1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/*****************************************************************************
* This file is part of Kvazaar HEVC encoder.
*
* Copyright (c) 2021, Tampere University, ITU/ISO/IEC, project contributors
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* * Neither the name of the Tampere University or ITU/ISO/IEC nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
****************************************************************************/
#include "greatest/greatest.h"
#include "test_strategies.h"
#include "src/image.h"
#include "src/threads.h"
#include <math.h>
#include <stdlib.h>
//////////////////////////////////////////////////////////////////////////
// MACROS
#define NUM_TESTS 113
#define NUM_CHUNKS 36
#define LCU_MAX_LOG_W 6
#define LCU_MIN_LOG_W 2
// Time per tested function, in seconds.
#define TIME_PER_TEST 1.0
//////////////////////////////////////////////////////////////////////////
// GLOBALS
static kvz_pixel * bufs[NUM_TESTS]; // SIMD aligned pointers.
static kvz_pixel * actual_bufs[NUM_TESTS]; // pointers returned by malloc.
#define WIDTH_4K 3840
#define HEIGHT_4K 2160
static struct test_env_t {
int width;
int height;
void * tested_func;
const strategy_t * strategy;
char msg[1024];
kvz_picture *inter_a;
kvz_picture *inter_b;
} test_env;
//////////////////////////////////////////////////////////////////////////
// SETUP, TEARDOWN AND HELPER FUNCTIONS
static void init_gradient(int x_px, int y_px, int width, int slope, kvz_pixel *buf)
{
for (int y = 0; y < width; ++y) {
for (int x = 0; x < width; ++x) {
int diff_x = x_px - x;
int diff_y = y_px - y;
int val = slope * sqrt(diff_x * diff_x + diff_y * diff_y) + 0.5;
buf[y * width + x] = CLIP(0, 255, val);
}
}
}
static void setup_tests()
{
for (int test = 0; test < NUM_TESTS; ++test) {
unsigned size = NUM_CHUNKS * 64 * 64;
actual_bufs[test] = malloc(size * sizeof(kvz_pixel) + SIMD_ALIGNMENT);
bufs[test] = ALIGNED_POINTER(actual_bufs[test], SIMD_ALIGNMENT);
}
for (int test = 0; test < NUM_TESTS; ++test) {
for (int chunk = 0; chunk < NUM_CHUNKS; ++chunk) {
const int width = 64;
int x = (test + chunk) % width;
int y = (test + chunk) / width;
init_gradient(width - x, y, width, 255 / width, &bufs[test][chunk * 64*64]);
}
}
test_env.inter_a = kvz_image_alloc(KVZ_CSP_420, WIDTH_4K, HEIGHT_4K);
test_env.inter_b = kvz_image_alloc(KVZ_CSP_420, WIDTH_4K, HEIGHT_4K);
for (unsigned i = 0; i < WIDTH_4K * HEIGHT_4K; ++i) {
kvz_pixel pattern1 = ((i*i >> 10) % 255) >> 2;
kvz_pixel pattern2 = ((i*i >> 15) % 255) >> 2;
kvz_pixel gradient = (i >> 12) + i;
test_env.inter_a->y[i] = (pattern1 + gradient) % PIXEL_MAX;
test_env.inter_b->y[i] = (pattern2 + gradient) % PIXEL_MAX;
}
}
static void tear_down_tests()
{
for (int test = 0; test < NUM_TESTS; ++test) {
free(actual_bufs[test]);
}
kvz_image_free(test_env.inter_a);
kvz_image_free(test_env.inter_b);
}
//////////////////////////////////////////////////////////////////////////
// TESTS
TEST test_intra_speed(const int width)
{
const int size = width * width;
uint64_t call_cnt = 0;
KVZ_CLOCK_T clock_now;
KVZ_GET_TIME(&clock_now);
double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;
// Loop until time allocated for test has passed.
for (unsigned i = 0;
test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
++i)
{
int test = i % NUM_TESTS;
uint64_t sum = 0;
for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
// Compare the first chunk against the 35 other chunks to simulate real usage.
