1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
|
'''
Code snippet for reading data from the kuttypy
'''
import serial, struct, time,platform,os,sys,functools
from utilities import REGISTERS_UNO as REGISTERS
from collections import OrderedDict
import numpy as np
if 'inux' in platform.system(): #Linux based system
import fcntl
Byte = struct.Struct("B") # size 1
ShortInt = struct.Struct("H") # size 2
Integer= struct.Struct("I") # size 4
def _bv(x):
return 1<<x
def connect(**kwargs):
return KUTTYPY(**kwargs)
def listPorts():
'''
Make a list of available serial ports. For auto scanning and connecting
'''
import glob
system_name = platform.system()
if system_name == "Windows":
# Scan for available ports.
available = []
for i in range(256):
try:
s = serial.Serial('COM%d'%i)
available.append('COM%d'%i)
s.close()
except serial.SerialException:
pass
return available
elif system_name == "Darwin":
# Mac
return glob.glob('/dev/tty.usb*') + glob.glob('/dev/cu*')
else:
# Assume Linux or something else
return glob.glob('/dev/ttyACM*') + glob.glob('/dev/ttyUSB*')
def isPortFree(portname):
try:
fd = serial.Serial(portname, KUTTYPY.BAUD, stopbits=1, timeout = 1.0)
if fd.isOpen():
if 'inux' in platform.system(): #Linux based system
try:
fcntl.flock(fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
fd.close()
return True #Port is available
except IOError:
fd.close()
return False #Port is not available
else:
fd.close()
return True #Port is available
else:
fd.close()
return False #Port is not available
except serial.SerialException as ex:
return False #Port is not available
def getFreePorts(openPort=None):
'''
Find out which ports are currently free
'''
portlist={}
for a in listPorts():
if a != openPort:
portlist[a] = isPortFree(a)
else:
portlist[a] = False
return portlist
class KUTTYPY:
VERSIONNUM = Byte.pack(REGISTERS.VERSIONNUM)
GET_VERSION = Byte.pack(1)
READB = Byte.pack(2)
WRITEB = Byte.pack(3)
I2C_READ = Byte.pack(4)
I2C_WRITE = Byte.pack(5)
I2C_SCAN = Byte.pack(6)
BAUD = 38400
version = 0
portname = None
REGS = REGISTERS.REGISTERS # A map of alphanumeric port names to the 8-bit register locations
REGSTATES = {} #Store the last written state of the registers
SPECIALS = REGISTERS.SPECIALS
blockingSocket = None
def __init__(self,**kwargs):
self.sensors={
0x39:{
'name':'TSL2561',
'init':self.TSL2561_init,
'read':self.TSL2561_all,
'fields':['total','IR'],
'min':[0,0],
'max':[2**15,2**15],
'config':[{
'name':'gain',
'options':['1x','16x'],
'function':self.TSL2561_gain
},
{
'name':'Integration Time',
'options':['3 mS','101 mS','402 mS'],
'function':self.TSL2561_timing
}
] },
0x1E:{
'name':'HMC5883L',
'init':self.HMC5883L_init,
'read':self.HMC5883L_all,
'fields':['Mx','My','Mz'],
'min':[-5000,-5000,-5000],
'max':[5000,5000,5000],
'config':[{
'name':'gain',
'options':['1x','16x'],
'function':self.TSL2561_gain
},
{
'name':'Integration Time',
'options':['3 mS','101 mS','402 mS'],
'function':self.TSL2561_timing
}
] },
0x49:{
'name':'ADS1115',
'init':self.ADS1115_init,
'read':self.ADS1115_read,
'fields':['Voltage'],
'min':[0],
'max':[2**16],
'config':[{
'name':'channel',
'options':['UNI_0','UNI_1','UNI_2','UNI_3','DIFF_01','DIFF_23'],
'function':self.ADS1115_channel
},
{
'name':'Data Rate',
'options':['8 SPS','16 SPS','32 SPS','64 SPS','128 SPS','250 SPS','475 SPS','860 SPS'],
'function':self.TSL2561_rate
}
] },
0x68:{
'name':'MPU6050',
'init':self.MPU6050_init,
'read':self.MPU6050_all,
'fields':['Ax','Ay','Az','Temp','Gx','Gy','Gz'],
'min':[-1*2**15,-1*2**15,-1*2**15,0,-1*2**15,-1*2**15,-1*2**15],
'max':[2**15,2**15,2**15,2**16,2**15,2**15,2**15],
'config':[{
'name':'Gyroscope Range',
'options':['250','500','1000','2000'],
'function':self.MPU6050_gyro_range
},
{
'name':'Accelerometer Range',
'options':['2x','4x','8x','16x'],
'function':self.MPU6050_accel_range
},
{
'name':'Kalman',
'options':['OFF','0.001','0.01','0.1','1','10'],
'function':self.MPU6050_kalman_set
}
]},
41:{
'name':'TCS34725: RGB Sensor',
'init':self.TCS34725_init,
'RGB':True,
'read':self.TCS34725_all,
'fields':['RED','GREEN','BLUE'],
'min':[0,0,0,0],
'max':[2**16,2**16,2**16],
'config':[{
'name':'Gain',
'options':['1','4','16','60'],
'function':self.TCS34725_gain
}
]},
118:{
'name':'BMP280',
'init':self.BMP280_init,
'read':self.BMP280_all,
'fields':['Pressure','Temp','Alt'],
'min':[0,0,0],
'max':[1600,100,10],
},
12:{ #0xc
'name':'AK8963 Mag',
'init':self.AK8963_init,
'read':self.AK8963_all,
'fields':['X','Y','Z'],
'min':[-32767,-32767,-32767],
'max':[32767,32767,32767],
},
119:{
'name':'MS5611',
'init':self.MS5611_init,
'read':self.MS5611_all,
'fields':['Pressure','Temp','Alt'],
'min':[0,0,0],
'max':[1600,100,10],
},
0x41:{ #A0 pin connected to Vs . Otherwise address 0x40 conflicts with PCA board.
