File: KuttyPyLib.py

package info (click to toggle)
kuttypy 2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 37,896 kB
  • sloc: python: 58,651; javascript: 14,686; xml: 5,767; ansic: 2,716; makefile: 453; asm: 254; sh: 48
file content (2386 lines) | stat: -rw-r--r-- 92,288 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
'''
Code snippet for reading data from the kuttypy

'''
import serial, struct, time, platform, os, sys, functools
from utilities import REGISTERS
from collections import OrderedDict
import numpy as np

if 'inux' in platform.system():  # Linux based system
    import fcntl

Byte = struct.Struct("B")  # size 1
ShortInt = struct.Struct("H")  # size 2
Integer = struct.Struct("I")  # size 4


def signit(combined_value):
    if combined_value >= 0x8000:  # 32768 in decimal, sign bit set
        return combined_value - 0x10000  # Subtract 65536 to get the negative value
    return combined_value


def _bv(x):
    return 1 << x


def connect(**kwargs):
    return KUTTYPY(**kwargs)


def listPorts():
    '''
	Make a list of available serial ports. For auto scanning and connecting
	'''
    import glob
    system_name = platform.system()
    if system_name == "Windows":
        # Scan for available ports.
        available = []
        for i in range(256):
            try:
                s = serial.Serial('COM%d' % i)
                available.append('COM%d' % i)
                s.close()
            except serial.SerialException:
                pass
        return available
    elif system_name == "Darwin":
        # Mac
        return glob.glob('/dev/tty.usb*') + glob.glob('/dev/cu*')
    else:
        # Assume Linux or something else
        return glob.glob('/dev/ttyACM*') + glob.glob('/dev/ttyUSB*') + glob.glob('/dev/rfcomm*')


def isPortFree(portname):
    try:
        fd = serial.Serial(portname, KUTTYPY.BAUD, stopbits=1, timeout=1.0)
        if fd.isOpen():
            if 'inux' in platform.system():  # Linux based system
                try:
                    fcntl.flock(fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
                    fd.close()
                    return True  # Port is available
                except IOError:
                    fd.close()
                    return False  # Port is not available

            else:
                fd.close()
                return True  # Port is available
        else:
            fd.close()
            return False  # Port is not available

    except serial.SerialException as ex:
        return False  # Port is not available


def getFreePorts(openPort=None):
    '''
	Find out which ports are currently free 
	'''
    portlist = {}
    for a in listPorts():
        if a != openPort:
            portlist[a] = isPortFree(a)
        else:
            portlist[a] = False
    return portlist


class KUTTYPY:
    VERSIONNUM_168P = Byte.pack(98)
    VERSIONNUM = Byte.pack(99)
    VERSIONNUM_328P = Byte.pack(100)
    VERSIONNUM_UNO = Byte.pack(101)
    GET_VERSION = Byte.pack(1)
    READB = Byte.pack(2)
    WRITEB = Byte.pack(3)
    I2C_READ = Byte.pack(4)
    I2C_WRITE = Byte.pack(5)
    I2C_SCAN = Byte.pack(6)

    BAUD = 38400
    version = 0
    portname = None
    REGS = REGISTERS.VERSIONS[99]['REGISTERS']  # A map of alphanumeric port names to the 8-bit register locations
    REGSTATES = {}  # Store the last written state of the registers
    SPECIALS = REGISTERS.VERSIONS[99]['SPECIALS']
    nano = False  # check if atmega328p is found instead of 32
    blockingSocket = None
    PCF_text_options = ['hello', 'one', 'two', 'three']

    def __init__(self, **kwargs):
        self.bootloaderfirmware = True
        self.sensors = {
            0x39: {
                'name': 'TSL2561',
                'init': self.TSL2561_init,
                'read': self.TSL2561_all,
                'fields': ['total', 'IR'],
                'min': [0, 0],
                'max': [2 ** 15, 2 ** 15],
                'config': [{
                    'name': 'gain',
                    'options': ['1x', '16x'],
                    'function': self.TSL2561_gain
                },
                    {
                        'name': 'Integration Time',
                        'options': ['3 mS', '101 mS', '402 mS'],
                        'function': self.TSL2561_timing
                    }
                ]},
            0x1E: {
                'name': 'HMC5883L',
                'init': self.HMC5883L_init,
                'read': self.HMC5883L_all,
                'fields': ['Mx', 'My', 'Mz'],
                'min': [-5000, -5000, -5000],
                'max': [5000, 5000, 5000],
                'config': [{
                    'name': 'gain',
                    'options': ['1x', '16x'],
                    'function': self.TSL2561_gain
                },
                    {
                        'name': 'Integration Time',
                        'options': ['3 mS', '101 mS', '402 mS'],
                        'function': self.TSL2561_timing
                    }
                ]},
            0x48: {
                'name': 'ADS1115',
                'init': self.ADS1115_init,
                'read': self.ADS1115_read,
                'fields': ['Voltage'],
                'min': [-5],
                'max': [5],
                'config': [{
                    'name': 'channel',
                    'options': ['UNI_0', 'UNI_1', 'UNI_2', 'UNI_3', 'DIFF_01', 'DIFF_23'],
                    'function': self.ADS1115_channel
                },
                    {
                        'name': 'Data Rate',
                        'options': ['8', '16', '32', '64', '128', '250', '475', '860'],
                        'function': self.ADS1115_rate
                    },
                    {
                        'name': 'Gain',
                        'options': ['GAIN_TWOTHIRDS', 'GAIN_ONE', 'GAIN_TWO', 'GAIN_FOUR', 'GAIN_EIGHT',
                                    'GAIN_SIXTEEN'],
                        'function': self.ADS1115_gain
                    }
                ]},
            0x68: {
                'name': 'MPU6050',
                'init': self.MPU6050_init,
                'read': self.MPU6050_all,
                'fields': ['Ax', 'Ay', 'Az', 'Temp', 'Gx', 'Gy', 'Gz'],
                'min': [-1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15, 0, -1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15],
                'max': [2 ** 15, 2 ** 15, 2 ** 15, 2 ** 16, 2 ** 15, 2 ** 15, 2 ** 15],
                'config': [{
                    'name': 'Gyroscope Range',
                    'options': ['250', '500', '1000', '2000'],
                    'function': self.MPU6050_gyro_range
                },
                    {
                        'name': 'Accelerometer Range',
                        'options': ['2x', '4x', '8x', '16x'],
                        'function': self.MPU6050_accel_range
                    },
                    {
                        'name': 'Kalman',
                        'options': ['OFF', '0.001', '0.01', '0.1', '1', '10'],
                        'function': self.MPU6050_kalman_set
                    }
                ]},
            41: {
                'name': 'TCS34725: RGB Sensor',
                'init': self.TCS34725_init,
                'RGB': True,
                'read': self.TCS34725_all,
                'fields': ['RED', 'GREEN', 'BLUE'],
                'min': [0, 0, 0, 0],
                'max': [2 ** 16, 2 ** 16, 2 ** 16],
                'config': [{
                    'name': 'Gain',
                    'options': ['1', '4', '16', '60'],
                    'function': self.TCS34725_gain
                }
                ]},
            118: {
                'name': 'BMP280',
                'init': self.BMP280_init,
                'read': self.BMP280_all,
                'fields': ['Pressure', 'Temp', 'Alt'],
                'min': [0, 0, 0],
                'max': [1600, 100, 100],
            },
            12: {  # 0xc
                'name': 'AK8963 Mag',
                'init': self.AK8963_init,
                'read': self.AK8963_all,
                'fields': ['X', 'Y', 'Z'],
                'min': [-32767, -32767, -32767],
                'max': [32767, 32767, 32767],
            },
            119: {
                'name': 'MS5611',
                'init': self.MS5611_init,
                'read': self.MS5611_all,
                'fields': ['Pressure', 'Temp', 'Alt'],
                'min': [0, 0, 0],
                'max': [1600, 100, 10],
            },
            119: {
                'name': 'BMP180',
                'init': self.BMP180_init,
                'read': self.BMP180_all,
                'fields': ['Pressure', 'Temp'],
                'min': [0, 0],
                'max': [1600, 100],
            },
            0x41: {  # A0 pin connected to Vs . Otherwise address 0x40 conflicts with PCA board.
                'name': 'INA3221',
                'init': self.INA3221_init,
                'read': self.INA3221_all,
                'fields': ['CH1', 'CH2', 'CH3'],
                'min': [0, 0, 0],
                'max': [1000, 1000, 1000],
            },
            0x5A: {
                'name': 'MLX90614',
                'init': self.MLX90614_init,
                'read': self.MLX90614_all,
                'fields': ['TEMP'],
                'min': [0],
                'max': [350]},
            39: {
                'name': 'PCF_LCD',
                'init': self.PCF_LCD_init,
                'read': self.PCF_LCD_all,
                'fields': ['Dummy'],
                'min': [0],
                'max': [1],
                'config': [{
                        'name': 'text',
                        'options': ['hello', 'one', 'two', 'three'],
                        'function': self.PCF_LCD_text
                    },
                    {
                        'name': 'row',
                        'options': ['1', '2'],
                        'function': self.PCF_LCD_row
                    },
                    {
                        'name': 'backlight',
                        'options': ['OFF', 'ON'],
                        'function': self.PCF_LCD_backlight
                    }
                ]}