kvz_pixel * buf1 = &bufs[test][offset];
for (int chunk = 1; chunk < NUM_CHUNKS; ++chunk) {
kvz_pixel * buf2 = &bufs[test][chunk * size + offset];
cost_pixel_nxn_func *tested_func = test_env.tested_func;
sum += tested_func(buf1, buf2);
++call_cnt;
}
}
ASSERT(sum > 0);
KVZ_GET_TIME(&clock_now)
}
double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
sprintf(test_env.msg, "%.3fM x %s:%s",
(double)call_cnt / 1000000.0 / test_time,
test_env.strategy->type,
test_env.strategy->strategy_name);
PASSm(test_env.msg);
}
TEST test_intra_dual_speed(const int width)
{
const int size = width * width;
uint64_t call_cnt = 0;
KVZ_CLOCK_T clock_now;
KVZ_GET_TIME(&clock_now);
double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;
// Loop until time allocated for test has passed.
for (unsigned i = 0;
test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
++i)
{
int test = i % NUM_TESTS;
uint64_t sum = 0;
for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
// Compare the first chunk against the 35 other chunks to simulate real usage.
kvz_pixel * buf1 = &bufs[test][offset];
for (int chunk = 0; chunk < NUM_CHUNKS; chunk += 2) {
cost_pixel_nxn_multi_func *tested_func = test_env.tested_func;
const kvz_pixel *buf_pair[2] = { &bufs[test][chunk * size + offset], &bufs[test][(chunk + 1) * size + offset] };
unsigned costs[2] = { 0, 0 };
tested_func((pred_buffer)buf_pair, buf1, 2, costs);
sum += costs[0] + costs[1];
++call_cnt;
}
}
ASSERT(sum > 0);
KVZ_GET_TIME(&clock_now)
}
double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
sprintf(test_env.msg, "%.3fM x %s:%s",
(double)call_cnt / 1000000.0 / test_time,
test_env.strategy->type,
test_env.strategy->strategy_name);
PASSm(test_env.msg);
}
TEST test_inter_speed(const int width, const int height)
{
unsigned call_cnt = 0;
KVZ_CLOCK_T clock_now;
KVZ_GET_TIME(&clock_now);
double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;
const vector2d_t dims_lcu = { WIDTH_4K / 64 - 2, HEIGHT_4K / 64 - 2 };
const int step = 3;
const int range = 2 * step;
// Loop until time allocated for test has passed.
for (uint64_t i = 0;
test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
++i)
{
// Do a sparse full search on the first CU of every LCU.
uint64_t sum = 0;
// Go through the non-edge LCU's in raster scan order.
const vector2d_t lcu = {
1 + i % dims_lcu.x,
1 + (i / dims_lcu.y) % dims_lcu.y,
};
vector2d_t mv;
for (mv.y = -range; mv.y <= range; mv.y += step) {
for (mv.x = -range; mv.x <= range; mv.x += step) {
reg_sad_func *tested_func = test_env.tested_func;
int lcu_index = lcu.y * 64 * WIDTH_4K + lcu.x * 64;
int mv_index = mv.y * WIDTH_4K + mv.x;
kvz_pixel *buf1 = &test_env.inter_a->y[lcu_index];
kvz_pixel *buf2 = &test_env.inter_a->y[lcu_index + mv_index];
sum += tested_func(buf1, buf2, width, height, WIDTH_4K, WIDTH_4K);
++call_cnt;
}
}
ASSERT(sum > 0);
KVZ_GET_TIME(&clock_now)
}
double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
sprintf(test_env.msg, "%.3fM x %s(%ix%i):%s",
(double)call_cnt / 1000000.0 / test_time,
test_env.strategy->type,
width,
height,
test_env.strategy->strategy_name);
PASSm(test_env.msg);
}
TEST dct_speed(const int width)
{
const int size = width * width;
uint64_t call_cnt = 0;
dct_func * tested_func = test_env.strategy->fptr;
KVZ_CLOCK_T clock_now;
KVZ_GET_TIME(&clock_now);
double test_end = KVZ_CLOCK_T_AS_DOUBLE(clock_now) + TIME_PER_TEST;
int16_t _tmp_residual[32 * 32 + SIMD_ALIGNMENT];
int16_t _tmp_coeffs[32 * 32 + SIMD_ALIGNMENT];
int16_t *tmp_residual = ALIGNED_POINTER(_tmp_residual, SIMD_ALIGNMENT);
int16_t *tmp_coeffs = ALIGNED_POINTER(_tmp_coeffs, SIMD_ALIGNMENT);
// Loop until time allocated for test has passed.
for (unsigned i = 0;
test_end > KVZ_CLOCK_T_AS_DOUBLE(clock_now);
++i)
{
int test = i % NUM_TESTS;
uint64_t sum = 0;
for (int offset = 0; offset < NUM_CHUNKS * 64 * 64; offset += NUM_CHUNKS * size) {
// Compare the first chunk against the 35 other chunks to simulate real usage.