'name':'INA3221',
'init':self.INA3221_init,
'read':self.INA3221_all,
'fields':['CH1','CH2','CH3'],
'min':[0,0,0],
'max':[1000,1000,1000],
},
0x5A:{
'name':'MLX90614',
'init':self.MLX90614_init,
'read':self.MLX90614_all,
'fields':['TEMP'],
'min':[0],
'max':[350]}
}
self.controllers={
self.MCP5725_ADDRESS:{
'name':'MCP4725',
'init':self.MCP4725_init,
'write':[['CH0',0,4095,0,self.MCP4725_set]],
},
}
self.special={
0x40:{
'name':'PCA9685 PWM',
'init':self.PCA9685_init,
'write':[['Channel 1',0,180,90,functools.partial(self.PCA9685_set,1)], #name, start, stop, default, function
['Channel 2',0,180,90,functools.partial(self.PCA9685_set,2)],
['Channel 3',0,180,90,functools.partial(self.PCA9685_set,3)],
['Channel 4',0,180,90,functools.partial(self.PCA9685_set,4)],
],
}
}
self.connected=False
if 'port' in kwargs:
self.portname=kwargs.get('port',None)
try:
self.fd,self.version,self.connected=self.connectToPort(self.portname)
if self.connected:
self.REGSTATES = {} #Store the last written state of the registers
for a in ['B','C','D']: #Initialize all inputs
self.setReg('DDR'+a,0) #All inputs
self.setReg('PORT'+a,0) #No Pullup
self.setReg('PORTC',(1<<4)|(1<<5)) #I2C Pull-Up
return
except Exception as ex:
print('Failed to connect to ',self.portname,ex.message)
elif kwargs.get('autoscan',False): #Scan and pick a port
portList = getFreePorts()
for a in portList:
if portList[a]:
try:
self.portname=a
self.fd,self.version,self.connected=self.connectToPort(self.portname)
if self.connected:
self.REGSTATES = {} #Store the last written state of the registers
for a in ['B','C','D']: #Initialize all inputs
self.setReg('DDR'+a,0) #All inputs
self.setReg('PORT'+a,0) #No Pullup
self.setReg('PORTC',(1<<4)|(1<<5)) #I2C Pull-Up
return
except Exception as e:
print (e)
else:
print(a,' is busy')
def __get_version__(self,fd):
fd.setRTS(0)
time.sleep(0.01)
fd.setRTS(1)
time.sleep(0.25)
while fd.in_waiting:
fd.read(fd.in_waiting)
fd.write(self.GET_VERSION)
return fd.read()
def get_version(self):
return self.__get_version__(self.fd)
def connectToPort(self,portname):
'''
connect to a port, and check for the right version
'''
try:
if 'inux' in platform.system(): #Linux based system
try:
#try to lock down the serial port
import socket
self.blockingSocket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
self.blockingSocket.bind('\0eyesj2%s'%portname)
self.blockingSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
fd = serial.Serial(portname, self.BAUD, timeout = 0.5)
if not fd.isOpen():
return None,'',False
except socket.error as e:
#print ('Port {0} is busy'.format(portname))
return None,'',False
#raise RuntimeError("Another program is using %s (%d)" % (portname) )
'''
import fcntl
try:
fcntl.flock(fd.fileno(), fcntl.LOCK_EX | fcntl.LOCK_NB)
#print ('locked access to ',portname,fd.fileno())
except IOError:
#print ('Port {0} is busy'.format(portname))
return None,'',False
'''
else:
fd = serial.Serial(portname, self.BAUD, timeout = 0.5)
#print ('not on linux',platform.system())
if(fd.in_waiting):
fd.flush()
fd.readall()
except serial.SerialException as ex:
print ('Port {0} is unavailable: {1}'.format(portname, ex) )
return None,'',False
version = self.__get_version__(fd)
if len(version)==1:
if ord(version)==ord(self.VERSIONNUM):
return fd,ord(version),True
print ('version check failed',len(version),ord(version))
return None,'',False
def close(self):
self.fd.close()
self.portname = None
self.connected = False
if self.blockingSocket:
self.blockingSocket.shutdown(1)
self.blockingSocket.close()
self.blockingSocket = None
def __sendByte__(self,val):
"""
transmits a BYTE
val - byte to send
"""
#print (val)
try:
if(type(val)==int):
self.fd.write(Byte.pack(val))
else:
self.fd.write(val)
except:
self.connected = False
def __getByte__(self):
"""
reads a byte from the serial port and returns it
"""
try:
ss=self.fd.read(1)
except:
self.connected = False
print('No byte received. Disconnected?',time.ctime())
return 0
if len(ss): return Byte.unpack(ss)[0]
else:
print('byte communication error.',time.ctime())
return None
def setReg(self,reg, data):
#print(reg,data)
if reg not in self.REGS and type(reg)==str: return False
self.REGSTATES[reg] = data
self.__sendByte__(self.WRITEB)
if reg in self.REGS:
self.__sendByte__(self.REGS[reg])
else:
#print('missing register',reg)
self.__sendByte__(reg)
self.__sendByte__(data)
def getReg(self,reg):
if (reg not in self.REGS) and type(reg)==str:
print('unknown register',reg)
return 0
self.__sendByte__(self.READB)
if reg in self.REGS:
self.__sendByte__(self.REGS[reg])
else:
#print('missing register',reg)
self.__sendByte__(reg)
val = self.__getByte__()
self.REGSTATES[reg] = val
return val
def readADC(self,ch): # Read the ADC channel
self.setReg(self.REGS['ADMUX'], 64 | ch)
self.setReg(self.REGS['ADCSRA'], 197) # Enable the ADC
low = self.getReg(self.REGS['ADCL'])
hi = self.getReg(self.REGS['ADCH'])
return (hi << 8) | low
'''
def writeEEPROM(self,data):
addr=0
for a in data:
timeout=20 #20mS
while ((self.getReg('EECR') & 2)):
timeout-=1
if timeout==0:
print ('wait timeout!')