        }

        self.namedsensors = {
            'GMCOUNTER': {
                'address': [0xe, 0xf, 0x10, 0x11, 0x12],
                'name': 'GMCOUNTER CSpark Geiger Counter',
                'init': self.CSGM_init,
                'read': self.CSGM_all,
                'fields': ['count', 'voltage'],
                'min': [0, 0],
                'max': [65535, 1000],
                'config': [{
                    'name': 'Set Voltage',
                    'widget': 'spinbox',
                    'min': 0,
                    'max': 900,
                    'readbackfunction': self.CSGM_voltage,
                    'function': self.CSGM_config
                }, {
                    'name': 'Set Time Limit(0 for inf)',
                    'widget': 'spinbox',
                    'min': 0,
                    'max': 9000,
                    'function': self.CSGM_timelimit
                },
                    {
                        'name': 'Save To Flash',
                        'widget': 'button',
                        'function': self.CSGM_save
                    }, {
                        'name': 'Start',
                        'widget': 'button',
                        'function': self.CSGM_start
                    },
                    {
                        'name': 'Stop',
                        'widget': 'button',
                        'function': self.CSGM_stop
                    },
                    {
                        'name': 'Reset',
                        'widget': 'button',
                        'function': self.CSGM_reset
                    }
                ]},
            'BH1750': {
                'address': [35],
                'name': 'BH1750 Luminosity Sensor',
                'init': self.BH1750_init,
                'read': self.BH1750_all,
                'fields': ['luminosity(mLx)'],
                'min': [0, 0],
                'max': [32767],
                'config': [{
                    'name': 'sensitivity',
                    'options': ['500mLx', '1000mLx', '4000mLx'],
                    'function': self.BH1750_gain
                }
                ]},
            'TSL2561': {
                'address': [0x29, 0x39, 0x49],
                'name': 'TSL2561 Luminosity Sensor',
                'init': self.TSL2561_init,
                'read': self.TSL2561_all,
                'fields': ['total', 'IR'],
                'min': [0, 0],
                'max': [2 ** 15, 2 ** 15],
                'config': [{
                    'name': 'gain',
                    'options': ['1x', '16x'],
                    'function': self.TSL2561_gain
                },
                    {
                        'name': 'Integration Time',
                        'options': ['3 mS', '101 mS', '402 mS'],
                        'function': self.TSL2561_timing
                    }
                ]},
            'AHT21B': {
                'address': [56],
                'name': 'AHT21B Humidity and Temperature',
                'init': self.AHT21B_init,
                'read': self.AHT21B_all,
                'fields': ['%%RH', 'T'],
                'min': [0, -20, ],
                'max': [100, 100]
            },
            'HMC5883L': {
                'address': [0x1E, 0x3D, 0x3C],
                'name': 'HMC5883L 3 Axis Magnetometer ',
                'init': self.HMC5883L_init,
                'read': self.HMC5883L_all,
                'fields': ['Mx', 'My', 'Mz'],
                'min': [-8, -8, -8],
                'max': [8, 8, 8]
            },
            'QMC3883': {
                'address': [0x13],
                'name': 'QMC5883L 3 Axis Magnetometer ',
                'init': self.QMC5883L_init,
                'read': self.QMC5883L_all,
                'fields': ['Mx', 'My', 'Mz'],
                'min': [-8, -8, -8],
                'max': [8, 8, 8],
                'config': [{
                    'name': 'range',
                    'options': ['2g', '8g'],
                    'function': self.QMC_RANGE
                }
                ]},
            'ADS1115': {
                'address': [0x48, 0x49, 0x4A, 0x4B],
                'name': 'ADS1115',
                'init': self.ADS1115_init,
                'read': self.ADS1115_read,
                'fields': ['Voltage'],
                'min': [-20],
                'max': [20],
                'config': [{
                    'name': 'channel',
                    'options': ['UNI_0', 'UNI_1', 'UNI_2', 'UNI_3', 'DIFF_01', 'DIFF_23'],
                    'function': self.ADS1115_channel
                },
                    {
                        'name': 'Data Rate',
                        'options': ['8', '16', '32', '64', '128', '250', '475', '860'],
                        'function': self.ADS1115_rate
                    },
                    {
                        'name': 'Gain',
                        'options': ['GAIN_TWOTHIRDS', 'GAIN_ONE', 'GAIN_TWO', 'GAIN_FOUR', 'GAIN_EIGHT',
                                    'GAIN_SIXTEEN'],
                        'function': self.ADS1115_gain
                    }
                ]},
            'MPU6050': {
                'address': [0x68, 0x69],
                'name': 'MPU6050 3 Axis Accelerometer and Gyro (Ax, Ay, Az, Temp, Gx, Gy, Gz) ',
                'init': self.MPU6050_init,
                'read': self.MPU6050_all,
                'fields': ['Ax', 'Ay', 'Az', 'Temp', 'Gx', 'Gy', 'Gz'],
                'min': [-1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15, 0, -1 * 2 ** 15, -1 * 2 ** 15, -1 * 2 ** 15],
                'max': [2 ** 15, 2 ** 15, 2 ** 15, 2 ** 16, 2 ** 15, 2 ** 15, 2 ** 15],
                'config': [{
                    'name': 'Gyroscope Range',
                    'options': ['250', '500', '1000', '2000'],
                    'function': self.MPU6050_gyro_range
                },
                    {
                        'name': 'Accelerometer Range',
                        'options': ['2x', '4x', '8x', '16x'],
                        'function': self.MPU6050_accel_range
                    },
                    {
                        'name': 'Kalman',
                        'options': ['OFF', '0.001', '0.01', '0.1', '1', '10'],
                        'function': self.MPU6050_kalman_set
                    }
                ]},
            'BMP180': {
                'address': [0x77],
                'name': 'BMP180 Pressure and Temperature sensor',
                'init': self.BMP180_init,
                'read': self.BMP180_all,
                'fields': ['Pressure', 'Temp'],
                'min': [0, 0],
                'max': [1600, 100],
                'config': [{
                    'name': 'Oversampling',
                    'options': ['0', '1', '2', '3'],
                    'function': self.BMP180_setOversampling
                }]
            },
            'BMP280': {
                'address': [0x76],
                'name': 'BMP280 Pressure and Temperature sensor',
                'init': self.BMP280_init,
                'read': self.BMP280_all,
                'fields': ['Pressure', 'Temp', 'rH %%'],
                'min': [0, 0, 0],
                'max': [1600, 100, 100],
            },
            'AK8963': {  # 0xc
                'address': [12],
                'name': 'AK8963 Mag',
                'init': self.AK8963_init,
                'read': self.AK8963_all,
                'fields': ['X', 'Y', 'Z'],
                'min': [-32767, -32767, -32767],
                'max': [32767, 32767, 32767],
            },
            'MS5611': {
                'address': [119],
                'name': 'MS5611 Pressure and Temperature Sensor',
                'init': self.MS5611_init,
                'read': self.MS5611_all,
                'fields': ['Pressure', 'Temp', 'Alt'],
                'min': [0, 0, 0],
                'max': [1600, 100, 10],
            },
            'INA3221': {  # A0 pin connected to Vs . Otherwise address 0x40 conflicts with PCA board.
                'address': [0x40, 0x41],
                'name': 'INA3221 Current Sensor',
                'init': self.INA3221_init,
                'read': self.INA3221_all,
                'fields': ['CH1', 'CH2', 'CH3'],
                'min': [0, 0, 0],
                'max': [1000, 1000, 1000],

            },
            'TSL2591': {
                'address': [0x29],
                'name': 'TSL2591 Luminosity Sensor',
                'init': self.TSL2591_init,
                'read': self.TSL2591_all,
                'fields': ['Raw', 'full', 'IR'],
                'min': [0, 0, 0],
                'max': [37889, 88000, 88000],
                'config': [{
                    'name': 'gain',
                    'options': ['1x', '25x', '428x', '9876x'],
                    'function': self.TSL2591_gain
                },
                    {
                        'name': 'Integration Time',
                        'options': ['100 mS', '200 mS', '300 mS', '400 mS', '500 mS', '600 mS'],
                        'function': self.TSL2591_timing
                    }
                ]},
            'VL53L0X': {  # VL53L0X.
                'address': [0x29],
                'name': 'VL53L0X time of flight sensor',
                'init': self.VL53L0X_init,
                'read': self.VL53L0X_all,
                'fields': ['mm'],
                'min': [0],
                'max': [1000],
            },
            'MLX90614': {
                'address': [0x5A],
                'name': 'MLX90614 Passive IR thermometer',
                'init': self.MLX90614_init,
                'read': self.MLX90614_all,
                'fields': ['TEMP'],
                'min': [0],
                'max': [350]},
            'MPR1221': {  # Overrides MLX(0x5A). revise this address:sensor map to sensor:[addr.., options] map
                'address': [0x5A],
                'name': 'MPR1221 capacitive touch sensor',
                'init': self.MPR121_init,
                'read': self.MPR121_all,
                'fields': ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'],
                'min': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                'max': [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]},
            'PCF_LCD': {
                'address': [39,63],
                'name': 'PCF_LCD: I2C LCD Display',
                'init': self.PCF_LCD_init,
                'read': self.PCF_LCD_all,
                'fields': ['Dummy'],
                'min': [0],
                'max': [1],
                'config': [{
                    'name': 'text',
                    'options': self.PCF_text_options,
                    'function': self.PCF_LCD_text
                },
                    {
                        'name': 'row',
                        'options': ['1', '2'],
                        'function': self.PCF_LCD_row
                    }
                ]}
        }

        self.controllers = {
            self.MCP5725_ADDRESS: {
                'name': 'MCP4725',
                'init': self.MCP4725_init,
                'write': [['CH0', 0, 4095, 0, self.MCP4725_set]],
            },
        }

        self.special = {
            0x40: {
                'name': 'PCA9685 PWM',
                'init': self.PCA9685_init,
                'write': [['Channel 1', 0, 180, 90, functools.partial(self.PCA9685_set, 1)],
                          # name, start, stop, default, function
                          ['Channel 2', 0, 180, 90, functools.partial(self.PCA9685_set, 2)],
                          ['Channel 3', 0, 180, 90, functools.partial(self.PCA9685_set, 3)],
                          ['Channel 4', 0, 180, 90, functools.partial(self.PCA9685_set, 4)],
                          ['Channel 5', 0, 180, 90, functools.partial(self.PCA9685_set, 5)],
                          ['Channel 6', 0, 180, 90, functools.partial(self.PCA9685_set, 6)],
                          ['Channel 7', 0, 180, 90, functools.partial(self.PCA9685_set, 7)],
                          ['Channel 8', 0, 180, 90, functools.partial(self.PCA9685_set, 8)],
                          ],
            }
        }

        self.connected = False

        self.sensormap = {}
        self.addressmap = {}
        for a in range(128):
            self.sensormap[a] = []
        for a in self.namedsensors:
            for addr in self.namedsensors[a]['address']:
                self.sensormap[addr].append(a)
                if addr in self.addressmap:
                    self.addressmap[addr] += '/' + a
                else:
                    self.addressmap[addr] = a


        if 'port' in kwargs:
            self.portname = kwargs.get('port', None)
            try:
                self.fd, self.version, self.connected = self.connectToPort(self.portname)
                if self.connected:
                    # self.fd.setRTS(0)
                    if self.nano:
                        self.REGS = REGISTERS.VERSIONS[self.version][
                            'REGISTERS']  # A map of alphanumeric port names to the 8-bit register locations
                        self.REGSTATES = {}  # Store the last written state of the registers
                        self.SPECIALS = REGISTERS.VERSIONS[self.version]['SPECIALS']
                        for a in ['B', 'C', 'D']:  # Initialize all inputs
                            self.setReg('DDR' + a, 0)  # All inputs
                            self.setReg('PORT' + a, 0)  # No Pullup
                        self.setReg('PORTC', (1 << 4) | (1 << 5))  # I2C Pull-Up
                    else:
                        for a in ['A', 'B', 'C', 'D']:  # Initialize all inputs
                            self.setReg('DDR' + a, 0)
                    return
            except Exception as ex:
                print('Failed to connect to ', self.portname, ex.message)

        elif kwargs.get('autoscan', False):  # Scan and pick a port
            portList = getFreePorts()
            for a in portList:
                if portList[a]:
                    try:
                        self.portname = a
                        self.fd, self.version, self.connected = self.connectToPort(self.portname)
                        if self.connected:
                            # self.fd.setRTS(0)
                            if self.nano:
                                print('kuttypy nano with version', self.version)
                                self.REGS = REGISTERS.VERSIONS[self.version][
                                    'REGISTERS']  # A map of alphanumeric port names to the 8-bit register locations
                                self.REGSTATES = {}  # Store the last written state of the registers
                                self.SPECIALS = REGISTERS.VERSIONS[self.version]['SPECIALS']
                                for a in ['B', 'C', 'D']:  # Initialize all inputs
                                    self.setReg('DDR' + a, 0)  # All inputs
                                    self.setReg('PORT' + a, 0)  # No Pullup
                                self.setReg('PORTC', (1 << 4) | (1 << 5))  # I2C Pull-Up
                            else:
                                for a in ['A', 'B', 'C', 'D']:  # Initialize all inputs
                                    self.setReg('DDR' + a, 0)  # All inputs
                                    self.setReg('PORT' + a, 0)  # No Pullup
                                self.setReg('PORTC', 3)  # I2C Pull-Up
                            return
                    except Exception as e:
                        print(e)
                else:
                    print(a, ' is busy')



    def __get_version__(self, fd):
        fd.flush()
        if self.bootloaderfirmware:
            fd.setRTS(0)
            fd.setDTR(0)
            time.sleep(0.01)
            fd.setRTS(1)
            fd.setDTR(1)
        st = time.time()
        while fd.in_waiting:
            fd.read(fd.in_waiting)
        time.sleep(max(0, 0.25 - (time.time() - st)))
        fd.write(self.GET_VERSION)
        x = fd.read()
        return x

    def get_version(self):
        return self.__get_version__(self.fd)

    def connectToPort(self, portname):
        '''
		connect to a port, and check for the right version
		'''

        try:
            if 'inux' in platform.system():  # Linux based system
                try:
                    # try to lock down the serial port
                    import socket
                    self.blockingSocket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
                    self.blockingSocket.bind('\0eyesj2%s' % portname)
                    self.blockingSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                    if 'rfcomm' in portname:
                        self.BAUD = 9600
                    fd = serial.Serial(portname, self.BAUD, timeout=0.2)
                    if not fd.isOpen():
                        return None, '', False
                except socket.error as e:
                    # print ('Port {0} is busy'.format(portname))
                    return None, '', False
            # raise RuntimeError("Another program is using %s (%d)" % (portname) )


            else:
                fd = serial.Serial(portname, self.BAUD, timeout=0.5)
            # print ('not on linux',platform.system())

            if (fd.in_waiting):
                fd.flush()
                fd.readall()

        except serial.SerialException as ex:
            print('Port {0} is unavailable: {1}'.format(portname, ex))
            return None, '', False

        version = self.__get_version__(fd)
        self.nano = False
        if len(version) == 1:
            if ord(version) == ord(self.VERSIONNUM):
                return fd, ord(version), True
            elif ord(version) in [ord(self.VERSIONNUM_168P), ord(self.VERSIONNUM_328P),
                                  ord(self.VERSIONNUM_UNO)]:  # assume it is mega32. will work with glitches
                self.nano = True
                return fd, ord(self.VERSIONNUM), True
            elif ord(version) in [42]:  # bluetooth
                self.nano = True
                self.bootloaderfirmware = False
                print('Bluetooth Enabled', portname, self.BAUD, ord(version), 'bootfirm:', self.bootloaderfirmware)
                return fd, ord(self.VERSIONNUM_328P), True
        print('version check failed', len(version), ord(version))
        return None, '', False

