_1', 1), ('UNI_2', 2), ('UNI_3', 3), ('DIFF_01', '01'), ('DIFF_23', '23')])
ADS1115_rates = OrderedDict(
[(8, REG_CONFIG_DR_8SPS), (16, REG_CONFIG_DR_16SPS), (32, REG_CONFIG_DR_32SPS), (64, REG_CONFIG_DR_64SPS),
(128, REG_CONFIG_DR_128SPS), (250, REG_CONFIG_DR_250SPS), (475, REG_CONFIG_DR_475SPS),
(860, REG_CONFIG_DR_860SPS)]) # sampling data rate
ADS1115_DATARATE = 250 # 250SPS [ 8, 16, 32, 64, 128, 250, 475, 860 ]
ADS1115_GAIN = REG_CONFIG_PGA_4_096V # +/-4.096V range = Gain 1 . [+-6, +-4, +-2, +-1, +-0.5, +- 0.25]
ADS1115_CHANNEL = 0 # ref: type_selection
ADS1115_ADDRESS = 0x48
def ADS1115_init(self, **kwargs):
self.ADS1115_ADDRESS = kwargs.get('address', self.ADS1115_ADDRESS)
self.I2CWriteBulk(self.ADS1115_ADDRESS, [0x80, 0x03]) # poweron
def ADS1115_gain(self, gain):
'''
options : 'GAIN_TWOTHIRDS','GAIN_ONE','GAIN_TWO','GAIN_FOUR','GAIN_EIGHT','GAIN_SIXTEEN'
'''
print('setting gain:', str(gain))
if (type(gain) == int): # From the UI selectors which return index
self.ADS1115_GAIN = list(self.ADS1115_gains.items())[gain][1]
print('set gain with index selection:', self.ADS1115_GAIN)
self.ADS1115_scaling = list(self.ADS1115_gain_scaling.items())[gain][1]
print('Scaling factor:', self.ADS1115_scaling)
else:
self.ADS1115_GAIN = self.ADS1115_gains.get(gain, self.REG_CONFIG_PGA_4_096V)
self.ADS1115_scaling = self.ADS1115_gain_scaling.get(gain)
print('set gain type B:', str(gain), self.ADS1115_GAIN, self.ADS1115_scaling)
def ADS1115_channel(self, channel):
'''
options 'UNI_0','UNI_1','UNI_2','UNI_3','DIFF_01','DIFF_23'
'''
self.ADS1115_CHANNEL = int(channel)
print('channel', channel, self.ADS1115_CHANNEL)
def ADS1115_rate(self, rate):
'''
data rate options 8,16,32,64,128,250,475,860 SPS . string.
'''
opts = [8, 16, 32, 64, 128, 250, 475, 860]
rate = int(rate)
if rate < len(opts):
self.ADS1115_DATARATE = opts[rate]
print('rate:', rate, self.ADS1115_DATARATE)
def ADS1115_read(self):
'''
returns a voltage from ADS1115 channel selected using ADS1115_channel. default UNI_0 (Unipolar from channel 0)
'''
if self.ADS1115_CHANNEL in [0, 1, 2, 3]:
config = (self.REG_CONFIG_CQUE_NONE # Disable the comparator (default val)
| self.REG_CONFIG_CLAT_NONLAT # Non-latching (default val)
| self.REG_CONFIG_CPOL_ACTVLOW # Alert/Rdy active low (default val)
| self.REG_CONFIG_CMODE_TRAD # Traditional comparator (default val)
| (self.ADS1115_rates.get(self.ADS1115_DATARATE,
self.REG_CONFIG_DR_250SPS)) # 250 samples per second (default)
| (self.REG_CONFIG_MODE_SINGLE) # Single-shot mode (default)
| self.ADS1115_GAIN)
if self.ADS1115_CHANNEL == 0:
config |= self.REG_CONFIG_MUX_SINGLE_0
elif self.ADS1115_CHANNEL == 1:
config |= self.REG_CONFIG_MUX_SINGLE_1
elif self.ADS1115_CHANNEL == 2:
config |= self.REG_CONFIG_MUX_SINGLE_2
elif self.ADS1115_CHANNEL == 3:
config |= self.REG_CONFIG_MUX_SINGLE_3
# Set 'start single-conversion' bit
config |= self.REG_CONFIG_OS_SINGLE
self.I2CWriteBulk(self.ADS1115_ADDRESS, [self.REG_POINTER_CONFIG, (config >> 8) & 0xFF, config & 0xFF])
time.sleep(1. / self.ADS1115_DATARATE + .002) # convert to mS to S
b, tmt = self.I2CReadBulk(self.ADS1115_ADDRESS, self.REG_POINTER_CONVERT, 2)
if tmt: return None
if b is not None:
x = ((b[0] << 8) | b[1]) * self.ADS1115_scaling * 1e-3
return [((b[0] << 8) | b[1]) * self.ADS1115_scaling * 1e-3] # scale and convert to volts
elif self.ADS1115_CHANNEL in ['01', '23']:
return [0]
def VL53L0X_decode_vcsel_period(self, vcsel_period_reg):
vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
return vcsel_period_pclks
VL53L0X_REG_IDENTIFICATION_MODEL_ID = 0x00c0
