File: speed_tests.c

package info (click to toggle)
kvazaar 2.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,012 kB
  • sloc: ansic: 35,363; sh: 5,418; python: 362; cpp: 351; makefile: 325; awk: 10
file content (439 lines) | stat: -rw-r--r-- 13,462 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*****************************************************************************
 * This file is part of Kvazaar HEVC encoder.
 *
 * Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * * Redistributions of source code must retain the above copyright notice, this
 *   list of conditions and the following disclaimer.
 * 
 * * Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 * 
 * * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
 *   contributors may be used to endorse or promote products derived from
 *   this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 ****************************************************************************/
 
#include "greatest/greatest.h"

#include "test_strategies.h"

#include "src/image.h"
#include "src/threads.h"

#include <math.h>
#include <stdlib.h>


//////////////////////////////////////////////////////////////////////////
// MACROS
#define NUM_TESTS 113
#define NUM_CHUNKS 36
#define LCU_MAX_LOG_W 6
#define LCU_MIN_LOG_W 2

// Time per tested function, in seconds.
#define TIME_PER_TEST 1.0

//////////////////////////////////////////////////////////////////////////
// GLOBALS
static kvz_pixel * bufs[NUM_TESTS]; // SIMD aligned pointers.
static kvz_pixel * actual_bufs[NUM_TESTS]; // pointers returned by malloc.

#define WIDTH_4K 3840 
#define HEIGHT_4K 2160

static struct test_env_t {
  int width;
  int height;
  void * tested_func;
  const strategy_t * strategy;
  char msg[1024];
  
  kvz_picture *inter_a;
  kvz_picture *inter_b;
} test_env;


//////////////////////////////////////////////////////////////////////////
// SETUP, TEARDOWN AND HELPER FUNCTIONS
static void init_gradient(int x_px, int y_px, int width, int slope, kvz_pixel *buf)
{
  for (int y = 0; y < width; ++y) {
    for (int x = 0; x < width; ++x) {
      int diff_x = x_px - x;
      int diff_y = y_px - y;
      int val = slope * sqrt(diff_x * diff_x + diff_y * diff_y) + 0.5;
      buf[y * width + x] = CLIP(0, 255, val);
    }
  }
}


static void setup_tests()
{
  for (int test = 0; test < NUM_TESTS; ++test) {
    unsigned size = NUM_CHUNKS * 64 * 64;
    
    actual_bufs[test] = malloc(size * sizeof(kvz_pixel) + SIMD_ALIGNMENT);
    bufs[test] = ALIGNED_POINTER(actual_bufs[test], SIMD_ALIGNMENT);
  }

  for (int test = 0; test < NUM_TESTS; ++test) {
    for (int chunk = 0; chunk < NUM_CHUNKS; ++chunk) {
      const int width = 64;
      int x = (test + chunk) % width;
      int y = (test + chunk) / width;
      init_gradient(width - x, y, width, 255 / width, &bufs[test][chunk * 64*64]);
    }
  }

  test_env.inter_a = kvz_image_alloc(KVZ_CSP_420, WIDTH_4K, HEIGHT_4K);
  test_env.inter_b = kvz_image_alloc(KVZ_CSP_420, WIDTH_4K, HEIGHT_4K);
  for (unsigned i = 0; i < WIDTH_4K * HEIGHT_4K; ++i) {
    kvz_pixel pattern1 = ((i*i >> 10) % 255) >> 2;
    kvz_pixel pattern2 = ((i*i >> 15) % 255) >> 2;
    kvz_pixel gradient = (i >> 12) + i;
    test_env.inter_a->y[i] = (pattern1 + gradient) % PIXEL_MAX;
    test_env.inter_b->y[i] = (pattern2 + gradient) % PIXEL_MAX;
  }
}

static void tear_down_tests()
{
  for (int test = 0; test < NUM_TESTS; ++test) {
    free(actual_bufs[test]);
  }
  kvz_image_free(test_env.inter_a);
  kvz_image_free(test_env.inter_b);
}

//////////////////////////////////////////////////////////////////////////
// TESTS

TEST test_intra_speed(const int width)
{
  const int size = width * width;
  uint64_t call_cnt = 0;
  KVZ_CLOCK_T clock_now;
  KVZ_GET_TIME(&clock_now);
  double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;

  // Loop until time allocated for test has passed.
  for (unsigned i = 0; 
      test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
      ++i)
  {
    int test = i % NUM_TESTS;
    uint64_t sum = 0;
    for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
      // Compare the first chunk against the 35 other chunks to simulate real usage.
      kvz_pixel * buf1 = &bufs[test][offset];
      for (int chunk = 1; chunk < NUM_CHUNKS; ++chunk) {
        kvz_pixel * buf2 = &bufs[test][chunk * size + offset];

        cost_pixel_nxn_func *tested_func = test_env.tested_func;
        sum += tested_func(buf1, buf2);
        ++call_cnt;
      }
    }