    def close(self):
        self.fd.close()
        self.portname = None
        self.connected = False
        if self.blockingSocket:
            self.blockingSocket.shutdown(1)
            self.blockingSocket.close()
            self.blockingSocket = None

    def __sendByte__(self, val):
        """
		transmits a BYTE
		val - byte to send
		"""
        # print (val)
        try:
            if type(val) == int:
                #print('w',val)
                self.fd.write(Byte.pack(val))
            else:
                self.fd.write(val)
        except:
            self.connected = False

    def __getByte__(self):
        """
		reads a byte from the serial port and returns it
		"""
        try:
            ss = self.fd.read(1)
        #print('r', ss)
        except:
            self.connected = False
            print('No byte received. Disconnected?', time.ctime())
            return 0
        if len(ss):
            return Byte.unpack(ss)[0]
        else:
            print('byte communication error.', time.ctime())
            self.get_version()
            return None

    def setReg(self, reg, data):
        # print(reg,data)
        if reg not in self.REGS and type(reg) == str: return False
        self.REGSTATES[reg] = data
        self.__sendByte__(self.WRITEB)
        if reg in self.REGS:
            self.__sendByte__(self.REGS[reg])
        else:
            # print('missing register',reg)
            self.__sendByte__(reg)
        self.__sendByte__(data)

    def getReg(self, reg):
        if (reg not in self.REGS) and type(reg) == str:
            print('unknown register', reg)
            return 0
        self.__sendByte__(self.READB)
        if reg in self.REGS:
            self.__sendByte__(self.REGS[reg])
        else:
            # print('missing register',reg)
            self.__sendByte__(reg)
        val = self.__getByte__()
        self.REGSTATES[reg] = val
        return val

    def readADC(self, ch):  # Read the ADC channel
        self.setReg(self.REGS['ADMUX'], 64 | ch)
        self.setReg(self.REGS['ADCSRA'], 197)  # Enable the ADC
        low = self.getReg(self.REGS['ADCL'])
        hi = self.getReg(self.REGS['ADCH'])
        return (hi << 8) | low

    '''
	def writeEEPROM(self,data):
		addr=0
		for a in data:
			timeout=20 #20mS
			while ((self.getReg('EECR') & 2)):
				timeout-=1
				if timeout==0:
					print ('wait timeout!')
					break
				time.sleep(0.001)

			self.setReg('EEARL',addr)
			self.setReg('EEARH',0)
			self.setReg('EEDR',a)
			self.setReg('EECR',4) ##EEMPE master write enable
			self.setReg('EECR',6) # EEPE write
			addr+=1

	def readEEPROM(self,total):
		addr=0; b = []
		for a in range(total):
			timeout=20 #20mS
			while ((self.getReg('EECR') & 2)):
				timeout-=1
				if timeout==0:
					print ('wait timeout!')
					break
				time.sleep(0.001)

			self.setReg('EEARL',addr)
			self.setReg('EEARH',0)
			self.setReg('EECR',1) ##EERE. Read 
			b.append(self.getReg('EEDR'))
			addr+=1
		return b
	'''

    # I2C Calls. Will be replaced with firmware level implementation
    '''
	def initI2C(self): # Initialize I2C
		self.setReg('TWSR',0x00)
		self.setReg('TWBR',0x46)
		self.setReg('TWCR',0x04)

	def startI2C(self): 
		self.setReg('TWCR',(1<<7)|(1<<5) | (1<<2))
		timeout=10 #20mS
		time.sleep(0.001)
		while (not(self.getReg('TWCR') & (1<<7))):
			timeout-=1
			print('waiy')
			if timeout==0:
				print('start timeout')
				break
			time.sleep(0.001)

	def stopI2C(self):
		self.setReg('TWCR',(1<<7) | (1<<4) | (1<<2))
		timeout=10 #20mS
		time.sleep(0.001)

	def writeI2C(self,val):
		self.setReg('TWDR',val)
		self.setReg('TWCR',(1<<7) | (1<<2))
		timeout=20 #20mS
		while (not(self.getReg('TWCR') & (1<<7))):
			timeout-=1
			if timeout==0:
				print ('write timeout')
				break
			time.sleep(0.001)

	def readI2C(self,ack):
		self.setReg('TWCR',(1<<7) | (1<<2) | (ack<<6))
		timeout=20 #20mS
		while (not(self.getReg('TWCR') & (1<<7))):
			timeout-=1
			if timeout==0:
				print ('read timeout')
				break
			time.sleep(0.001)
		if timeout:
			return self.getReg('TWDR')
		else:
			return None
	def I2CWriteBulk(self,address,bytestream): 
		# Individual register write based writing. takes a few hundred milliseconds
		self.startI2C()
		self.writeI2C(address<<1)
		for a in bytestream:
			self.writeI2C(a) 
		self.stopI2C()

	def I2CReadBulk(self,address,register,total): 
		# Individual register write based reading. takes a few hundred milliseconds
		self.startI2C()
		self.writeI2C(address<<1)
		self.writeI2C(register)
		self.startI2C()
		self.writeI2C((address<<1)|1) #Read
		b=[]
		for a in range(total-1):
			b.append(self.readI2C(1) )
		b.append(self.readI2C(0))
		self.stopI2C()
		return b

	# Individual register write based scan. takes a few seconds
	def I2CScan(self):
		found = []
		for a in range(127):
			self.startI2C()
			time.sleep(0.005)
			self.writeI2C(a<<1)
			time.sleep(0.005)
			if self.getReg('TWSR') == 0x18:
				found.append(a)
		self.stopI2C()
		return found
	'''

    def I2CScan(self):
        self.__sendByte__(self.I2C_SCAN)
        addrs = []
        val = self.__getByte__()
        if val is None:
            return []
        while val < 254:
            addrs.append(val)
            val = self.__getByte__()
        if (val == 254):
            print('timed out')
        else:
            print('completed')

        self.setReg('TWBR',0xFF) #I2C speed minimal. testing purposes

        return addrs

    def I2CWriteBulk(self, address, bytestream):
        self.__sendByte__(self.I2C_WRITE)
        self.__sendByte__(address)  # address
        self.__sendByte__(len(bytestream))  # Total bytes to write. <=255
        for a in bytestream:
            self.__sendByte__(Byte.pack(a))
        tmt = self.__getByte__()
        if tmt:
            return True  # Hasn't Timed out.
        else:
            return False  # Timeout occured

    def I2CReadBulk(self, address, register, total):
        self.__sendByte__(self.I2C_READ)
        self.__sendByte__(address)  # address
        self.__sendByte__(register)  # device register address
        self.__sendByte__(total)  # Total bytes to read. <=255
        data = []
        for a in range(total):
            val = self.__getByte__()
            data.append(val)
        tmt = self.__getByte__()
        return data, True if not tmt else False

    ####################### CSPARK GM COUNTER ###############

    CSGM_ADDRESS = 0x10
    CSGM_START_LOCATION = 100
    CSGM_STOP_LOCATION = 101
    CSGM_RESET_LOCATION = 102
    CSGM_SAVE_LOCATION = 103
    CSGM_VOLTS_READ_LOCATION = 104
    CSGM_VOLTS_WRITE_LOCATION = 105
    CSGM_COUNT_READ_LOCATION = 106
    CSGM_TIMELIMIT_WRITE = 107

    def set_device(self, d):
        self.p = d

    def CSGM_init(self, **kwargs):
        self.CSGM_ADDRESS = kwargs.get('address', self.CSGM_ADDRESS)

    def CSGM_all(self):
        retlist = []
        vals = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_COUNT_READ_LOCATION, 4)
        if vals:
            if len(vals) >= 4:
                retlist.append((vals[3] << 24) | (vals[2] << 16) | (vals[1] << 8) | vals[0])  # long

                vals2, tmt = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_VOLTS_READ_LOCATION, 2)
                if not tmt:
                    if len(vals2) == 2:
                        retlist.append((vals2[1] << 8) | vals2[0])
                        # print(retlist, vals, vals2)
                        return retlist

        return False

    def CSGM_voltage(self, **kwargs):
        self.CSGM_ADDRESS = kwargs.get('address', self.CSGM_ADDRESS)
        vals, tmt = self.I2CReadBulk(self.CSGM_ADDRESS, self.CSGM_VOLTS_READ_LOCATION, 2)
        if not tmt:
            if len(vals) == 2:
                # print('readback:', (vals[1] << 8) | vals[0])
                return (vals[1] << 8) | vals[0]
            else:
                return 0
        else:
            return False

    def CSGM_config(self, volts):
        self.I2CWriteBulk(self.CSGM_ADDRESS,
                          [self.CSGM_VOLTS_WRITE_LOCATION, int(volts) & 0xFF, int(volts >> 8) & 0xFF])

    def CSGM_timelimit(self, t):
        t = int(t)
        self.I2CWriteBulk(self.CSGM_ADDRESS,
                          [self.CSGM_TIMELIMIT_WRITE, int(t) & 0xFF, int(t >> 8) & 0xFF])

    def CSGM_start(self):
        self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_START_LOCATION])

    def CSGM_stop(self):
        self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_STOP_LOCATION])

    def CSGM_reset(self):
        self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_RESET_LOCATION])

    def CSGM_save(self):
        self.I2CWriteBulk(self.CSGM_ADDRESS, [self.CSGM_SAVE_LOCATION])
        time.sleep(0.1)  # Wait for save.

    class KalmanFilter(object):
        '''
		Credits:http://scottlobdell.me/2014/08/kalman-filtering-python-reading-sensor-input/
		'''

        def __init__(self, var, est, initial_values):  # var = process variance. est = estimated measurement var
            self.var = np.array(var)
            self.est = np.array(est)
            self.posteri_estimate = np.array(initial_values)
            self.posteri_error_estimate = np.ones(len(var), dtype=np.float16)

        def input(self, vals):
            vals = np.array(vals)
            priori_estimate = self.posteri_estimate
            priori_error_estimate = self.posteri_error_estimate + self.var

            blending_factor = priori_error_estimate / (priori_error_estimate + self.est)
            self.posteri_estimate = priori_estimate + blending_factor * (vals - priori_estimate)
            self.posteri_error_estimate = (1 - blending_factor) * priori_error_estimate

        def output(self):
            return self.posteri_estimate

    MPU6050_kalman = 0
    MPU6050_address = 0x68

    def MPU6050_init(self, **kwargs):
        self.MPU6050_address = kwargs.get('address', self.MPU6050_address)
        self.I2CWriteBulk(0x68, [0x1B, 0 << 3])  # Gyro Range . 250
        self.I2CWriteBulk(0x68, [0x1C, 0 << 3])  # Accelerometer Range. 2
        self.I2CWriteBulk(0x68, [0x6B, 0x00])  # poweron
        v, tmt = self.I2CReadBulk(0x68, 0x75, 1)
        self.mag = False
        if v[0] in [0x71, 0x73]:  # MPU9255, MPU9250. Has magnetometer. Enable it.
            self.mag = True
            self.I2CWriteBulk(0x68,
                              [0x37, 0x22])  # INT_PIN_CFG . I2C passthrough enabled. Rescan to detect magnetometer.

    def MPU6050_gyro_range(self, val):
        self.I2CWriteBulk(0x68,
                          [0x1B, val << 3])  # Gyro Range . 250,500,1000,2000 -> 0,1,2,3 -> shift left by 3 positions

    def MPU6050_accel_range(self, val):
        print(val)
        self.I2CWriteBulk(0x68,
                          [0x1C, val << 3])  # Accelerometer Range. 2,4,8,16 -> 0,1,2,3 -> shift left by 3 positions

    def MPU6050_kalman_set(self, val):
        if not val:
            self.MPU6050_kalman = 0
            return
        noise = []
        for a in range(50):
            noise.append(np.array(self.MPU6050_all(disableKalman=True)))
        noise = np.array(noise)
        self.MPU6050_kalman = self.KalmanFilter(1e6 * np.ones(noise.shape[1]) / (10 ** val), np.std(noise, 0) ** 2,
                                                noise[-1])

    def MPU6050_accel(self):
        b, tmt = self.I2CReadBulk(0x68, 0x3B, 6)
        if tmt: return None
        if None not in b:
            return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(3)]  # X,Y,Z

    def MPU6050_gyro(self):
        b, tmt = self.I2CReadBulk(0x68, 0x3B + 6, 6)
        if tmt: return None
        if None not in b:
            return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(3)]  # X,Y,Z

    def MPU6050_all(self, disableKalman=False):
        '''
		returns a 7 element list. Ax,Ay,Az,T,Gx,Gy,Gz
		returns None if communication timed out with I2C sensor
		disableKalman can be set to True if Kalman was previously enabled.
		'''
        b, tmt = self.I2CReadBulk(0x68, 0x3B, 14)
        if tmt: return None
        if None not in b:
            if (not self.MPU6050_kalman) or disableKalman:
                return [np.int32(signit((b[x * 2] << 8) | b[x * 2 + 1])) for x in range(7)]  # Ax,Ay,Az, Temp, Gx, Gy,Gz
            else:
                self.MPU6050_kalman.input([np.int16(signit((b[x * 2] << 8) | b[x * 2 + 1])) for x in range(7)])
                return self.MPU6050_kalman.output()