for (int chunk = 0; chunk < NUM_CHUNKS; ++chunk) {
kvz_pixel * buf1 = &bufs[test][offset];
kvz_pixel * buf2 = &bufs[test][chunk * size + offset];
for (int p = 0; p < size; ++p) {
tmp_residual[p] = (int16_t)(buf1[p] - buf2[p]);
}
tested_func(8, tmp_residual, tmp_coeffs);
++call_cnt;
sum += tmp_coeffs[0];
}
}
ASSERT(sum > 0);
KVZ_GET_TIME(&clock_now)
}
double test_time = TIME_PER_TEST + KVZ_CLOCK_T_AS_DOUBLE(clock_now) - test_end;
sprintf(test_env.msg, "%.3fM x %s:%s",
(double)call_cnt / 1000000.0 / test_time,
test_env.strategy->type,
test_env.strategy->strategy_name);
PASSm(test_env.msg);
}
TEST intra_sad(void)
{
return test_intra_speed(test_env.width);
}
TEST intra_sad_dual(void)
{
return test_intra_dual_speed(test_env.width);
}
TEST intra_satd(void)
{
return test_intra_speed(test_env.width);
}
TEST intra_satd_dual(void)
{
return test_intra_dual_speed(test_env.width);
}
TEST inter_sad(void)
{
return test_inter_speed(test_env.width, test_env.height);
}
TEST fdct(void)
{
return dct_speed(test_env.width);
}
TEST idct(void)
{
return dct_speed(test_env.width);
}
//////////////////////////////////////////////////////////////////////////
// TEST FIXTURES
SUITE(speed_tests)
{
//SET_SETUP(sad_setup);
//SET_TEARDOWN(sad_teardown);
setup_tests();
// Loop through all strategies picking out the intra sad ones and run
// selectec strategies though all tests
for (volatile unsigned i = 0; i < strategies.count; ++i) {
const strategy_t * strategy = &strategies.strategies[i];
// Select buffer width according to function name.
if (strstr(strategy->type, "_4x4")) {
test_env.width = 4;
test_env.height = 4;
} else if (strstr(strategy->type, "_8x8")) {
test_env.width = 8;
test_env.height = 8;
} else if (strstr(strategy->type, "_16x16")) {
test_env.width = 16;
test_env.height = 16;
} else if (strstr(strategy->type, "_32x32")) {
test_env.width = 32;
test_env.height = 32;
} else if (strstr(strategy->type, "_64x64")) {
test_env.width = 64;
test_env.height = 64;
} else {
test_env.width = 0;
test_env.height = 0;
}
test_env.tested_func = strategies.strategies[i].fptr;
test_env.strategy = strategy;
// Call different tests depending on type of function.
// This allows for selecting a subset of tests with -t parameter.
if (strncmp(strategy->type, "satd_", 5) == 0 && strcmp(strategy->type, "satd_any_size") != 0) {
if (strlen(strategy->type) <= 10) {
RUN_TEST(intra_satd);
} else if (strstr(strategy->type, "_dual")) {
RUN_TEST(intra_satd_dual);
}
} else if (strncmp(strategy->type, "sad_", 4) == 0) {
if (strlen(strategy->type) <= 9) {
RUN_TEST(intra_sad);
} else if (strstr(strategy->type, "_dual")) {
RUN_TEST(intra_sad_dual);
}
} else if (strcmp(strategy->type, "reg_sad") == 0) {
static const vector2d_t tested_dims[] = {
{ 8, 8 }, { 16, 16 }, { 32, 32 }, { 64, 64 },
{ 64, 63 }, { 1, 1 }
};
int num_tested_dims = sizeof(tested_dims) / sizeof(*tested_dims);
// Call reg_sad with all the sizes it is actually called with.
for (volatile int dim_i = 0; dim_i < num_tested_dims; ++dim_i) {
test_env.width = tested_dims[dim_i].x;
test_env.height = tested_dims[dim_i].y;
RUN_TEST(inter_sad);
}
} else if (strncmp(strategy->type, "dct_", 4) == 0 ||
strcmp(strategy->type, "fast_forward_dst_4x4") == 0)
{
RUN_TEST(fdct);
} else if (strncmp(strategy->type, "idct_", 4) == 0 ||
strcmp(strategy->type, "fast_inverse_dst_4x4") == 0)
{
RUN_TEST(idct);
}
}
tear_down_tests();
}
|