break
time.sleep(0.001)
self.setReg('EEARL',addr)
self.setReg('EEARH',0)
self.setReg('EEDR',a)
self.setReg('EECR',4) ##EEMPE master write enable
self.setReg('EECR',6) # EEPE write
addr+=1
def readEEPROM(self,total):
addr=0; b = []
for a in range(total):
timeout=20 #20mS
while ((self.getReg('EECR') & 2)):
timeout-=1
if timeout==0:
print ('wait timeout!')
break
time.sleep(0.001)
self.setReg('EEARL',addr)
self.setReg('EEARH',0)
self.setReg('EECR',1) ##EERE. Read
b.append(self.getReg('EEDR'))
addr+=1
return b
'''
# I2C Calls. Will be replaced with firmware level implementation
'''
def initI2C(self): # Initialize I2C
self.setReg('TWSR',0x00)
self.setReg('TWBR',0x46)
self.setReg('TWCR',0x04)
def startI2C(self):
self.setReg('TWCR',(1<<7)|(1<<5) | (1<<2))
timeout=10 #20mS
time.sleep(0.001)
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
print('waiy')
if timeout==0:
print('start timeout')
break
time.sleep(0.001)
def stopI2C(self):
self.setReg('TWCR',(1<<7) | (1<<4) | (1<<2))
timeout=10 #20mS
time.sleep(0.001)
def writeI2C(self,val):
self.setReg('TWDR',val)
self.setReg('TWCR',(1<<7) | (1<<2))
timeout=20 #20mS
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
if timeout==0:
print ('write timeout')
break
time.sleep(0.001)
def readI2C(self,ack):
self.setReg('TWCR',(1<<7) | (1<<2) | (ack<<6))
timeout=20 #20mS
while (not(self.getReg('TWCR') & (1<<7))):
timeout-=1
if timeout==0:
print ('read timeout')
break
time.sleep(0.001)
if timeout:
return self.getReg('TWDR')
else:
return None
def I2CWriteBulk(self,address,bytestream):
# Individual register write based writing. takes a few hundred milliseconds
self.startI2C()
self.writeI2C(address<<1)
for a in bytestream:
self.writeI2C(a)
self.stopI2C()
def I2CReadBulk(self,address,register,total):
# Individual register write based reading. takes a few hundred milliseconds
self.startI2C()
self.writeI2C(address<<1)
self.writeI2C(register)
self.startI2C()
self.writeI2C((address<<1)|1) #Read
b=[]
for a in range(total-1):
b.append(self.readI2C(1) )
b.append(self.readI2C(0))
self.stopI2C()
return b
# Individual register write based scan. takes a few seconds
def I2CScan(self):
found = []
for a in range(127):
self.startI2C()
time.sleep(0.005)
self.writeI2C(a<<1)
time.sleep(0.005)
if self.getReg('TWSR') == 0x18:
found.append(a)
self.stopI2C()
return found
'''
def I2CScan(self):
self.__sendByte__(self.I2C_SCAN)
addrs = []
val = self.__getByte__()
if val is None:
return []
while val<254:
addrs.append(val)
val = self.__getByte__()
if(val==254):print('timed out')
#self.setReg('TWBR',0xFF) #I2C speed minimal. testing purposes
return addrs
def I2CWriteBulk(self,address,bytestream):
self.__sendByte__(self.I2C_WRITE)
self.__sendByte__(address) #address
self.__sendByte__(len(bytestream)) #Total bytes to write. <=255
for a in bytestream:
self.__sendByte__(Byte.pack(a))
tmt = self.__getByte__()
if tmt: return True #Hasn't Timed out.
else: return False #Timeout occured
def I2CReadBulk(self,address,register,total):
self.__sendByte__(self.I2C_READ)
self.__sendByte__(address) #address
self.__sendByte__(register) #device register address
self.__sendByte__(total) #Total bytes to read. <=255
data = []
for a in range(total):
val = self.__getByte__()
data.append(val)
tmt = self.__getByte__()
return data,True if not tmt else False
class KalmanFilter(object):
'''
Credits:http://scottlobdell.me/2014/08/kalman-filtering-python-reading-sensor-input/
'''
def __init__(self, var, est,initial_values): #var = process variance. est = estimated measurement var
self.var = np.array(var)
self.est = np.array(est)
self.posteri_estimate = np.array(initial_values)
self.posteri_error_estimate = np.ones(len(var),dtype=np.float16)
def input(self, vals):
vals = np.array(vals)
priori_estimate = self.posteri_estimate
priori_error_estimate = self.posteri_error_estimate + self.var
blending_factor = priori_error_estimate / (priori_error_estimate + self.est)
self.posteri_estimate = priori_estimate + blending_factor * (vals - priori_estimate)
self.posteri_error_estimate = (1 - blending_factor) * priori_error_estimate
def output(self):
return self.posteri_estimate
MPU6050_kalman = 0
def MPU6050_init(self):
self.I2CWriteBulk(0x68,[0x1B,0<<3]) #Gyro Range . 250
self.I2CWriteBulk(0x68,[0x1C,0<<3]) #Accelerometer Range. 2
self.I2CWriteBulk(0x68,[0x6B, 0x00]) #poweron
v,tmt = self.I2CReadBulk(0x68,0x75,1)
self.mag = False
if v[0] in [0x71,0x73]: #MPU9255, MPU9250. Has magnetometer. Enable it.
self.mag = True
self.I2CWriteBulk(0x68,[0x37,0x22]) #INT_PIN_CFG . I2C passthrough enabled. Rescan to detect magnetometer.