    ######## AK8963 magnetometer attacched to MPU925x #######
    AK8963_ADDRESS = 0x0C
    _AK8963_CNTL = 0x0A

    def AK8963_init(self, **kwargs):
        self.AK8963_ADDRESS = kwargs.get('address', self.AK8963_ADDRESS)
        self.I2CWriteBulk(self.AK8963_ADDRESS, [self._AK8963_CNTL, 0])  # power down mag
        self.I2CWriteBulk(self.AK8963_ADDRESS,
                          [self._AK8963_CNTL, (1 << 4) | 6])  # mode   (0=14bits,1=16bits) <<4 | (2=8Hz , 6=100Hz)

    def AK8963_all(self, disableKalman=False):
        vals, tmt = self.I2CReadBulk(self.AK8963_ADDRESS, 0x03,
                                     7)  # 6+1 . 1(ST2) should not have bit 4 (0x8) true. It's ideally 16 . overflow bit
        if tmt: return None
        ax, ay, az = struct.unpack('hhh', bytes(vals[:6]))
        if not vals[6] & 0x08:
            return [ax, ay, az]
        else:
            return None

    ########## BMP180 ##############
    BMP180_ADDRESS = 0x77
    BMP180_REG_CONTROL = 0xF4
    BMP180_REG_RESULT = 0xF6
    BMP180_CMD_TEMP = 0x2E
    BMP180_CMD_P0 = 0x34
    BMP180_CMD_P1 = 0x74
    BMP180_CMD_P2 = 0xB4
    BMP180_CMD_P3 = 0xF4
    BMP180_oversampling = 0
    BMP180_NUMPLOTS = 2
    BMP180_PLOTNAMES = ['Temperature', 'Pressure', 'Altitude']
    BMP180_name = 'Altimeter BMP180'
    BMP180_params = {'setOversampling': [0, 1, 2, 3]}

    BMP180_c3 = 0
    BMP180_c4 = 0
    BMP180_b1 = 0
    BMP180_c5 = 0
    BMP180_c6 = 0
    BMP180_mc = 0
    BMP180_md = 0
    BMP180_x0 = 0
    BMP180_x1 = 0
    BMP180_x2 = 0
    BMP180_y0 = 0
    BMP180_y1 = 0
    BMP180_y2 = 0
    BMP180_p0 = 0
    BMP180_p1 = 0
    BMP180_p2 = 0
    BMP180_P = 1000
    BMP180_T = 25

    def BMP180_init(self, **kwargs):
        self.BMP180_ADDRESS = kwargs.get('address', self.BMP180_ADDRESS)
        MB = self.__readInt__(0xBA)
        self.BMP180_c3 = 160.0 * pow(2, -15) * self.__readInt__(0xAE)
        self.BMP180_c4 = pow(10, -3) * pow(2, -15) * self.__readUInt__(0xB0)
        self.BMP180_b1 = pow(160, 2) * pow(2, -30) * self.__readInt__(0xB6)
        self.BMP180_c5 = (pow(2, -15) / 160) * self.__readUInt__(0xB2)
        self.BMP180_c6 = self.__readUInt__(0xB4)
        self.BMP180_mc = (pow(2, 11) / pow(160, 2)) * self.__readInt__(0xBC)
        self.BMP180_md = self.__readInt__(0xBE) / 160.0
        self.BMP180_x0 = self.__readInt__(0xAA)
        self.BMP180_x1 = 160.0 * pow(2, -13) * self.__readInt__(0xAC)
        self.BMP180_x2 = pow(160, 2) * pow(2, -25) * self.__readInt__(0xB8)
        self.BMP180_y0 = self.BMP180_c4 * pow(2, 15)
        self.BMP180_y1 = self.BMP180_c4 * self.BMP180_c3
        self.BMP180_y2 = self.BMP180_c4 * self.BMP180_b1
        self.BMP180_p0 = (3791.0 - 8.0) / 1600.0
        self.BMP180_p1 = 1.0 - 7357.0 * pow(2, -20)
        self.BMP180_p2 = 3038.0 * 100.0 * pow(2, -36)
        self.BMP180_T = 25
        print('calib:', self.BMP180_x0, self.BMP180_x1, self.BMP180_x2,
              self.BMP180_y0, self.BMP180_y1, self.BMP180_p0, self.BMP180_p1, self.BMP180_p2)
        self.BMP180_initTemperature()
        self.BMP180_readTemperature()
        self.BMP180_initPressure()

    def __readInt__(self, addr):
        return np.int16(signit(self.__readUInt__(addr)))

    def __readUInt__(self, addr):
        vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, addr, 2)
        v = 1. * ((vals[0] << 8) | vals[1])
        return v

    def BMP180_initTemperature(self):
        self.I2CWriteBulk(self.BMP180_ADDRESS, [self.BMP180_REG_CONTROL, self.BMP180_CMD_TEMP])
        time.sleep(0.005)

    def BMP180_readTemperature(self):
        vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, self.BMP180_REG_RESULT, 2)
        if tmt: return None
        if vals:
            if len(vals) == 2:
                T = (vals[0] << 8) + vals[1]
                a = self.BMP180_c5 * (T - self.BMP180_c6)
                self.BMP180_T = a + (self.BMP180_mc / (a + self.BMP180_md))
                return self.BMP180_T
        return None

    def BMP180_setOversampling(self, num):
        self.BMP180_oversampling = int(num)

    def BMP180_initPressure(self):
        os = [0x34, 0x74, 0xb4, 0xf4]
        delays = [0.005, 0.008, 0.014, 0.026]
        self.I2CWriteBulk(self.BMP180_ADDRESS, [self.BMP180_REG_CONTROL, os[self.BMP180_oversampling]])
        time.sleep(delays[self.BMP180_oversampling])

    def BMP180_readPressure(self):
        vals, tmt = self.I2CReadBulk(self.BMP180_ADDRESS, self.BMP180_REG_RESULT, 3)
        if tmt:
            return None
        if len(vals) == 3:
            P = 1. * (vals[0] << 8) + vals[1] + (vals[2] / 256.0)
            s = self.BMP180_T - 25.0
            x = (self.BMP180_x2 * pow(s, 2)) + (self.BMP180_x1 * s) + self.BMP180_x0
            y = (self.BMP180_y2 * pow(s, 2)) + (self.BMP180_y1 * s) + self.BMP180_y0
            z = (P - x) / y
            self.BMP180_P = (self.BMP180_p2 * pow(z, 2)) + (self.BMP180_p1 * z) + self.BMP180_p0
            return self.BMP180_P
        else:
            return None

    def BMP180_sealevel(self, P, A):
        '''
        given a calculated pressure and altitude, return the sealevel
        '''
        return P / pow(1 - (A / 44330.0), 5.255)

    def BMP180_all(self):
        self.BMP180_initTemperature()
        self.BMP180_readTemperature()
        self.BMP180_initPressure()
        self.BMP180_readPressure()
        return [self.BMP180_P, self.BMP180_T]

    ####### BMP280 ###################
    # https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
    ## Partly from https://github.com/farmerkeith/BMP280-library/blob/master/farmerkeith_BMP280.cpp
    BMP280_ADDRESS = 118
    BMP280_REG_CONTROL = 0xF4
    BMP280_REG_RESULT = 0xF6
    BMP280_HUMIDITY_ENABLED = False
    _BMP280_humidity_calib = [0] * 6
    BMP280_oversampling = 0
    _BMP280_PRESSURE_MIN_HPA = 0
    _BMP280_PRESSURE_MAX_HPA = 1600
    _BMP280_sea_level_pressure = 1013.25  # for calibration.. from circuitpython library

    def BMP280_init(self, **kwargs):
        self.BMP280_ADDRESS = kwargs.get('address', self.BMP280_ADDRESS)
        b = self.I2CWriteBulk(self.BMP280_ADDRESS, [0xE0, 0xB6])  # reset
        time.sleep(0.1)
        self.BMP280_HUMIDITY_ENABLED = False
        b, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xD0, 1)
        print(b)
        if b is None: return None
        b = b[0]
        if b in [0x58, 0x56, 0x57]:
            print('BMP280. ID:', b)
        elif b == 0x60:
            self.BMP280_HUMIDITY_ENABLED = True
            print('BME280 . includes humidity')
        else:
            print('ID unknown', b)
        # get calibration data
        b, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0x88, 24)  # 24 bytes containing calibration data
        coeff = list(struct.unpack('<HhhHhhhhhhhh', bytes(b)))
        coeff = [float(i) for i in coeff]
        self._BMP280_temp_calib = coeff[:3]
        self._BMP280_pressure_calib = coeff[3:]
        self._BMP280_t_fine = 0.

        if self.BMP280_HUMIDITY_ENABLED:
            self.I2CWriteBulk(self.BMP280_ADDRESS, [0xF2, 0b101])  # ctrl_hum. oversampling x 16
            # humidity calibration read
            self._BMP280_humidity_calib = [0] * 6
            val, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xA1, 1)
            self._BMP280_humidity_calib[0] = val[0]  # H1
            coeff, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xE1, 7)
            coeff = list(struct.unpack('<hBbBbb', bytes(coeff)))
            self._BMP280_humidity_calib[1] = float(coeff[0])
            self._BMP280_humidity_calib[2] = float(coeff[1])
            self._BMP280_humidity_calib[3] = float((coeff[2] << 4) | (coeff[3] & 0xF))
            self._BMP280_humidity_calib[4] = float((coeff[4] << 4) | (coeff[3] >> 4))
            self._BMP280_humidity_calib[5] = float(coeff[5])
            print('calibration data: ', self._BMP280_temp_calib, self._BMP280_humidity_calib)

        self.I2CWriteBulk(self.BMP280_ADDRESS, [0xF4, 0xFF])  # ctrl_meas (oversampling of pressure, temperature)

    def _BMP280_calcTemperature(self, adc_t):
        v1 = (adc_t / 16384.0 - self._BMP280_temp_calib[0] / 1024.0) * self._BMP280_temp_calib[1]
        v2 = ((adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0) * (
                adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0)) * self._BMP280_temp_calib[2]
        self._BMP280_t_fine = int(v1 + v2)
        return (v1 + v2) / 5120.0  # actual temperature.

    def _BMP280_calcPressure(self, adc_p, adc_t):
        self._BMP280_calcTemperature(adc_t)  # t_fine has been set now.
        # Algorithm from the BMP280 driver. adapted from adafruit adaptation
        # https://github.com/BoschSensortec/BMP280_driver/blob/master/bmp280.c
        var1 = self._BMP280_t_fine / 2.0 - 64000.0
        var2 = var1 * var1 * self._BMP280_pressure_calib[5] / 32768.0
        var2 = var2 + var1 * self._BMP280_pressure_calib[4] * 2.0
        var2 = var2 / 4.0 + self._BMP280_pressure_calib[3] * 65536.0
        var3 = self._BMP280_pressure_calib[2] * var1 * var1 / 524288.0
        var1 = (var3 + self._BMP280_pressure_calib[1] * var1) / 524288.0
        var1 = (1.0 + var1 / 32768.0) * self._BMP280_pressure_calib[0]
        if not var1:
            return _BMP280_PRESSURE_MIN_HPA
        pressure = 1048576.0 - adc_p
        pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1
        var1 = self._BMP280_pressure_calib[8] * pressure * pressure / 2147483648.0
        var2 = pressure * self._BMP280_pressure_calib[7] / 32768.0
        pressure = pressure + (var1 + var2 + self._BMP280_pressure_calib[6]) / 16.0
        pressure /= 100
        if pressure < self._BMP280_PRESSURE_MIN_HPA:
            return self._BMP280_PRESSURE_MIN_HPA
        if pressure > self._BMP280_PRESSURE_MAX_HPA:
            return self._BMP280_PRESSURE_MAX_HPA
        return pressure