VL53L0X_REG_IDENTIFICATION_REVISION_ID = 0x00c2
VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x0050
VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x0070
VL53L0X_REG_SYSRANGE_START = 0x000
VL53L0X_REG_RESULT_INTERRUPT_STATUS = 0x0013
VL53L0X_REG_RESULT_RANGE_STATUS = 0x0014
VL53L0X_ADDRESS = 0x29 # 41
def makeuint16(self,lsb, msb):
return ((msb & 0xFF) << 8) | (lsb & 0xFF)
def VL53L0X_init(self, **kwargs):
self.VL53L0X_ADDRESS = kwargs.get('address', self.VL53L0X_ADDRESS)
val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_IDENTIFICATION_MODEL_ID, 1)
print("Device ID: " + hex(val1[0]))
val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD, 1)
print("PRE_RANGE_CONFIG_VCSEL_PERIOD=" + hex(val1[0]) + " decode: " + str(self.VL53L0X_decode_vcsel_period(val1[0])))
val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD, 1)
print(
"FINAL_RANGE_CONFIG_VCSEL_PERIOD=" + hex(val1[0]) + " decode: " + str(self.VL53L0X_decode_vcsel_period(val1[0])))
val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_IDENTIFICATION_REVISION_ID, 1)
print("Revision ID: " + hex(val1[0]))
if val1[0] == 0x00 or val1[0] == 0xFF: # No device
return False
return True
def VL53L0X_all(self):
val1 = self.I2CWriteBulk(self.VL53L0X_ADDRESS, [self.VL53L0X_REG_SYSRANGE_START, 0x01])
cnt = 0
while (cnt < 50): # 1 second waiting time max
time.sleep(0.005)
val, tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_RESULT_RANGE_STATUS, 1)
if (val[0] & 0x01):
break
cnt += 1
if (cnt == 100): # timeout
return None
if not (val[0] & 0x01): # Not ready.
return None
data, tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, 0x14, 12)
# print ("ambient count " + str(makeuint16(data[7], data[6])))
# print ("signal count " + str(makeuint16(data[9], data[8])))
d = self.makeuint16(data[11], data[10])
DeviceRangeStatusInternal = ((data[0] & 0x78) >> 3)
# print (data,d,DeviceRangeStatusInternal)
if DeviceRangeStatusInternal != 11:
d = None
return [d]
######### MPR121 capacitive touch
MPR121_TOUCH_THRESHOLD_MAX = 0XF0
MPR121_CHANNEL_NUM = 12
MPR121_TOUCH_STATUS_REG_ADDR_L = 0X00
MPR121_TOUCH_STATUS_REG_ADDR_H = 0X01
MPR121_FILTERED_DATA_REG_START_ADDR_L = 0X04
MPR121_FILTERED_DATA_REG_START_ADDR_H = 0X05
MPR121_BASELINE_VALUE_REG_START_ADDR = 0X1E
MPR121_BASELINE_FILTERING_CONTROL_REG_START_ADDR = 0X2B
MPR121_THRESHOLD_REG_START_ADDR = 0X41
MPR121_DEBOUNCE_REG_ADDR = 0X5B
MPR121_FILTER_AND_GLOBAL_CDC_CFG_ADDR = 0X5C
MPR121_FILTER_AND_GLOBAL_CDT_CFG_ADDR = 0X5D
MPR121_ELEC_CHARGE_CURRENT_REG_START_ADDR = 0X5F
MPR121_ELEC_CHARGE_TIME_REG_START_ADDR = 0X6C
MPR121_ELEC_CFG_REG_ADDR = 0X5E
MPR121_ADDRESS = 0x5B
def MPR121_init(self, **kwargs):
self.MPR121_ADDRESS = kwargs.get('address', self.MPR121_ADDRESS)
self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_FILTER_AND_GLOBAL_CDC_CFG_ADDR, 0x10]) #
self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_FILTER_AND_GLOBAL_CDT_CFG_ADDR, 0x23]) #
self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_DEBOUNCE_REG_ADDR, 0x22]) # debounce value
for a in range(self.MPR121_CHANNEL_NUM):
self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_THRESHOLD_REG_START_ADDR + 2 * a, 0x08]) # touch
self.I2CWriteBulk(self.MPR121_ADDRESS,
[self.MPR121_THRESHOLD_REG_START_ADDR + 2 * a + 1, 0x08]) # release threshold
self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_ELEC_CFG_REG_ADDR, 0x3c]) # start proximity disable mode
def MPR121_all(self):
vals, tmt = self.I2CReadBulk(self.MPR121_ADDRESS, self.MPR121_FILTERED_DATA_REG_START_ADDR_L, 26)
vals = struct.unpack('<hhhhhhhhhhhhh', bytes(vals))