def MPU6050_gyro_range(self,val):
self.I2CWriteBulk(0x68,[0x1B,val<<3]) #Gyro Range . 250,500,1000,2000 -> 0,1,2,3 -> shift left by 3 positions
def MPU6050_accel_range(self,val):
print(val)
self.I2CWriteBulk(0x68,[0x1C,val<<3]) #Accelerometer Range. 2,4,8,16 -> 0,1,2,3 -> shift left by 3 positions
def MPU6050_kalman_set(self,val):
if not val:
self.MPU6050_kalman = 0
return
noise=[]
for a in range(50):
noise.append(np.array(self.MPU6050_all(disableKalman=True)))
noise = np.array(noise)
self.MPU6050_kalman = self.KalmanFilter(1e6*np.ones(noise.shape[1])/(10**val), np.std(noise,0)**2, noise[-1])
def MPU6050_accel(self):
b,tmt = self.I2CReadBulk(0x68, 0x3B ,6)
if tmt:return None
if None not in b:
return [(b[x*2+1]<<8)|b[x*2] for x in range(3)] #X,Y,Z
def MPU6050_gyro(self):
b,tmt = self.I2CReadBulk(0x68, 0x3B+6 ,6)
if tmt:return None
if None not in b:
return [(b[x*2+1]<<8)|b[x*2] for x in range(3)] #X,Y,Z
def MPU6050_all(self,disableKalman=False):
'''
returns a 7 element list. Ax,Ay,Az,T,Gx,Gy,Gz
returns None if communication timed out with I2C sensor
disableKalman can be set to True if Kalman was previously enabled.
'''
b,tmt = self.I2CReadBulk(0x68, 0x3B ,14)
if tmt:return None
if None not in b:
if (not self.MPU6050_kalman) or disableKalman:
return [ np.int16((b[x*2]<<8)|b[x*2+1]) for x in range(7) ] #Ax,Ay,Az, Temp, Gx, Gy,Gz
else:
self.MPU6050_kalman.input([ np.int16((b[x*2]<<8)|b[x*2+1]) for x in range(7) ])
return self.MPU6050_kalman.output()
######## AK8963 magnetometer attacched to MPU925x #######
AK8963_ADDRESS =0x0C
_AK8963_CNTL = 0x0A
def AK8963_init(self):
self.I2CWriteBulk(self.AK8963_ADDRESS,[self._AK8963_CNTL,0]) #power down mag
self.I2CWriteBulk(self.AK8963_ADDRESS,[self._AK8963_CNTL,(1<<4)|6]) #mode (0=14bits,1=16bits) <<4 | (2=8Hz , 6=100Hz)
def AK8963_all(self,disableKalman=False):
vals,tmt=self.I2CReadBulk(self.AK8963_ADDRESS,0x03,7) #6+1 . 1(ST2) should not have bit 4 (0x8) true. It's ideally 16 . overflow bit
if tmt:return None
ax,ay,az = struct.unpack('hhh',bytes(vals[:6]))
if not vals[6]&0x08:return [ax,ay,az]
else: return None
####### BMP280 ###################
## Ported from https://github.com/farmerkeith/BMP280-library/blob/master/farmerkeith_BMP280.cpp
BMP280_ADDRESS = 118
BMP280_REG_CONTROL = 0xF4
BMP280_REG_RESULT = 0xF6
BMP280_oversampling = 0
_BMP280_PRESSURE_MIN_HPA = 0
_BMP280_PRESSURE_MAX_HPA = 1600
_BMP280_sea_level_pressure = 1013.25 #for calibration.. from circuitpython library
def BMP280_init(self):
b,tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xD0 ,1)
if tmt:return
b = b[0]
if b in [0x58,0x56,0x57]:
print('BMP280. ID:',b)
elif b==0x60:
print('BME280 . includes humidity')
else:
print('ID unknown',b)
# get calibration data
b,tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0x88 ,24) #24 bytes containing calibration data
coeff = list(struct.unpack('<HhhHhhhhhhhh', bytes(b)))
coeff = [float(i) for i in coeff]
self._BMP280_temp_calib = coeff[:3]
self._BMP280_pressure_calib = coeff[3:]
self._BMP280_t_fine = 0.
#details of register 0xF4
#mode[1:0] F4bits[1:0] 00=sleep, 01,10=forced, 11=normal
#osrs_p[2:0] F4bits[4:2] 000=skipped, 001=16bit, 010=17bit, 011=18bit, 100=19bit, 101,110,111=20 bit
#osrs_t[2:0] F4bits[7:5] 000=skipped, 001=16bit, 010=17bit, 011=18bit, 100=19bit, 101,110,111=20 bit
#VALUE = (osrs_t & 0x7) << 5 | (osrs_p & 0x7) << 2 | (mode & 0x3); #
self.I2CWriteBulk(self.BMP280_ADDRESS, [0xF4,0xFF]) #
def _BMP280_calcTemperature(self,adc_t):
v1 = (adc_t / 16384.0 - self._BMP280_temp_calib[0] / 1024.0) * self._BMP280_temp_calib[1]
v2 = ((adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0) * ( adc_t / 131072.0 - self._BMP280_temp_calib[0] / 8192.0)) * self._BMP280_temp_calib[2]
self._BMP280_t_fine = int(v1+v2)
return (v1+v2) / 5120.0 #actual temperature.
def _BMP280_calcPressure(self,adc_p,adc_t):
self._BMP280_calcTemperature(adc_t) #t_fine has been set now.