    def _BMP280_calcHumidity(self, adc_h, adc_t):
        self._BMP280_calcTemperature(adc_t)  # t fine set.
        var1 = float(self._BMP280_t_fine) - 76800.0
        var2 = (self._BMP280_humidity_calib[3] * 64.0 + (self._BMP280_humidity_calib[4] / 16384.0) * var1)
        var3 = adc_h - var2
        var4 = self._BMP280_humidity_calib[1] / 65536.0
        var5 = (1.0 + (self._BMP280_humidity_calib[2] / 67108864.0) * var1)
        var6 = 1.0 + (self._BMP280_humidity_calib[5] / 67108864.0) * var1 * var5
        var6 = var3 * var4 * (var5 * var6)
        humidity = var6 * (1.0 - self._BMP280_humidity_calib[0] * var6 / 524288.0)
        if humidity > 100:
            return 100
        if humidity < 0:
            return 0

        return humidity

    def BMP280_all(self):
        if self.BMP280_HUMIDITY_ENABLED:
            data, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xF7, 8)
        else:
            data, tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xF7, 6)
        # os = [0x34,0x74,0xb4,0xf4]
        # delays=[0.005,0.008,0.014,0.026]
        # self.I2CWriteBulk(self.BMP280_ADDRESS,[self.BMP280_REG_CONTROL,os[self.BMP280_oversampling] ])
        # time.sleep(delays[self.BMP280_oversampling])
        if tmt: return None
        if data is None: return None
        if None not in data:
            # Convert pressure and temperature data to 19-bits
            adc_p = (((data[0] & 0xFF) * 65536.) + ((data[1] & 0xFF) * 256.) + (data[2] & 0xF0)) / 16.
            adc_t = (((data[3] & 0xFF) * 65536.) + ((data[4] & 0xFF) * 256.) + (data[5] & 0xF0)) / 16.
            if self.BMP280_HUMIDITY_ENABLED:
                adc_h = (data[6] * 256.) + data[7]
                return [self._BMP280_calcPressure(adc_p, adc_t), self._BMP280_calcTemperature(adc_t),
                        self._BMP280_calcHumidity(adc_h, adc_t)]
            else:
                return [self._BMP280_calcPressure(adc_p, adc_t), self._BMP280_calcTemperature(adc_t), 0]

        return None

    # BH1750
    BH1750_GAIN = 0x11  # 0x11=500 , 0x10 = 1000, 0x13 = 4000mLx
    BH1750_ADDRESS = 35
    BH1750_SCALING = 1.0

    def BH1750_init(self, **kwargs):
        self.BH1750_ADDRESS = kwargs.get('address', self.BH1750_ADDRESS)
        self.BH1750_gain(0)  # 500mLx range
        time.sleep(0.1)
        return self.BH1750_all()

    def BH1750_gain(self, gain):
        self.BH1750_GAIN = [0x11, 0x10, 0x13][gain]
        if gain == 0:  # 500 mLx
            self.BH1750_SCALING = 1.
        else:  # 1000mLx or 4000mLx
            self.BH1750_SCALING = 2.
        self.I2CWriteBulk(self.BH1750_ADDRESS, [self.BH1750_GAIN])  # poweron

    def BH1750_all(self):
        '''
        returns a 2 element list. total,IR
        returns None if communication timed out with I2C sensor
        '''

        b, tmt = self.I2CReadBulk(self.BH1750_ADDRESS, 0x00, 2) #Todo. implement simpleread. 0x00 does nothing.
        if tmt:
            return None
        if None not in b:
            return [float((b[0] << 8) | b[1]) * self.BH1750_SCALING / 2.]  # total lux

    ########## TCS34725 RGB sensor ###########

    _TCS34725_COMMAND_BIT = 0x80
    _TCS34725_REGISTER_STATUS = 0x13
    _TCS34725_REGISTER_CDATA = 0x14
    _TCS34725_REGISTER_RDATA = 0x16
    _TCS34725_REGISTER_GDATA = 0x18
    _TCS34725_REGISTER_BDATA = 0x1a

    _TCS34725_REGISTER_ENABLE = 0x00
    _TCS34725_REGISTER_ATIME = 0x01
    _TCS34725_REGISTER_AILT = 0x04
    _TCS34725_REGISTER_AIHT = 0x06
    _TCS34725_REGISTER_ID = 0x12
    _TCS34725_REGISTER_APERS = 0x0c
    _TCS34725_REGISTER_CONTROL = 0x0f
    _TCS34725_REGISTER_SENSORID = 0x12
    _TCS34725_ENABLE_AIEN = 0x10
    _TCS34725_ENABLE_WEN = 0x08
    _TCS34725_ENABLE_AEN = 0x02
    _TCS34725_ENABLE_PON = 0x01

    _GAINS = (1, 4, 16, 60)
    _CYCLES = (0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60)
    _INTEGRATION_TIME_THRESHOLD_LOW = 2.4
    _INTEGRATION_TIME_THRESHOLD_HIGH = 614.4

    TCS34725_ADDRESS = 41

    def TCS34725_init(self, **kwargs):
        self.TCS34725_ADDRESS = kwargs.get('address', self.TCS34725_ADDRESS)
        enable, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS,
                                       self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ENABLE, 1)
        enable = enable[0]
        self.I2CWriteBulk(self.TCS34725_ADDRESS,
                          [self._TCS34725_REGISTER_ENABLE, enable | self._TCS34725_ENABLE_PON])  #
        time.sleep(0.003)
        self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ENABLE,
                                                  enable | self._TCS34725_ENABLE_PON | self._TCS34725_ENABLE_AEN | self._TCS34725_ENABLE_AIEN])  #
        self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_APERS, 10])
        self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_ATIME, 256 - 40])

    def TCS34725_gain(self, g):
        self.I2CWriteBulk(self.TCS34725_ADDRESS,
                          [self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_CONTROL, g])  # Gain

    def TCS34725_all(self):
        R, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_RDATA, 2)
        G, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_GDATA, 2)
        B, tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT | self._TCS34725_REGISTER_BDATA, 2)

        if tmt: return None
        return [R[0] | (R[1] << 8), G[0] | (G[1] << 8), B[0] | (B[1] << 8)]

    def TCS34725_range(self):
        pass

    ####### MS5611 Altimeter ###################
    MS5611_ADDRESS = 119

    def MS5611_init(self, **kwargs):
        self.MS5611_ADDRESS = kwargs.get('address', self.MS5611_ADDRESS)
        self.I2CWriteBulk(self.MS5611_ADDRESS, [0x1E])  # reset
        time.sleep(0.5)
        self._MS5611_calib = np.zeros(6)

        # calibration data.
        # pressure gain, offset . T coeff of P gain, offset. Ref temp. T coeff of T. all unsigned shorts.
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA2, 2)
        if tmt: return
        self._MS5611_calib[0] = struct.unpack('!H', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA4, 2)
        self._MS5611_calib[1] = struct.unpack('!H', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA6, 2)
        self._MS5611_calib[2] = struct.unpack('!H', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA8, 2)
        self._MS5611_calib[3] = struct.unpack('!H', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAA, 2)
        self._MS5611_calib[4] = struct.unpack('!H', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAC, 2)
        self._MS5611_calib[5] = struct.unpack('!H', bytes(b))[0]
        print('Calibration for MS5611:', self._MS5611_calib)

    #BMP180 pressure sensor
    BMP180 = None

    def BMP180_init(self, **kwargs):
        import BMP180
        self.BMP180 = BMP180.BMP180(self.I2CReadBulk, self.I2CWriteBulk)

    def BMP180_all(self):
        if self.BMP180 is not None:
            return self.BMP180.getRaw()

    def MS5611_all(self):
        self.I2CWriteBulk(self.MS5611_ADDRESS, [0x48])  # 0x48 Pressure conversion(OSR = 4096) command
        time.sleep(0.01)  # 10mS
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00, 3)  # data.
        D1 = b[0] * 65536 + b[1] * 256 + b[2]  # msb2, msb1, lsb

        self.I2CWriteBulk(self.MS5611_ADDRESS, [0x58])  # 0x58 Temperature conversion(OSR = 4096) command
        time.sleep(0.01)
        b, tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00, 3)  # data.
        D2 = b[0] * 65536 + b[1] * 256 + b[2]  # msb2, msb1, lsb

        dT = D2 - self._MS5611_calib[4] * 256
        TEMP = 2000 + dT * self._MS5611_calib[5] / 8388608
        OFF = self._MS5611_calib[1] * 65536 + (self._MS5611_calib[3] * dT) / 128
        SENS = self._MS5611_calib[0] * 32768 + (self._MS5611_calib[2] * dT) / 256
        T2 = 0;
        OFF2 = 0;
        SENS2 = 0
        if TEMP >= 2000:
            T2 = 0
            OFF2 = 0
            SENS2 = 0
        elif TEMP < 2000:
            T2 = (dT * dT) / 2147483648
            OFF2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 2
            SENS2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 4
            if TEMP < -1500:
                OFF2 = OFF2 + 7 * ((TEMP + 1500) * (TEMP + 1500))
                SENS2 = SENS2 + 11 * ((TEMP + 1500) * (TEMP + 1500)) / 2

        TEMP = TEMP - T2
        OFF = OFF - OFF2
        SENS = SENS - SENS2
        pressure = ((((D1 * SENS) / 2097152) - OFF) / 32768.0) / 100.0
        cTemp = TEMP / 100.0
        return [pressure, cTemp, 0]

    ### INA3221 3 channel , high side current sensor #############
    INA3221_ADDRESS = 0x41
    _INA3221_REG_CONFIG = 0x0
    _INA3221_SHUNT_RESISTOR_VALUE = 0.1
    _INA3221_REG_SHUNTVOLTAGE = 0x01
    _INA3221_REG_BUSVOLTAGE = 0x02

    def INA3221_init(self, **kwargs):
        self.INA3221_ADDRESS = kwargs.get('address', self.INA3221_ADDRESS)
        self.I2CWriteBulk(self.INA3221_ADDRESS, [self._INA3221_REG_CONFIG, 0b01110101, 0b00100111])  # cont shunt.

    def INA3221_all(self):
        I = [0., 0., 0.]
        b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE, 2)
        if tmt: return None
        b[1] &= 0xF8;
        I[0] = struct.unpack('!h', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE + 2, 2)
        if tmt: return None
        b[1] &= 0xF8;
        I[1] = struct.unpack('!h', bytes(b))[0]
        b, tmt = self.I2CReadBulk(self.INA3221_ADDRESS, self._INA3221_REG_SHUNTVOLTAGE + 4, 2)
        if tmt: return None
        b[1] &= 0xF8;
        I[2] = struct.unpack('!h', bytes(b))[0]
        return [0.005 * I[0] / self._INA3221_SHUNT_RESISTOR_VALUE, 0.005 * I[1] / self._INA3221_SHUNT_RESISTOR_VALUE,
                0.005 * I[2] / self._INA3221_SHUNT_RESISTOR_VALUE]

    ### SHT21 HUMIDITY TEMPERATURE SENSOR #############
    SHT21_ADDRESS = 0x41
    _SHT21_TEMP = 0xf3
    _SHT21_HUM = 0xf5
    _SHT21_RESET = 0xFE

    def SHT21_init(self, **kwargs):
        self.SHT21_ADDRESS = kwargs.get('address', self.SHT21_ADDRESS)
        self.I2CWriteBulk(self.SHT21_ADDRESS, [self._SHT21_RESET])  # reset
        time.sleep(0.1)

    def SHT21_all(self):
        self.I2CWriteBulk(self.SHT21_ADDRESS, [self._SHT21_TEMP])
        time.sleep(.1)
        self.startI2C()
        self.writeI2C((self.SHT21_ADDRESS << 1) | 1)  # Read
        b = []
        for a in range(2): b.append(self.readI2C(1))
        b.append(self.readI2C(0))
        self.stopI2C()
        temperature, checksum = struct.unpack('>HB', bytes(b))
        return [temperature * 175.72 / 65536.0 - 46.85, 0]

    # AHT 21 Humidity sensor
    AHT21B_ADDRESS = 56
    AHT_CMD_INIT = 0xBE  # initialization cmd
    AHT_CMD_TRIGGER = 0xAC  # trigger measurement cmd
    _buf = b''

    def AHT21B_init(self, **kwargs):
        self.AHT21B_ADDRESS = kwargs.get('address', self.AHT21B_ADDRESS)
        self._buf = bytearray(6)  # not using crc
        self.I2CWriteBulk(self.AHT21B_ADDRESS, [self.AHT_CMD_INIT, 0x08, 0x00])  # calibrate
        time.sleep(0.01)  # Wait initialization process

    def AHT21B_all(self):
        self.I2CWriteBulk(self.AHT21B_ADDRESS, [self.AHT_CMD_TRIGGER, 0x33, 0x00])  # trigger measurement
        time.sleep(0.08)  # Wait measurement process
        self._buf, tmt = self.I2CReadBulk(self.AHT21B_ADDRESS,0x00, 6) #TODO Implement simpleread
        if tmt: return None
        if len(self._buf) == 6:
            hum = self._buf[1] << 12 | self._buf[2] << 4 | self._buf[3] >> 4
            humidity = hum * 100. / 0x100000
            temp = (self._buf[3] & 0xF) << 16 | self._buf[4] << 8 | self._buf[5]
            temp = temp * 200.0 / 0x100000 - 50
            return [humidity, temp]
        return False