return vals
# I2C LCD display
# commands
PCF_LCD_ADDRESS = 39
LCD_CLEARDISPLAY = 0x01
LCD_RETURNHOME = 0x02
LCD_ENTRYMODESET = 0x04
LCD_DISPLAYCONTROL = 0x08
LCD_CURSORSHIFT = 0x10
LCD_FUNCTIONSET = 0x20
LCD_SETCGRAMADDR = 0x40
LCD_SETDDRAMADDR = 0x80
# flags for display entry mode
LCD_ENTRYRIGHT = 0x00
LCD_ENTRYLEFT = 0x02
LCD_ENTRYSHIFTINCREMENT = 0x01
LCD_ENTRYSHIFTDECREMENT = 0x00
# flags for display on/off control
LCD_DISPLAYON = 0x04
LCD_DISPLAYOFF = 0x00
LCD_CURSORON = 0x02
LCD_CURSOROFF = 0x00
LCD_BLINKON = 0x01
LCD_BLINKOFF = 0x00
# flags for display/cursor shift
LCD_DISPLAYMOVE = 0x08
LCD_CURSORMOVE = 0x00
LCD_MOVERIGHT = 0x04
LCD_MOVELEFT = 0x00
# flags for function set
LCD_8BITMODE = 0x10
LCD_4BITMODE = 0x00
LCD_2LINE = 0x08
LCD_1LINE = 0x00
LCD_5x10DOTS = 0x04
LCD_5x8DOTS = 0x00
# flags for backlight control
LCD_BACKLIGHT = 0x08
LCD_NOBACKLIGHT = 0x00
PCF_En = 0b00000100 # Enable bit
PCF_Rw = 0b00000010 # Read/Write bit
PCF_Rs = 0b00000001 # Register select bit
PCF_row = 1
def PCF_LCD_init(self):
self.pcf_lcd_write(0x03)
self.pcf_lcd_write(0x03)
self.pcf_lcd_write(0x03)
self.pcf_lcd_write(0x02)
self.pcf_lcd_write(self.LCD_FUNCTIONSET | self.LCD_2LINE | self.LCD_5x8DOTS | self.LCD_4BITMODE)
self.pcf_lcd_write(self.LCD_DISPLAYCONTROL | self.LCD_DISPLAYON)
self.pcf_lcd_write(self.LCD_CLEARDISPLAY)
self.pcf_lcd_write(self.LCD_ENTRYMODESET | self.LCD_ENTRYLEFT)
time.sleep(0.2)
def PCF_LCD_all(self):
return [0.5]
def PCF_LCD_text(self,v):
self.pcf_lcd_display_string(" ",self.PCF_row)
self.pcf_lcd_display_string(self.PCF_text_options[v],self.PCF_row)
def PCF_LCD_row(self,r):
self.PCF_row=r+1
# clocks EN to latch command
def pcf_lcd_strobe(self, data):
self.I2CWriteBulk(self.PCF_LCD_ADDRESS, [data | self.PCF_En | self.LCD_BACKLIGHT])
time.sleep(.0005)
self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[(data & ~self.PCF_En) | self.LCD_BACKLIGHT])
time.sleep(.0001)
def pcf_lcd_write_four_bits(self, data):
self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[data | self.LCD_BACKLIGHT])
self.pcf_lcd_strobe(data)
# write a command to lcd
def pcf_lcd_write(self, cmd, mode=0):
self.pcf_lcd_write_four_bits(mode | (cmd & 0xF0))
self.pcf_lcd_write_four_bits(mode | ((cmd << 4) & 0xF0))
# turn on/off the lcd backlight
def PCF_LCD_backlight(self, state):
if state in ("on", "On", "ON",1):
self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[self.LCD_BACKLIGHT])
elif state in ("off", "Off", "OFF",0):
self.I2CWriteBulk(self.PCF_LCD_ADDRESS, [self.LCD_NOBACKLIGHT])
else:
print("Unknown State!")
# put string function
def pcf_lcd_display_string(self, string, line):
if line == 1:
self.pcf_lcd_write(0x80)
if line == 2:
self.pcf_lcd_write(0xC0)
if line == 3:
self.pcf_lcd_write(0x94)
if line == 4:
self.pcf_lcd_write(0xD4)
for char in string:
self.pcf_lcd_write(ord(char), self.PCF_Rs)
# clear lcd and set to home
def pcf_lcd_clear(self):
self.pcf_lcd_write(self.LCD_CLEARDISPLAY)
self.pcf_lcd_write(self.LCD_RETURNHOME)
if __name__ == '__main__':
a = connect(autoscan=True)
print('version', a.version)
print('------------')
if not a.connected:
sys.exit(1)
time.sleep(0.01)
a.setReg('DDRC', 3)
a.setReg('PORTC', 2)
time.sleep(1)
a.setReg('PORTC', 3)
a.setReg('DDRC', 0)
print(a.I2CScan())
'''
a.PCA9685_init()
a.PCA9685_set(1,650)
for x in range(180):
a.PCA9685_set(1,x)
time.sleep(0.01)
a.TSL2561_init()
s=time.time()
for x in range(1000):
print(a.TSL2561_all())
print(time.time()-s)
a.MPU6050_init()
s=time.time()
for x in range(1000):
print(a.MPU6050_all()[0])
print(time.time()-s)
'''
|