    ASSERT(sum > 0);
    KVZ_GET_TIME(&clock_now)
  }

  double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
  sprintf(test_env.msg, "%.3fM x %s:%s",
    (double)call_cnt / 1000000.0 / test_time,
    test_env.strategy->type,
    test_env.strategy->strategy_name);
  PASSm(test_env.msg);
}


TEST test_intra_dual_speed(const int width)
{
  const int size = width * width;
  uint64_t call_cnt = 0;
  KVZ_CLOCK_T clock_now;
  KVZ_GET_TIME(&clock_now);
  double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;

  // Loop until time allocated for test has passed.
  for (unsigned i = 0;
    test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
    ++i)
  {
    int test = i % NUM_TESTS;
    uint64_t sum = 0;
    for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
      // Compare the first chunk against the 35 other chunks to simulate real usage.
      kvz_pixel * buf1 = &bufs[test][offset];
      for (int chunk = 0; chunk < NUM_CHUNKS; chunk += 2) {
        cost_pixel_nxn_multi_func *tested_func = test_env.tested_func;
        const kvz_pixel *buf_pair[2] = { &bufs[test][chunk * size + offset], &bufs[test][(chunk + 1) * size + offset] };
        unsigned costs[2] = { 0, 0 };
        tested_func((pred_buffer)buf_pair, buf1, 2, costs);
        sum += costs[0] + costs[1];
        ++call_cnt;
      }
    }

    ASSERT(sum > 0);
    KVZ_GET_TIME(&clock_now)
  }

  double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
  sprintf(test_env.msg, "%.3fM x %s:%s",
    (double)call_cnt / 1000000.0 / test_time,
    test_env.strategy->type,
    test_env.strategy->strategy_name);
  PASSm(test_env.msg);
}


TEST test_inter_speed(const int width, const int height)
{
  unsigned call_cnt = 0;
  KVZ_CLOCK_T clock_now;
  KVZ_GET_TIME(&clock_now);
  double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;

  const vector2d_t dims_lcu = { WIDTH_4K / 64 - 2, HEIGHT_4K / 64 - 2 };
  const int step = 3;
  const int range = 2 * step;

  // Loop until time allocated for test has passed.
  for (uint64_t i = 0;
      test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
      ++i)
  {
    // Do a sparse full search on the first CU of every LCU.
    
    uint64_t sum = 0;

    // Go through the non-edge LCU's in raster scan order.
    const vector2d_t lcu = {
      1 + i % dims_lcu.x,
      1 + (i / dims_lcu.y) % dims_lcu.y,
    };

    vector2d_t mv;
    for (mv.y = -range; mv.y <= range; mv.y += step) {
      for (mv.x = -range; mv.x <= range; mv.x += step) {
        reg_sad_func *tested_func = test_env.tested_func;

        int lcu_index = lcu.y * 64 * WIDTH_4K + lcu.x * 64;
        int mv_index = mv.y * WIDTH_4K + mv.x;
        kvz_pixel *buf1 = &test_env.inter_a->y[lcu_index];
        kvz_pixel *buf2 = &test_env.inter_a->y[lcu_index + mv_index];

        sum += tested_func(buf1, buf2, width, height, WIDTH_4K, WIDTH_4K);
        ++call_cnt;
      }
    }

    ASSERT(sum > 0);
    KVZ_GET_TIME(&clock_now)
  }

  double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
  sprintf(test_env.msg, "%.3fM x %s(%ix%i):%s",
    (double)call_cnt / 1000000.0 / test_time,
    test_env.strategy->type,
    width,
    height,
    test_env.strategy->strategy_name);
  PASSm(test_env.msg);
}


TEST dct_speed(const int width)
{
  const int size = width * width;
  uint64_t call_cnt = 0;
  dct_func * tested_func = test_env.strategy->fptr;

  KVZ_CLOCK_T clock_now;
  KVZ_GET_TIME(&clock_now);
  double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;

  int16_t _tmp_residual[32 * 32 + SIMD_ALIGNMENT];
  int16_t _tmp_coeffs[32 * 32 + SIMD_ALIGNMENT];
  int16_t *tmp_residual = ALIGNED_POINTER(_tmp_residual, SIMD_ALIGNMENT);
  int16_t *tmp_coeffs = ALIGNED_POINTER(_tmp_coeffs, SIMD_ALIGNMENT);
  