    ####### TSL2561 LIGHT SENSOR ###########
    TSL_GAIN = 0x00  # 0x00=1x , 0x01 = 16x
    TSL_TIMING = 0x00  # 0x00=3 mS , 0x01 = 101 mS, 0x02 = 402mS
    TSL2561_ADDRESS = 0x39

    def TSL2561_init(self, **kwargs):
        self.TSL2561_ADDRESS = kwargs.get('address', self.TSL2561_ADDRESS)
        self.I2CWriteBulk(self.TSL2561_ADDRESS, [0x80, 0x03])  # poweron
        self.I2CWriteBulk(self.TSL2561_ADDRESS, [0x80 | 0x01, self.TSL_GAIN | self.TSL_TIMING])
        return self.TSL2561_all()

    def TSL2561_gain(self, gain):
        self.TSL_GAIN = gain << 4
        self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)

    def TSL2561_timing(self, timing):
        self.TSL_TIMING = timing
        self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)

    def TSL2561_rate(self, timing):
        self.TSL_TIMING = timing
        self.TSL2561_config(self.TSL_GAIN, self.TSL_TIMING)

    def TSL2561_config(self, gain, timing):
        self.I2CWriteBulk(self.TSL2561_ADDRESS,
                          [0x80 | 0x01, gain | timing])  # Timing register 0x01. gain[1x,16x] | timing[13mS,100mS,400mS]

    def TSL2561_all(self):
        '''
        returns a 2 element list. total,IR
        returns None if communication timed out with I2C sensor
        '''
        b, tmt = self.I2CReadBulk(self.TSL2561_ADDRESS, 0x80 | 0x20 | 0x0C, 4)
        if tmt: return None
        if None not in b:
            return [(b[x * 2 + 1] << 8) | b[x * 2] for x in range(2)]  # total, IR

    TSL2591_GAIN = 0x00  # 0x00=1x , 0x10 = medium 25x, 0x20 428x , 0x30 Max 9876x
    TSL2591_TIMING = 0x00  # 0x00=100 mS , 0x05 = 600mS

    TSL2591_ADDRESS = 0x29

    TSL2591_COMMAND_BIT = 0xA0
    # Register (0x00)
    TSL2591_ENABLE_REGISTER = 0x00
    TSL2591_ENABLE_POWERON = 0x01
    TSL2591_ENABLE_POWEROFF = 0x00
    TSL2591_ENABLE_AEN = 0x02
    TSL2591_ENABLE_AIEN = 0x10
    TSL2591_ENABLE_SAI = 0x40
    TSL2591_ENABLE_NPIEN = 0x80

    TSL2591_CONTROL_REGISTER = 0x01
    TSL2591_SRESET = 0x80
    # AGAIN
    TSL2591_LOW_AGAIN = 0X00  # Low gain (1x)
    TSL2591_MEDIUM_AGAIN = 0X10  # Medium gain (25x)
    TSL2591_HIGH_AGAIN = 0X20  # High gain (428x)
    TSL2591_MAX_AGAIN = 0x30  # Max gain (9876x)
    # ATIME
    TSL2591_ATIME_100MS = 0x00  # 100 millis #MAX COUNT 36863
    TSL2591_ATIME_200MS = 0x01  # 200 millis #MAX COUNT 65535
    TSL2591_ATIME_300MS = 0x02  # 300 millis #MAX COUNT 65535
    TSL2591_ATIME_400MS = 0x03  # 400 millis #MAX COUNT 65535
    TSL2591_ATIME_500MS = 0x04  # 500 millis #MAX COUNT 65535
    TSL2591_ATIME_600MS = 0x05  # 600 millis #MAX COUNT 65535

    TSL2591_AILTL_REGISTER = 0x04
    TSL2591_AILTH_REGISTER = 0x05
    TSL2591_AIHTL_REGISTER = 0x06
    TSL2591_AIHTH_REGISTER = 0x07
    TSL2591_NPAILTL_REGISTER = 0x08
    TSL2591_NPAILTH_REGISTER = 0x09
    TSL2591_NPAIHTL_REGISTER = 0x0A
    TSL2591_NPAIHTH_REGISTER = 0x0B
    TSL2591_PERSIST_REGISTER = 0x0C

    TSL2591_ID_REGISTER = 0x12

    TSL2591_STATUS_REGISTER = 0x13

    TSL2591_CHAN0_LOW = 0x14
    TSL2591_CHAN0_HIGH = 0x15
    TSL2591_CHAN1_LOW = 0x16
    TSL2591_CHAN1_HIGH = 0x14

    # LUX_DF = GA * 53   GA is the Glass Attenuation factor
    TSL2591_LUX_DF = 408.0
    TSL2591_LUX_COEFB = 1.64
    TSL2591_LUX_COEFC = 0.59
    TSL2591_LUX_COEFD = 0.86

    # LUX_DF              = 408.0
    TSL2591_MAX_COUNT_100MS = (36863)  # 0x8FFF
    TSL2591_MAX_COUNT = (65535)  # 0xFFFF

    def TSL2591_init(self, **kwargs):
        self.TSL2591_ADDRESS = kwargs.get('address', self.TSL2591_ADDRESS)

        b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_ID_REGISTER, 1)
        if tmt: return None
        b = b[0]
        if b != 0x50:
            print('TSL. wrong ID:', b)

        self.I2CWriteBulk(self.TSL2591_ADDRESS, [self.TSL2591_COMMAND_BIT | self.TSL2591_ENABLE_REGISTER,
                                                 self.TSL2591_ENABLE_AIEN | self.TSL2591_ENABLE_POWERON | self.TSL2591_ENABLE_AEN | self.TSL2591_ENABLE_NPIEN])
        self.I2CWriteBulk(self.TSL2591_ADDRESS, [self.TSL2591_COMMAND_BIT | self.TSL2591_PERSIST_REGISTER, 0x01])
        self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)
        return self.TSL2591_all()

    def TSL2591_gain(self, gain):
        self.TSL2591_GAIN = gain << 4  # 0x00=1x , 0x10 = medium 25x, 0x20 428x , 0x30 Max 9876x
        self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)

    def TSL2591_timing(self, timing):
        self.TSL2591_TIMING = timing
        self.TSL2591_config(self.TSL2591_GAIN, self.TSL2591_TIMING)

    def TSL2591_config(self, gain, timing):
        self.I2CWriteBulk(self.TSL2591_ADDRESS,
                          [self.TSL2591_COMMAND_BIT | self.TSL2591_CONTROL_REGISTER, gain | timing])

    def TSL2591_Read_CHAN0(self):
        b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN0_LOW, 2)
        if tmt: return None
        if None not in b:
            return (b[1] << 8) | b[0]

    def TSL2591_Read_CHAN1(self):
        b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN1_LOW, 2)
        if tmt: return None
        if None not in b:
            return (b[1] << 8) | b[0]

    def TSL2591_Read_FullSpectrum(self):
        """Read the full spectrum (IR + visible) light and return its value"""
        data = (self.TSL2591_Read_CHAN1() << 16) | self.TSL2591_Read_CHAN0()
        return data

    def TSL2591_Read_Infrared(self):
        '''Read the infrared light and return its value as a 16-bit unsigned number'''
        data = self.TSL2591_Read_CHAN0()
        return data

    def TSL2591_all(self):
        b,tmt = self.I2CReadBulk(self.TSL2591_ADDRESS, self.TSL2591_COMMAND_BIT | self.TSL2591_CHAN0_LOW, 4)
        if tmt: return None

        channel_0 = (b[1] << 8) | b[0]
        channel_1 = (b[3] << 8) | b[2]

        # channel_0 = self.TSL2591_Read_CHAN0()
        # channel_1 = self.TSL2591_Read_CHAN1()
        # for i in range(0, self.TSL2591_TIMING+2):
        #	time.sleep(0.1)

        atime = 100.0 * self.TSL2591_TIMING + 100.0

        # Set the maximum sensor counts based on the integration time (atime) setting
        if self.TSL2591_TIMING == 0:
            max_counts = self.TSL2591_MAX_COUNT_100MS
        else:
            max_counts = self.TSL2591_MAX_COUNT

        '''
        if channel_0 >= max_counts or channel_1 >= max_counts:
            if(self.TSL2591_GAIN != self.TSL2591_LOW_AGAIN):
                self.TSL2591_GAIN = ((self.TSL2591_GAIN>>4)-1)<<4
                self.TSL2591_config(self.self.TSL2591_GAIN,self.TSL2591_TIMING)
                channel_0 = 0
                channel_1 = 0
                while(channel_0 <= 0 and channel_1 <=0):
                    channel_0 = self.TSL2591_Read_CHAN0()
                    channel_1 = self.TSL2591_Read_CHAN1()
                    time.sleep(0.1)
            else :
                return 0
        '''

        if channel_0 >= max_counts or channel_1 >= max_counts:
            return [(channel_1 & 0xFFFFFFFF << 16) | channel_0, 0, 0]

        again = 1.0
        if self.TSL2591_GAIN == self.TSL2591_MEDIUM_AGAIN:
            again = 25.0
        elif self.TSL2591_GAIN == self.TSL2591_HIGH_AGAIN:
            again = 428.0
        elif self.TSL2591_GAIN == self.TSL2591_MAX_AGAIN:
            again = 9876.0

        cpl = (atime * again) / self.TSL2591_LUX_DF

        lux1 = (channel_0 - (self.TSL2591_LUX_COEFB * channel_1)) / cpl

        lux2 = ((self.TSL2591_LUX_COEFC * channel_0) - (self.TSL2591_LUX_COEFD * channel_1)) / cpl

        return [(channel_1 & 0xFFFFFFFF << 16) | channel_0, lux1, lux2]

    MLX90614_ADDRESS= 0x5A
    def MLX90614_init(self, **kwargs):
        self.MLX90614_ADDRESS = kwargs.get('address', self.MLX90614_ADDRESS)

    def MLX90614_all(self):
        '''
        return a single element list.  None if failed
        '''
        vals, tmt = self.I2CReadBulk(self.MLX90614_ADDRESS, 0x07, 3)
        if tmt: return None
        if vals:
            if len(vals) == 3:
                return [((((vals[1] & 0x007f) << 8) + vals[0]) * 0.02) - 0.01 - 273.15]
            else:
                return None
        else:
            return None

    MCP5725_ADDRESS = 0x60

    def MCP4725_init(self, **kwargs):
        self.MCP5725_ADDRESS = kwargs.get('address', self.MCP5725_ADDRESS)

    def MCP4725_set(self, val):
        '''
        Set the DAC value. 0 - 4095
        '''
        self.I2CWriteBulk(self.MCP5725_ADDRESS, [0x40, (val >> 4) & 0xFF, (val & 0xF) << 4])

    ####################### HMC5883L MAGNETOMETER ###############

    HMC5883L_ADDRESS = 0x1E
    HMC_CONFA = 0x00
    HMC_CONFB = 0x01
    HMC_MODE = 0x02
    HMC_STATUS = 0x09

    # --------CONFA register bits. 0x00-----------
    HMCSamplesToAverage = 0
    HMCSamplesToAverage_choices = [1, 2, 4, 8]

    HMCDataOutputRate = 6
    HMCDataOutputRate_choices = [0.75, 1.5, 3, 7.5, 15, 30, 75]

    HMCMeasurementConf = 0

    # --------CONFB register bits. 0x01-----------
    HMCGainValue = 7  # least sensitive
    HMCGain_choices = [8, 7, 6, 5, 4, 3, 2, 1]
    HMCGainScaling = [1370., 1090., 820., 660., 440., 390., 330., 230.]