# Algorithm from the BMP280 driver. adapted from adafruit adaptation
# https://github.com/BoschSensortec/BMP280_driver/blob/master/bmp280.c
var1 = self._BMP280_t_fine / 2.0 - 64000.0
var2 = var1 * var1 * self._BMP280_pressure_calib[5] / 32768.0
var2 = var2 + var1 * self._BMP280_pressure_calib[4] * 2.0
var2 = var2 / 4.0 + self._BMP280_pressure_calib[3] * 65536.0
var3 = self._BMP280_pressure_calib[2] * var1 * var1 / 524288.0
var1 = (var3 + self._BMP280_pressure_calib[1] * var1) / 524288.0
var1 = (1.0 + var1 / 32768.0) * self._BMP280_pressure_calib[0]
if not var1:
return _BMP280_PRESSURE_MIN_HPA
pressure = 1048576.0 - adc_p
pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1
var1 = self._BMP280_pressure_calib[8] * pressure * pressure / 2147483648.0
var2 = pressure * self._BMP280_pressure_calib[7] / 32768.0
pressure = pressure + (var1 + var2 + self._BMP280_pressure_calib[6]) / 16.0
pressure /= 100
if pressure < self._BMP280_PRESSURE_MIN_HPA:
return self._BMP280_PRESSURE_MIN_HPA
if pressure > self._BMP280_PRESSURE_MAX_HPA:
return self._BMP280_PRESSURE_MAX_HPA
return pressure
def BMP280_all(self):
#os = [0x34,0x74,0xb4,0xf4]
#delays=[0.005,0.008,0.014,0.026]
#self.I2CWriteBulk(self.BMP280_ADDRESS,[self.BMP280_REG_CONTROL,os[self.BMP280_oversampling] ])
#time.sleep(delays[self.BMP280_oversampling])
data,tmt = self.I2CReadBulk(self.BMP280_ADDRESS, 0xF7,6)
if tmt:return None
if None not in data:
# Convert pressure and temperature data to 19-bits
adc_p = (((data[0] & 0xFF) * 65536.) + ((data[1] & 0xFF) * 256.) + (data[2] & 0xF0)) / 16.
adc_t = (((data[3] & 0xFF) * 65536.) + ((data[4] & 0xFF) * 256.) + (data[5] & 0xF0)) / 16.
return [self._BMP280_calcPressure(adc_p,adc_t), self._BMP280_calcTemperature(adc_t), 0]
########## TCS34725 RGB sensor ###########
_TCS34725_COMMAND_BIT = 0x80
_TCS34725_REGISTER_STATUS = 0x13
_TCS34725_REGISTER_CDATA = 0x14
_TCS34725_REGISTER_RDATA = 0x16
_TCS34725_REGISTER_GDATA = 0x18
_TCS34725_REGISTER_BDATA = 0x1a
_TCS34725_REGISTER_ENABLE = 0x00
_TCS34725_REGISTER_ATIME = 0x01
_TCS34725_REGISTER_AILT = 0x04
_TCS34725_REGISTER_AIHT = 0x06
_TCS34725_REGISTER_ID = 0x12
_TCS34725_REGISTER_APERS = 0x0c
_TCS34725_REGISTER_CONTROL = 0x0f
_TCS34725_REGISTER_SENSORID = 0x12
_TCS34725_REGISTER_STATUS = 0x13
_TCS34725_ENABLE_AIEN = 0x10
_TCS34725_ENABLE_WEN = 0x08
_TCS34725_ENABLE_AEN = 0x02
_TCS34725_ENABLE_PON = 0x01
_GAINS = (1, 4, 16, 60)
_CYCLES = (0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60)
_INTEGRATION_TIME_THRESHOLD_LOW = 2.4
_INTEGRATION_TIME_THRESHOLD_HIGH = 614.4
TCS34725_ADDRESS = 41
def TCS34725_init(self):
enable,tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_ENABLE,1)
enable = enable[0]
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_REGISTER_ENABLE,enable|self._TCS34725_ENABLE_PON]) #
time.sleep(0.003)
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_ENABLE,enable|self._TCS34725_ENABLE_PON | self._TCS34725_ENABLE_AEN| self._TCS34725_ENABLE_AIEN]) #
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_APERS,10])
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_ATIME,256-40])
def TCS34725_gain(self,g):
self.I2CWriteBulk(self.TCS34725_ADDRESS, [self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_CONTROL,g]) #Gain
def TCS34725_all(self):
R,tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_RDATA,2)
G,tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_GDATA,2)
B,tmt = self.I2CReadBulk(self.TCS34725_ADDRESS, self._TCS34725_COMMAND_BIT|self._TCS34725_REGISTER_BDATA,2)
if tmt:return None
return [R[0]|(R[1]<<8),G[0]|(G[1]<<8),B[0]|(B[1]<<8)]
def TCS34725_range(self):
pass
####### MS5611 Altimeter ###################
MS5611_ADDRESS = 119
def MS5611_init(self):
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x1E]) # reset
time.sleep(0.5)
self._MS5611_calib = np.zeros(6)
#calibration data.
#pressure gain, offset . T coeff of P gain, offset. Ref temp. T coeff of T. all unsigned shorts.
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA2 ,2)
if tmt:return
self._MS5611_calib[0] = struct.unpack('!H', bytes(b))[0]
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA4 ,2)
self._MS5611_calib[1] = struct.unpack('!H', bytes(b))[0]
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA6 ,2)
self._MS5611_calib[2] = struct.unpack('!H', bytes(b))[0]
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xA8 ,2)
self._MS5611_calib[3] = struct.unpack('!H', bytes(b))[0]
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAA ,2)
self._MS5611_calib[4] = struct.unpack('!H', bytes(b))[0]
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0xAC ,2)
self._MS5611_calib[5] = struct.unpack('!H', bytes(b))[0]
print('Calibration for MS5611:',self._MS5611_calib)
def MS5611_all(self):
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x48]) # 0x48 Pressure conversion(OSR = 4096) command
time.sleep(0.01) #10mS
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00 ,3) #data.
D1 = b[0]*65536 + b[1]*256 + b[2] #msb2, msb1, lsb
self.I2CWriteBulk(self.MS5611_ADDRESS, [0x58]) # 0x58 Temperature conversion(OSR = 4096) command
time.sleep(0.01)
b,tmt = self.I2CReadBulk(self.MS5611_ADDRESS, 0x00 ,3) #data.