  // Loop until time allocated for test has passed.
  for (unsigned i = 0;
    test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
    ++i)
  {
    int test = i % NUM_TESTS;
    uint64_t sum = 0;
    for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
      // Compare the first chunk against the 35 other chunks to simulate real usage.
      for (int chunk = 0; chunk < NUM_CHUNKS; ++chunk) {
        kvz_pixel * buf1 = &bufs[test][offset];
        kvz_pixel * buf2 = &bufs[test][chunk * size + offset];
        for (int p = 0; p < size; ++p) {
          tmp_residual[p] = (int16_t)(buf1[p] - buf2[p]);
        }

        tested_func(8, tmp_residual, tmp_coeffs);
        ++call_cnt;
        sum += tmp_coeffs[0];
      }
    }

    ASSERT(sum > 0);
    KVZ_GET_TIME(&clock_now)
  }
  
  double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
  sprintf(test_env.msg, "%.3fM x %s:%s",
    (double)call_cnt / 1000000.0 / test_time,
    test_env.strategy->type,
    test_env.strategy->strategy_name);
  PASSm(test_env.msg);
}


TEST intra_sad(void)
{
  return test_intra_speed(test_env.width);
}


TEST intra_sad_dual(void)
{
  return test_intra_dual_speed(test_env.width);
}


TEST intra_satd(void)
{
  return test_intra_speed(test_env.width);
}


TEST intra_satd_dual(void)
{
  return test_intra_dual_speed(test_env.width);
}


TEST inter_sad(void)
{
  return test_inter_speed(test_env.width, test_env.height);
}


TEST fdct(void)
{
  return dct_speed(test_env.width);
}


TEST idct(void)
{
  return dct_speed(test_env.width);
}



//////////////////////////////////////////////////////////////////////////
// TEST FIXTURES
SUITE(speed_tests)
{
  //SET_SETUP(sad_setup);
  //SET_TEARDOWN(sad_teardown);

  setup_tests();

  // Loop through all strategies picking out the intra sad ones and run
  // selectec strategies though all tests
  for (volatile unsigned i = 0; i < strategies.count; ++i) {
    const strategy_t * strategy = &strategies.strategies[i];

    // Select buffer width according to function name.
    if (strstr(strategy->type, "_4x4")) {
      test_env.width = 4;
      test_env.height = 4;
    } else if (strstr(strategy->type, "_8x8")) {
      test_env.width = 8;
      test_env.height = 8;
    } else if (strstr(strategy->type, "_16x16")) {
      test_env.width = 16;
      test_env.height = 16;
    } else if (strstr(strategy->type, "_32x32")) {
      test_env.width = 32;
      test_env.height = 32;
    } else if (strstr(strategy->type, "_64x64")) {
      test_env.width = 64;
      test_env.height = 64;
    } else {
      test_env.width = 0;
      test_env.height = 0;
    }

    test_env.tested_func = strategies.strategies[i].fptr;
    test_env.strategy = strategy;

    // Call different tests depending on type of function.
    // This allows for selecting a subset of tests with -t parameter.
    if (strncmp(strategy->type, "satd_", 5) == 0 && strcmp(strategy->type, "satd_any_size") != 0) {
      if (strlen(strategy->type) <= 10) {
        RUN_TEST(intra_satd);
      } else if (strstr(strategy->type, "_dual")) {
        RUN_TEST(intra_satd_dual);
      }
    } else if (strncmp(strategy->type, "sad_", 4) == 0) {
      if (strlen(strategy->type) <= 9) {
        RUN_TEST(intra_sad);
      } else if (strstr(strategy->type, "_dual")) {
        RUN_TEST(intra_sad_dual);
      }
    } else if (strcmp(strategy->type, "reg_sad") == 0) {
      static const vector2d_t tested_dims[] = { 
          { 8, 8 }, { 16, 16 }, { 32, 32 }, { 64, 64 },
          { 64, 63 }, { 1, 1 }
      };

      int num_tested_dims = sizeof(tested_dims) / sizeof(*tested_dims);

      // Call reg_sad with all the sizes it is actually called with.
      for (volatile int dim_i = 0; dim_i < num_tested_dims; ++dim_i) {
        test_env.width = tested_dims[dim_i].x;
        test_env.height = tested_dims[dim_i].y;
        RUN_TEST(inter_sad);
      }

    } else if (strncmp(strategy->type, "dct_", 4) == 0 ||
               strcmp(strategy->type, "fast_forward_dst_4x4") == 0)
    {
      RUN_TEST(fdct);
    } else if (strncmp(strategy->type, "idct_", 4) == 0 ||
               strcmp(strategy->type, "fast_inverse_dst_4x4") == 0)
    {
      RUN_TEST(idct);
    }
  }

  tear_down_tests();
}