    def HMC5883L_init(self, **kwargs):
        self.HMC5883L_ADDRESS = kwargs.get('address', self.HMC5883L_ADDRESS)
        self.__writeHMCCONFA__()
        self.__writeHMCCONFB__()
        self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_MODE, 0])  # enable continuous measurement mode

    def __writeHMCCONFB__(self):
        self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_CONFB, self.HMCGainValue << 5])  # set gain

    def __writeHMCCONFA__(self):
        self.I2CWriteBulk(self.HMC5883L_ADDRESS, [self.HMC_CONFA,
                                                  (self.HMCDataOutputRate << 2) | (self.HMCSamplesToAverage << 5) | (
                                                      self.HMCMeasurementConf)])

    def HMC5883L_getVals(self, addr, bytes):
        vals = self.I2CReadBulk(self.ADDRESS, addr, bytes)
        return vals

    def HMC5883L_all(self):
        vals = self.HMC5883L_getVals(0x03, 6)
        if vals:
            if len(vals) == 6:
                return [np.int16(signit(vals[a * 2] << 8 | vals[a * 2 + 1])) / self.HMCGainScaling[self.HMCGainValue] for a in
                        range(3)]
            else:
                return False
        else:
            return False



    ####################### QMC5883L MAGNETOMETER ###############

    QMC5883L_ADDRESS = 13
    QMC_scaling = 3000

    def QMC5883L_init(self, **kwargs):
        self.QMC5883L_ADDRESS = kwargs.get('address', self.QMC5883L_ADDRESS)
        self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x0A, 0x80])  # 0x80=reset. 0x40= rollover
        self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x0B, 0x01])  # init , set/reset period
        self.QMC_RANGE(1)

    def QMC_RANGE(self, r):  # 0=2G, 1=8G
        if r == 1:
            self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x09,
                                                      0b001 | 0b000 | 0b100 | 0b10000])  # Mode. continuous|oversampling(512) | rate 50Hz | range(8g)
            self.QMC_scaling = 3000
        elif r == 0:
            self.I2CWriteBulk(self.QMC5883L_ADDRESS, [0x09,
                                                      0b001 | 0b000 | 0b100 | 0b00000])  # Mode. continuous|oversampling(512) | rate 50Hz | range(2g)
            self.QMC_scaling = 12000

    def QMC5883L_getVals(self, addr, numbytes):
        vals, tmt = self.I2CReadBulk(self.QMC5883L_ADDRESS, addr, numbytes)
        return vals

    def QMC5883L_all(self):
        vals = self.QMC5883L_getVals(0x00, 6)
        if vals:
            if len(vals) == 6:
                v = [np.int16(signit((vals[a * 2 + 1] << 8) | vals[a * 2])) / self.QMC_scaling for a in range(3)]
                return v
            else:
                return False
        else:
            return False


    PCA9685_address = 64

    def PCA9685_init(self, **kwargs):
        self.PCA9685_address = kwargs.get('address', self.PCA9685_address)
        prescale_val = int((25000000.0 / 4096 / 60.) - 1)  # default clock at 25MHz
        # self.I2CWriteBulk(self.PCA9685_address, [0x00,0x10]) #MODE 1 , Sleep
        print('clock set to,', prescale_val)
        self.I2CWriteBulk(self.PCA9685_address, [0xFE, prescale_val])  # PRESCALE , prescale value
        self.I2CWriteBulk(self.PCA9685_address, [0x00, 0x80])  # MODE 1 , restart
        self.I2CWriteBulk(self.PCA9685_address, [0x01, 0x04])  # MODE 2 , Totem Pole

        pass

    CH0 = 0x6  # LED0 start register
    CH0_ON_L = 0x6  # channel0 output and brightness control byte 0
    CH0_ON_H = 0x7  # channel0 output and brightness control byte 1
    CH0_OFF_L = 0x8  # channel0 output and brightness control byte 2
    CH0_OFF_H = 0x9  # channel0 output and brightness control byte 3
    CHAN_WIDTH = 4

    def PCA9685_set(self, chan, angle):
        '''
        chan: 1-16
        Set the servo angle for SG90: angle(0 - 180)
        '''
        Min = 180
        Max = 650
        val = int(((Max - Min) * (angle / 180.)) + Min)
        print(chan, angle, val)
        self.I2CWriteBulk(self.PCA9685_address, [self.CH0_ON_L + self.CHAN_WIDTH * (chan - 1), 0])  #
        self.I2CWriteBulk(self.PCA9685_address,
                          [self.CH0_ON_H + self.CHAN_WIDTH * (chan - 1), 0])  # Turn on immediately. At 0.
        self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_L + self.CHAN_WIDTH * (chan - 1),
                                                 val & 0xFF])  # Turn off after val width 0-4095
        self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_H + self.CHAN_WIDTH * (chan - 1), (val >> 8) & 0xFF])

    ## ADS1115
    REG_POINTER_MASK = 0x3
    REG_POINTER_CONVERT = 0
    REG_POINTER_CONFIG = 1
    REG_POINTER_LOWTHRESH = 2
    REG_POINTER_HITHRESH = 3

    REG_CONFIG_OS_MASK = 0x8000
    REG_CONFIG_OS_SINGLE = 0x8000
    REG_CONFIG_OS_BUSY = 0x0000
    REG_CONFIG_OS_NOTBUSY = 0x8000

    REG_CONFIG_MUX_MASK = 0x7000
    REG_CONFIG_MUX_DIFF_0_1 = 0x0000  # Differential P = AIN0, N = AIN1 =default)
    REG_CONFIG_MUX_DIFF_0_3 = 0x1000  # Differential P = AIN0, N = AIN3
    REG_CONFIG_MUX_DIFF_1_3 = 0x2000  # Differential P = AIN1, N = AIN3
    REG_CONFIG_MUX_DIFF_2_3 = 0x3000  # Differential P = AIN2, N = AIN3
    REG_CONFIG_MUX_SINGLE_0 = 0x4000  # Single-ended AIN0
    REG_CONFIG_MUX_SINGLE_1 = 0x5000  # Single-ended AIN1
    REG_CONFIG_MUX_SINGLE_2 = 0x6000  # Single-ended AIN2
    REG_CONFIG_MUX_SINGLE_3 = 0x7000  # Single-ended AIN3

    REG_CONFIG_PGA_MASK = 0x0E00  # bits 11:9
    REG_CONFIG_PGA_6_144V = (0 << 9)  # +/-6.144V range = Gain 2/3
    REG_CONFIG_PGA_4_096V = (1 << 9)  # +/-4.096V range = Gain 1
    REG_CONFIG_PGA_2_048V = (2 << 9)  # +/-2.048V range = Gain 2 =default)
    REG_CONFIG_PGA_1_024V = (3 << 9)  # +/-1.024V range = Gain 4
    REG_CONFIG_PGA_0_512V = (4 << 9)  # +/-0.512V range = Gain 8
    REG_CONFIG_PGA_0_256V = (5 << 9)  # +/-0.256V range = Gain 16

    REG_CONFIG_MODE_MASK = 0x0100  # bit 8
    REG_CONFIG_MODE_CONTIN = (0 << 8)  # Continuous conversion mode
    REG_CONFIG_MODE_SINGLE = (1 << 8)  # Power-down single-shot mode =default)

    REG_CONFIG_DR_MASK = 0x00E0
    REG_CONFIG_DR_8SPS = (0 << 5)  # 8 SPS
    REG_CONFIG_DR_16SPS = (1 << 5)  # 16 SPS
    REG_CONFIG_DR_32SPS = (2 << 5)  # 32 SPS
    REG_CONFIG_DR_64SPS = (3 << 5)  # 64 SPS
    REG_CONFIG_DR_128SPS = (4 << 5)  # 128 SPS
    REG_CONFIG_DR_250SPS = (5 << 5)  # 260 SPS
    REG_CONFIG_DR_475SPS = (6 << 5)  # 475 SPS
    REG_CONFIG_DR_860SPS = (7 << 5)  # 860 SPS

    REG_CONFIG_CMODE_MASK = 0x0010
    REG_CONFIG_CMODE_TRAD = 0x0000
    REG_CONFIG_CMODE_WINDOW = 0x0010

    REG_CONFIG_CPOL_MASK = 0x0008
    REG_CONFIG_CPOL_ACTVLOW = 0x0000
    REG_CONFIG_CPOL_ACTVHI = 0x0008

    REG_CONFIG_CLAT_MASK = 0x0004
    REG_CONFIG_CLAT_NONLAT = 0x0000
    REG_CONFIG_CLAT_LATCH = 0x0004

    REG_CONFIG_CQUE_MASK = 0x0003
    REG_CONFIG_CQUE_1CONV = 0x0000
    REG_CONFIG_CQUE_2CONV = 0x0001
    REG_CONFIG_CQUE_4CONV = 0x0002
    REG_CONFIG_CQUE_NONE = 0x0003

    ADS1115_gains = OrderedDict([('GAIN_TWOTHIRDS', REG_CONFIG_PGA_6_144V), ('GAIN_ONE', REG_CONFIG_PGA_4_096V),
                                 ('GAIN_TWO', REG_CONFIG_PGA_2_048V), ('GAIN_FOUR', REG_CONFIG_PGA_1_024V),
                                 ('GAIN_EIGHT', REG_CONFIG_PGA_0_512V), ('GAIN_SIXTEEN', REG_CONFIG_PGA_0_256V)])
    ADS1115_gain_scaling = OrderedDict(
        [('GAIN_TWOTHIRDS', 0.1875), ('GAIN_ONE', 0.125), ('GAIN_TWO', 0.0625), ('GAIN_FOUR', 0.03125),
         ('GAIN_EIGHT', 0.015625), ('GAIN_SIXTEEN', 0.0078125)])
    ADS1115_scaling = 0.125
    ADS1115_channels = OrderedDict(
        [('UNI_0', 0), ('UNI_1', 1), ('UNI_2', 2), ('UNI_3', 3), ('DIFF_01', '01'), ('DIFF_23', '23')])
    ADS1115_rates = OrderedDict(
        [(8, REG_CONFIG_DR_8SPS), (16, REG_CONFIG_DR_16SPS), (32, REG_CONFIG_DR_32SPS), (64, REG_CONFIG_DR_64SPS),
         (128, REG_CONFIG_DR_128SPS), (250, REG_CONFIG_DR_250SPS), (475, REG_CONFIG_DR_475SPS),
         (860, REG_CONFIG_DR_860SPS)])  # sampling data rate
    ADS1115_DATARATE = 250  # 250SPS [ 8, 16, 32, 64, 128, 250, 475, 860 ]
    ADS1115_GAIN = REG_CONFIG_PGA_4_096V  # +/-4.096V range = Gain 1 . [+-6, +-4, +-2, +-1, +-0.5, +- 0.25]
    ADS1115_CHANNEL = 0  # ref: type_selection
    ADS1115_ADDRESS = 0x48

    def ADS1115_init(self, **kwargs):
        self.ADS1115_ADDRESS = kwargs.get('address', self.ADS1115_ADDRESS)
        self.I2CWriteBulk(self.ADS1115_ADDRESS, [0x80, 0x03])  # poweron

    def ADS1115_gain(self, gain):
        '''
        options : 'GAIN_TWOTHIRDS','GAIN_ONE','GAIN_TWO','GAIN_FOUR','GAIN_EIGHT','GAIN_SIXTEEN'
        '''
        print('setting gain:', str(gain))
        if (type(gain) == int):  # From the UI selectors which return index
            self.ADS1115_GAIN = list(self.ADS1115_gains.items())[gain][1]
            print('set gain with index selection:', self.ADS1115_GAIN)
            self.ADS1115_scaling = list(self.ADS1115_gain_scaling.items())[gain][1]
            print('Scaling factor:', self.ADS1115_scaling)
        else:
            self.ADS1115_GAIN = self.ADS1115_gains.get(gain, self.REG_CONFIG_PGA_4_096V)
            self.ADS1115_scaling = self.ADS1115_gain_scaling.get(gain)
            print('set gain type B:', str(gain), self.ADS1115_GAIN, self.ADS1115_scaling)

    def ADS1115_channel(self, channel):
        '''
        options 'UNI_0','UNI_1','UNI_2','UNI_3','DIFF_01','DIFF_23'
        '''
        self.ADS1115_CHANNEL = int(channel)
        print('channel', channel, self.ADS1115_CHANNEL)

    def ADS1115_rate(self, rate):
        '''
        data rate options 8,16,32,64,128,250,475,860 SPS . string.
        '''
        opts = [8, 16, 32, 64, 128, 250, 475, 860]
        rate = int(rate)
        if rate < len(opts):
            self.ADS1115_DATARATE = opts[rate]

        print('rate:', rate, self.ADS1115_DATARATE)