D2 = b[0]*65536 + b[1]*256 + b[2] #msb2, msb1, lsb
dT = D2 - self._MS5611_calib[4] * 256
TEMP = 2000 + dT * self._MS5611_calib[5] / 8388608
OFF = self._MS5611_calib[1] * 65536 + (self._MS5611_calib[3] * dT) / 128
SENS = self._MS5611_calib[0] * 32768 + (self._MS5611_calib[2] * dT ) / 256
T2 = 0; OFF2 = 0; SENS2 = 0
if TEMP >= 2000 :
T2 = 0
OFF2 = 0
SENS2 = 0
elif TEMP < 2000 :
T2 = (dT * dT) / 2147483648
OFF2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 2
SENS2 = 5 * ((TEMP - 2000) * (TEMP - 2000)) / 4
if TEMP < -1500 :
OFF2 = OFF2 + 7 * ((TEMP + 1500) * (TEMP + 1500))
SENS2 = SENS2 + 11 * ((TEMP + 1500) * (TEMP + 1500)) / 2
TEMP = TEMP - T2
OFF = OFF - OFF2
SENS = SENS - SENS2
pressure = ((((D1 * SENS) / 2097152) - OFF) / 32768.0) / 100.0
cTemp = TEMP / 100.0
return [pressure,cTemp,0]
### INA3221 3 channel , high side current sensor #############
INA3221_ADDRESS = 0x41
_INA3221_REG_CONFIG = 0x0
_INA3221_SHUNT_RESISTOR_VALUE = 0.1
_INA3221_REG_SHUNTVOLTAGE = 0x01
_INA3221_REG_BUSVOLTAGE = 0x02
def INA3221_init(self):
self.I2CWriteBulk(self.INA3221_ADDRESS,[self._INA3221_REG_CONFIG, 0b01110101, 0b00100111 ]) #cont shunt.
def INA3221_all(self):
I = [0.,0.,0.]
b,tmt = self.I2CReadBulk(self.INA3221_ADDRESS,self._INA3221_REG_SHUNTVOLTAGE , 2)
if tmt:return None
b[1]&=0xF8; I[0] = struct.unpack('!h',bytes(b))[0]
b,tmt = self.I2CReadBulk(self.INA3221_ADDRESS,self._INA3221_REG_SHUNTVOLTAGE +2 , 2)
if tmt:return None
b[1]&=0xF8; I[1] = struct.unpack('!h',bytes(b))[0]
b,tmt = self.I2CReadBulk(self.INA3221_ADDRESS,self._INA3221_REG_SHUNTVOLTAGE +4 , 2)
if tmt:return None
b[1]&=0xF8; I[2] = struct.unpack('!h',bytes(b))[0]
return [0.005*I[0]/self._INA3221_SHUNT_RESISTOR_VALUE,0.005*I[1]/self._INA3221_SHUNT_RESISTOR_VALUE,0.005*I[2]/self._INA3221_SHUNT_RESISTOR_VALUE]
### SHT21 HUMIDITY TEMPERATURE SENSOR #############
SHT21_ADDRESS = 0x41
_SHT21_TEMP = 0xf3
_SHT21_HUM = 0xf5
_SHT21_RESET = 0xFE
_INA3221_REG_SHUNTVOLTAGE = 0x01
_INA3221_REG_BUSVOLTAGE = 0x02
def SHT21_init(self):
self.I2CWriteBulk(self.SHT21_ADDRESS,[self._SHT21_RESET ]) #reset
time.sleep(0.1)
def SHT21_all(self):
self.I2CWriteBulk(self.SHT21_ADDRESS,[self._SHT21_TEMP ])
time.sleep(.1)
self.startI2C()
self.writeI2C((self.SHT21_ADDRESS<<1)|1) #Read
b=[]
for a in range(2):b.append(self.readI2C(1) )
b.append(self.readI2C(0))
self.stopI2C()
temperature,checksum = struct.unpack('>HB',bytes(b))
return [temperature* 175.72 / 65536.0 - 46.85,0]
####### TSL2561 LIGHT SENSOR ###########
TSL_GAIN = 0x00 # 0x00=1x , 0x01 = 16x
TSL_TIMING = 0x00 # 0x00=3 mS , 0x01 = 101 mS, 0x02 = 402mS
def TSL2561_init(self):
self.I2CWriteBulk(0x39,[0x80 , 0x03 ]) #poweron
self.I2CWriteBulk(0x39,[0x80 | 0x01, self.TSL_GAIN|self.TSL_TIMING ])
return self.TSL2561_all()
def TSL2561_gain(self,gain):
self.TSL_GAIN = gain<<4
self.TSL2561_config(self.TSL_GAIN,self.TSL_TIMING)
def TSL2561_timing(self,timing):
self.TSL_TIMING = timing
self.TSL2561_config(self.TSL_GAIN,self.TSL_TIMING)
def TSL2561_rate(self,timing):
self.TSL_TIMING = timing
self.TSL2561_config(self.TSL_GAIN,self.TSL_TIMING)
def TSL2561_config(self,gain,timing):
self.I2CWriteBulk(0x39,[0x80 | 0x01, gain|timing]) #Timing register 0x01. gain[1x,16x] | timing[13mS,100mS,400mS]
def TSL2561_all(self):
'''
returns a 2 element list. total,IR
returns None if communication timed out with I2C sensor
'''
b,tmt = self.I2CReadBulk(0x39,0x80 | 0x20 | 0x0C ,4)
if tmt:return None
if None not in b:
return [ (b[x*2+1]<<8)|b[x*2] for x in range(2) ] #total, IR
def MLX90614_init(self):
pass
def MLX90614_all(self):
'''
return a single element list. None if failed
'''
vals,tmt = self.I2CReadBulk(0x5A, 0x07 ,3)
if tmt:return None
if vals:
if len(vals)==3:
return [((((vals[1]&0x007f)<<8)+vals[0])*0.02)-0.01 - 273.15]
else:
return None
else:
return None
MCP5725_ADDRESS = 0x60
def MCP4725_init(self):
pass
def MCP4725_set(self,val):
'''
Set the DAC value. 0 - 4095
'''
self.I2CWriteBulk(self.MCP5725_ADDRESS, [0x40,(val>>4)&0xFF,(val&0xF)<<4])
####################### HMC5883L MAGNETOMETER ###############
HMC5883L_ADDRESS = 0x1E
HMC_CONFA=0x00
HMC_CONFB=0x01
HMC_MODE=0x02
HMC_STATUS=0x09
#--------CONFA register bits. 0x00-----------
HMCSamplesToAverage=0
HMCSamplesToAverage_choices=[1,2,4,8]
HMCDataOutputRate=6
HMCDataOutputRate_choices=[0.75,1.5,3,7.5,15,30,75]
HMCMeasurementConf=0
#--------CONFB register bits. 0x01-----------
HMCGainValue = 7 #least sensitive
HMCGain_choices = [8,7,6,5,4,3,2,1]
HMCGainScaling=[1370.,1090.,820.,660.,440.,390.,330.,230.]
def HMC5883L_init(self):
self.__writeHMCCONFA__()
self.__writeHMCCONFB__()
self.I2CWriteBulk(self.HMC5883L_ADDRESS,[self.HMC_MODE,0]) #enable continuous measurement mode
def __writeHMCCONFB__(self):
self.I2CWriteBulk(self.HMC5883L_ADDRESS,[self.HMC_CONFB,self.HMCGainValue<<5]) #set gain
def __writeHMCCONFA__(self):
self.I2CWriteBulk(self.HMC5883L_ADDRESS,[self.HMC_CONFA,(self.HMCDataOutputRate<<2)|(self.HMCSamplesToAverage<<5)|(self.HMCMeasurementConf)])
def HMC5883L_getVals(self,addr,bytes):
vals = self.I2C.readBulk(self.ADDRESS,addr,bytes)
return vals
def HMC5883L_all(self):
vals=self.HMC5883L_getVals(0x03,6)
if vals:
if len(vals)==6:
return [np.int16(vals[a*2]<<8|vals[a*2+1])/self.HMCGainScaling[self.HMCGainValue] for a in range(3)]
else:
return False
else:
return False
PCA9685_address = 64
def PCA9685_init(self):
prescale_val = int((25000000.0 / 4096 / 60.) - 1) # default clock at 25MHz
#self.I2CWriteBulk(self.PCA9685_address, [0x00,0x10]) #MODE 1 , Sleep
print('clock set to,',prescale_val)
self.I2CWriteBulk(self.PCA9685_address, [0xFE,prescale_val]) #PRESCALE , prescale value
self.I2CWriteBulk(self.PCA9685_address, [0x00,0x80]) #MODE 1 , restart
self.I2CWriteBulk(self.PCA9685_address, [0x01,0x04]) #MODE 2 , Totem Pole
pass
CH0 = 0x6 #LED0 start register
CH0_ON_L = 0x6 #channel0 output and brightness control byte 0
CH0_ON_H = 0x7 #channel0 output and brightness control byte 1
CH0_OFF_L = 0x8 #channel0 output and brightness control byte 2
CH0_OFF_H = 0x9 #channel0 output and brightness control byte 3
CHAN_WIDTH = 4
def PCA9685_set(self,chan,angle):
'''
chan: 1-16
Set the servo angle for SG90: angle(0 - 180)
'''
Min = 180
Max = 650
val = int((( Max-Min ) * ( angle/180. ))+Min)
print(chan,angle,val)
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_ON_L + self.CHAN_WIDTH * (chan - 1),0]) #
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_ON_H + self.CHAN_WIDTH * (chan - 1),0]) # Turn on immediately. At 0.
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_L + self.CHAN_WIDTH * (chan - 1),val&0xFF]) #Turn off after val width 0-4095
self.I2CWriteBulk(self.PCA9685_address, [self.CH0_OFF_H + self.CHAN_WIDTH * (chan - 1),(val>>8)&0xFF])
## ADS1115
REG_POINTER_MASK = 0x3
REG_POINTER_CONVERT = 0
REG_POINTER_CONFIG = 1
REG_POINTER_LOWTHRESH=2
REG_POINTER_HITHRESH =3
REG_CONFIG_OS_MASK =0x8000
REG_CONFIG_OS_SINGLE =0x8000
REG_CONFIG_OS_BUSY =0x0000
REG_CONFIG_OS_NOTBUSY =0x8000
REG_CONFIG_MUX_MASK =0x7000
REG_CONFIG_MUX_DIFF_0_1 =0x0000 # Differential P = AIN0, N = AIN1 =default)
REG_CONFIG_MUX_DIFF_0_3 =0x1000 # Differential P = AIN0, N = AIN3
REG_CONFIG_MUX_DIFF_1_3 =0x2000 # Differential P = AIN1, N = AIN3
REG_CONFIG_MUX_DIFF_2_3 =0x3000 # Differential P = AIN2, N = AIN3
REG_CONFIG_MUX_SINGLE_0 =0x4000 # Single-ended AIN0
REG_CONFIG_MUX_SINGLE_1 =0x5000 # Single-ended AIN1
REG_CONFIG_MUX_SINGLE_2 =0x6000 # Single-ended AIN2
REG_CONFIG_MUX_SINGLE_3 =0x7000 # Single-ended AIN3
REG_CONFIG_PGA_MASK =0x0E00 #bits 11:9
REG_CONFIG_PGA_6_144V =(0<<9) # +/-6.144V range = Gain 2/3
REG_CONFIG_PGA_4_096V =(1<<9) # +/-4.096V range = Gain 1
REG_CONFIG_PGA_2_048V =(2<<9) # +/-2.048V range = Gain 2 =default)
REG_CONFIG_PGA_1_024V =(3<<9) # +/-1.024V range = Gain 4
REG_CONFIG_PGA_0_512V =(4<<9) # +/-0.512V range = Gain 8
REG_CONFIG_PGA_0_256V =(5<<9) # +/-0.256V range = Gain 16
REG_CONFIG_MODE_MASK =0x0100 #bit 8
REG_CONFIG_MODE_CONTIN =(0<<8) # Continuous conversion mode
REG_CONFIG_MODE_SINGLE =(1<<8) # Power-down single-shot mode =default)
REG_CONFIG_DR_MASK =0x00E0
REG_CONFIG_DR_8SPS =(0<<5) #8 SPS
REG_CONFIG_DR_16SPS =(1<<5) #16 SPS
REG_CONFIG_DR_32SPS =(2<<5) #32 SPS
REG_CONFIG_DR_64SPS =(3<<5) #64 SPS
REG_CONFIG_DR_128SPS =(4<<5) #128 SPS