    def ADS1115_read(self):
        '''
        returns a voltage from ADS1115 channel selected using ADS1115_channel. default UNI_0 (Unipolar from channel 0)
        '''
        if self.ADS1115_CHANNEL in [0, 1, 2, 3]:
            config = (self.REG_CONFIG_CQUE_NONE  # Disable the comparator (default val)
                      | self.REG_CONFIG_CLAT_NONLAT  # Non-latching (default val)
                      | self.REG_CONFIG_CPOL_ACTVLOW  # Alert/Rdy active low   (default val)
                      | self.REG_CONFIG_CMODE_TRAD  # Traditional comparator (default val)
                      | (self.ADS1115_rates.get(self.ADS1115_DATARATE,
                                                self.REG_CONFIG_DR_250SPS))  # 250 samples per second (default)
                      | (self.REG_CONFIG_MODE_SINGLE)  # Single-shot mode (default)
                      | self.ADS1115_GAIN)
            if self.ADS1115_CHANNEL == 0:
                config |= self.REG_CONFIG_MUX_SINGLE_0
            elif self.ADS1115_CHANNEL == 1:
                config |= self.REG_CONFIG_MUX_SINGLE_1
            elif self.ADS1115_CHANNEL == 2:
                config |= self.REG_CONFIG_MUX_SINGLE_2
            elif self.ADS1115_CHANNEL == 3:
                config |= self.REG_CONFIG_MUX_SINGLE_3
            # Set 'start single-conversion' bit
            config |= self.REG_CONFIG_OS_SINGLE
            self.I2CWriteBulk(self.ADS1115_ADDRESS, [self.REG_POINTER_CONFIG, (config >> 8) & 0xFF, config & 0xFF])
            time.sleep(1. / self.ADS1115_DATARATE + .002)  # convert to mS to S

            b, tmt = self.I2CReadBulk(self.ADS1115_ADDRESS, self.REG_POINTER_CONVERT, 2)
            if tmt: return None
            if b is not None:
                x = ((b[0] << 8) | b[1]) * self.ADS1115_scaling * 1e-3
                return [((b[0] << 8) | b[1]) * self.ADS1115_scaling * 1e-3]  # scale and convert to volts

        elif self.ADS1115_CHANNEL in ['01', '23']:
            return [0]

    def VL53L0X_decode_vcsel_period(self, vcsel_period_reg):
        vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
        return vcsel_period_pclks

    VL53L0X_REG_IDENTIFICATION_MODEL_ID = 0x00c0
    VL53L0X_REG_IDENTIFICATION_REVISION_ID = 0x00c2
    VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x0050
    VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x0070
    VL53L0X_REG_SYSRANGE_START = 0x000

    VL53L0X_REG_RESULT_INTERRUPT_STATUS = 0x0013
    VL53L0X_REG_RESULT_RANGE_STATUS = 0x0014

    VL53L0X_ADDRESS = 0x29  # 41

    def makeuint16(self,lsb, msb):
        return ((msb & 0xFF) << 8) | (lsb & 0xFF)

    def VL53L0X_init(self, **kwargs):
        self.VL53L0X_ADDRESS = kwargs.get('address', self.VL53L0X_ADDRESS)
        val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_IDENTIFICATION_MODEL_ID, 1)
        print("Device ID: " + hex(val1[0]))
        val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD, 1)
        print("PRE_RANGE_CONFIG_VCSEL_PERIOD=" + hex(val1[0]) + " decode: " + str(self.VL53L0X_decode_vcsel_period(val1[0])))
        val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD, 1)
        print(
            "FINAL_RANGE_CONFIG_VCSEL_PERIOD=" + hex(val1[0]) + " decode: " + str(self.VL53L0X_decode_vcsel_period(val1[0])))
        val1,tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_IDENTIFICATION_REVISION_ID, 1)
        print("Revision ID: " + hex(val1[0]))
        if val1[0] == 0x00 or val1[0] == 0xFF:  # No device
            return False
        return True

    def VL53L0X_all(self):
        val1 = self.I2CWriteBulk(self.VL53L0X_ADDRESS, [self.VL53L0X_REG_SYSRANGE_START, 0x01])
        cnt = 0
        while (cnt < 50):  # 1 second waiting time max
            time.sleep(0.005)
            val, tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, self.VL53L0X_REG_RESULT_RANGE_STATUS, 1)
            if (val[0] & 0x01):
                break
            cnt += 1
        if (cnt == 100):  # timeout
            return None
        if not (val[0] & 0x01):  # Not ready.
            return None

        data, tmt = self.I2CReadBulk(self.VL53L0X_ADDRESS, 0x14, 12)
        # print ("ambient count " + str(makeuint16(data[7], data[6])))
        # print ("signal count " + str(makeuint16(data[9], data[8])))
        d = self.makeuint16(data[11], data[10])
        DeviceRangeStatusInternal = ((data[0] & 0x78) >> 3)
        # print (data,d,DeviceRangeStatusInternal)
        if DeviceRangeStatusInternal != 11:
            d = None

        return [d]

    ######### MPR121 capacitive touch
    MPR121_TOUCH_THRESHOLD_MAX = 0XF0
    MPR121_CHANNEL_NUM = 12
    MPR121_TOUCH_STATUS_REG_ADDR_L = 0X00
    MPR121_TOUCH_STATUS_REG_ADDR_H = 0X01
    MPR121_FILTERED_DATA_REG_START_ADDR_L = 0X04
    MPR121_FILTERED_DATA_REG_START_ADDR_H = 0X05
    MPR121_BASELINE_VALUE_REG_START_ADDR = 0X1E
    MPR121_BASELINE_FILTERING_CONTROL_REG_START_ADDR = 0X2B
    MPR121_THRESHOLD_REG_START_ADDR = 0X41
    MPR121_DEBOUNCE_REG_ADDR = 0X5B

    MPR121_FILTER_AND_GLOBAL_CDC_CFG_ADDR = 0X5C
    MPR121_FILTER_AND_GLOBAL_CDT_CFG_ADDR = 0X5D

    MPR121_ELEC_CHARGE_CURRENT_REG_START_ADDR = 0X5F
    MPR121_ELEC_CHARGE_TIME_REG_START_ADDR = 0X6C

    MPR121_ELEC_CFG_REG_ADDR = 0X5E

    MPR121_ADDRESS = 0x5B

    def MPR121_init(self, **kwargs):
        self.MPR121_ADDRESS = kwargs.get('address', self.MPR121_ADDRESS)
        self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_FILTER_AND_GLOBAL_CDC_CFG_ADDR, 0x10])  #
        self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_FILTER_AND_GLOBAL_CDT_CFG_ADDR, 0x23])  #
        self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_DEBOUNCE_REG_ADDR, 0x22])  # debounce value
        for a in range(self.MPR121_CHANNEL_NUM):
            self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_THRESHOLD_REG_START_ADDR + 2 * a, 0x08])  # touch
            self.I2CWriteBulk(self.MPR121_ADDRESS,
                              [self.MPR121_THRESHOLD_REG_START_ADDR + 2 * a + 1, 0x08])  # release threshold

        self.I2CWriteBulk(self.MPR121_ADDRESS, [self.MPR121_ELEC_CFG_REG_ADDR, 0x3c])  # start proximity disable mode

    def MPR121_all(self):
        vals, tmt = self.I2CReadBulk(self.MPR121_ADDRESS, self.MPR121_FILTERED_DATA_REG_START_ADDR_L, 26)
        vals = struct.unpack('<hhhhhhhhhhhhh', bytes(vals))
        return vals


    # I2C LCD display
    # commands
    PCF_LCD_ADDRESS = 39
    LCD_CLEARDISPLAY = 0x01
    LCD_RETURNHOME = 0x02
    LCD_ENTRYMODESET = 0x04
    LCD_DISPLAYCONTROL = 0x08
    LCD_CURSORSHIFT = 0x10
    LCD_FUNCTIONSET = 0x20
    LCD_SETCGRAMADDR = 0x40
    LCD_SETDDRAMADDR = 0x80

    # flags for display entry mode
    LCD_ENTRYRIGHT = 0x00
    LCD_ENTRYLEFT = 0x02
    LCD_ENTRYSHIFTINCREMENT = 0x01
    LCD_ENTRYSHIFTDECREMENT = 0x00

    # flags for display on/off control
    LCD_DISPLAYON = 0x04
    LCD_DISPLAYOFF = 0x00
    LCD_CURSORON = 0x02
    LCD_CURSOROFF = 0x00
    LCD_BLINKON = 0x01
    LCD_BLINKOFF = 0x00

    # flags for display/cursor shift
    LCD_DISPLAYMOVE = 0x08
    LCD_CURSORMOVE = 0x00
    LCD_MOVERIGHT = 0x04
    LCD_MOVELEFT = 0x00

    # flags for function set
    LCD_8BITMODE = 0x10
    LCD_4BITMODE = 0x00
    LCD_2LINE = 0x08
    LCD_1LINE = 0x00
    LCD_5x10DOTS = 0x04
    LCD_5x8DOTS = 0x00

    # flags for backlight control
    LCD_BACKLIGHT = 0x08
    LCD_NOBACKLIGHT = 0x00

    PCF_En = 0b00000100  # Enable bit
    PCF_Rw = 0b00000010  # Read/Write bit
    PCF_Rs = 0b00000001  # Register select bit

    PCF_row = 1

    def PCF_LCD_init(self):
        self.pcf_lcd_write(0x03)
        self.pcf_lcd_write(0x03)
        self.pcf_lcd_write(0x03)
        self.pcf_lcd_write(0x02)

        self.pcf_lcd_write(self.LCD_FUNCTIONSET | self.LCD_2LINE | self.LCD_5x8DOTS | self.LCD_4BITMODE)
        self.pcf_lcd_write(self.LCD_DISPLAYCONTROL | self.LCD_DISPLAYON)
        self.pcf_lcd_write(self.LCD_CLEARDISPLAY)
        self.pcf_lcd_write(self.LCD_ENTRYMODESET | self.LCD_ENTRYLEFT)
        time.sleep(0.2)

    def PCF_LCD_all(self):
        return [0.5]

    def PCF_LCD_text(self,v):
        self.pcf_lcd_display_string("        ",self.PCF_row)
        self.pcf_lcd_display_string(self.PCF_text_options[v],self.PCF_row)
    def PCF_LCD_row(self,r):
        self.PCF_row=r+1


    # clocks EN to latch command
    def pcf_lcd_strobe(self, data):
        self.I2CWriteBulk(self.PCF_LCD_ADDRESS, [data | self.PCF_En | self.LCD_BACKLIGHT])
        time.sleep(.0005)
        self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[(data & ~self.PCF_En) | self.LCD_BACKLIGHT])
        time.sleep(.0001)


    def pcf_lcd_write_four_bits(self, data):
        self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[data | self.LCD_BACKLIGHT])
        self.pcf_lcd_strobe(data)


    # write a command to lcd
    def pcf_lcd_write(self, cmd, mode=0):
        self.pcf_lcd_write_four_bits(mode | (cmd & 0xF0))
        self.pcf_lcd_write_four_bits(mode | ((cmd << 4) & 0xF0))


    # turn on/off the lcd backlight
    def PCF_LCD_backlight(self, state):
        if state in ("on", "On", "ON",1):
            self.I2CWriteBulk(self.PCF_LCD_ADDRESS,[self.LCD_BACKLIGHT])
        elif state in ("off", "Off", "OFF",0):
            self.I2CWriteBulk(self.PCF_LCD_ADDRESS, [self.LCD_NOBACKLIGHT])
        else:
            print("Unknown State!")


    # put string function
    def pcf_lcd_display_string(self, string, line):
        if line == 1:
            self.pcf_lcd_write(0x80)
        if line == 2:
            self.pcf_lcd_write(0xC0)
        if line == 3:
            self.pcf_lcd_write(0x94)
        if line == 4:
            self.pcf_lcd_write(0xD4)

        for char in string:
            self.pcf_lcd_write(ord(char), self.PCF_Rs)


    # clear lcd and set to home
    def pcf_lcd_clear(self):
        self.pcf_lcd_write(self.LCD_CLEARDISPLAY)
        self.pcf_lcd_write(self.LCD_RETURNHOME)



if __name__ == '__main__':
    a = connect(autoscan=True)
    print('version', a.version)
    print('------------')
    if not a.connected:
        sys.exit(1)
    time.sleep(0.01)
    a.setReg('DDRC', 3)
    a.setReg('PORTC', 2)
    time.sleep(1)
    a.setReg('PORTC', 3)
    a.setReg('DDRC', 0)
    print(a.I2CScan())
    '''
	a.PCA9685_init()
	a.PCA9685_set(1,650)

	for x in range(180):
		a.PCA9685_set(1,x)
		time.sleep(0.01)

	
	a.TSL2561_init()
	s=time.time()
	for x in range(1000):
		print(a.TSL2561_all())
	print(time.time()-s)

	a.MPU6050_init()
	s=time.time()
	for x in range(1000):
		print(a.MPU6050_all()[0])
	print(time.time()-s)
	'''