REG_CONFIG_DR_250SPS =(5<<5) #260 SPS
REG_CONFIG_DR_475SPS =(6<<5) #475 SPS
REG_CONFIG_DR_860SPS =(7<<5) #860 SPS
REG_CONFIG_CMODE_MASK =0x0010
REG_CONFIG_CMODE_TRAD =0x0000
REG_CONFIG_CMODE_WINDOW =0x0010
REG_CONFIG_CPOL_MASK =0x0008
REG_CONFIG_CPOL_ACTVLOW =0x0000
REG_CONFIG_CPOL_ACTVHI =0x0008
REG_CONFIG_CLAT_MASK =0x0004
REG_CONFIG_CLAT_NONLAT =0x0000
REG_CONFIG_CLAT_LATCH =0x0004
REG_CONFIG_CQUE_MASK =0x0003
REG_CONFIG_CQUE_1CONV =0x0000
REG_CONFIG_CQUE_2CONV =0x0001
REG_CONFIG_CQUE_4CONV =0x0002
REG_CONFIG_CQUE_NONE =0x0003
gains = OrderedDict([('GAIN_TWOTHIRDS',REG_CONFIG_PGA_6_144V),('GAIN_ONE',REG_CONFIG_PGA_4_096V),('GAIN_TWO',REG_CONFIG_PGA_2_048V),('GAIN_FOUR',REG_CONFIG_PGA_1_024V),('GAIN_EIGHT',REG_CONFIG_PGA_0_512V),('GAIN_SIXTEEN',REG_CONFIG_PGA_0_256V)])
gain_scaling = OrderedDict([('GAIN_TWOTHIRDS',0.1875),('GAIN_ONE',0.125),('GAIN_TWO',0.0625),('GAIN_FOUR',0.03125),('GAIN_EIGHT',0.015625),('GAIN_SIXTEEN',0.0078125)])
type_selection = OrderedDict([('UNI_0',0),('UNI_1',1),('UNI_2',2),('UNI_3',3),('DIFF_01','01'),('DIFF_23','23')])
sdr_selection = OrderedDict([(8,REG_CONFIG_DR_8SPS),(16,REG_CONFIG_DR_16SPS),(32,REG_CONFIG_DR_32SPS),(64,REG_CONFIG_DR_64SPS),(128,REG_CONFIG_DR_128SPS),(250,REG_CONFIG_DR_250SPS),(475,REG_CONFIG_DR_475SPS),(860,REG_CONFIG_DR_860SPS)]) #sampling data rate
conversion_time = [8,16,32,64,128,250,460,860]
ADS1115_DATARATE = 5 #250SPS [ 8, 16, 32, 64, 128, 250, 475, 860 ]
ADS1115_GAIN = REG_CONFIG_PGA_4_096V # +/-4.096V range = Gain 1 . [+-6, +-4, +-2, +-1, +-0.5, +- 0.25]
ADS1115_CHANNEL = REG_CONFIG_MUX_SINGLE_0 # ref: type_selection
TSL_TIMING = 0x00 # 0x00=3 mS , 0x01 = 101 mS, 0x02 = 402mS
ADS1115_ADDRESS = 0x48
def ADS1115_init(self):
self.I2CWriteBulk(0x39,[0x80 , 0x03 ]) #poweron
def ADS1115_channel(self):
pass
def ADS1115_read(self):
'''
returns a voltage from ADS1115 channel selected using ADS1115_channel. default UNI_0 (Unipolar from channel 0)
'''
if chan<=3:
config = (self.REG_CONFIG_CQUE_NONE # Disable the comparator (default val)
|self.REG_CONFIG_CLAT_NONLAT # Non-latching (default val)
|self.REG_CONFIG_CPOL_ACTVLOW #Alert/Rdy active low (default val)
|self.REG_CONFIG_CMODE_TRAD # Traditional comparator (default val)
|(self.ADS1115_DATARATE<<5) # 1600 samples per second (default)
|(self.REG_CONFIG_MODE_SINGLE) # Single-shot mode (default)
|self.ADS1115_GAIN)
if self.ADS1115_CHANNEL == 0 : config |= self.REG_CONFIG_MUX_SINGLE_0
elif self.ADS1115_CHANNEL == 1 : config |= self.REG_CONFIG_MUX_SINGLE_1
elif self.ADS1115_CHANNEL == 2 : config |= self.REG_CONFIG_MUX_SINGLE_2
elif self.ADS1115_CHANNEL == 3 : config |= self.REG_CONFIG_MUX_SINGLE_3
#Set 'start single-conversion' bit
config |= self.REG_CONFIG_OS_SINGLE
self.I2CWriteBulk(self.ADS1115_ADDRESS,[self.REG_POINTER_CONFIG,(config>>8)&0xFF,config&0xFF])
time.sleep(1./self.rate+.002) #convert to mS to S
return self.readRegister(self.REG_POINTER_CONVERT)*self.gain_scaling[self.gain]
b,tmt = self.I2CReadBulk(0x68, 0x3B ,14)
if tmt:return None
if None not in b:
return [ np.int16((b[x*2]<<8)|b[x*2+1]) for x in range(7) ] #Ax,Ay,Az, Temp, Gx, Gy,Gz
if __name__ == '__main__':
a=connect(autoscan=True)
print ('version' , a.version)
print ('------------')
if not a.connected:
sys.exit(1)
time.sleep(0.01)
a.setReg('DDRC',3)
a.setReg('PORTC',2)
time.sleep(1)
a.setReg('PORTC',3)
a.setReg('DDRC',0)
print(a.I2CScan())
'''
a.PCA9685_init()
a.PCA9685_set(1,650)
for x in range(180):
a.PCA9685_set(1,x)
time.sleep(0.01)
a.TSL2561_init()
s=time.time()
for x in range(1000):
print(a.TSL2561_all())
print(time.time()-s)
a.MPU6050_init()
s=time.time()
for x in range(1000):
print(a.MPU6050_all()[0])
print(time.time()-s)
'''
|