File: vector_sparse.hpp

package info (click to toggle)
kwstyle 1.0.1%2Bgit3224cf2-1
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 45,404 kB
  • ctags: 145,645
  • sloc: cpp: 423,059; ansic: 9,347; xml: 588; sh: 102; php: 87; perl: 35; makefile: 7
file content (2215 lines) | stat: -rw-r--r-- 83,145 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
//
//  Copyright (c) 2000-2002
//  Joerg Walter, Mathias Koch
//
//  Distributed under the Boost Software License, Version 1.0. (See
//  accompanying file LICENSE_1_0.txt or copy at
//  http://www.boost.org/LICENSE_1_0.txt)
//
//  The authors gratefully acknowledge the support of
//  GeNeSys mbH & Co. KG in producing this work.
//

#ifndef _BOOST_UBLAS_VECTOR_SPARSE_
#define _BOOST_UBLAS_VECTOR_SPARSE_

#include <boost/numeric/ublas/storage_sparse.hpp>
#include <boost/numeric/ublas/vector_expression.hpp>
#include <boost/numeric/ublas/detail/vector_assign.hpp>
#if BOOST_UBLAS_TYPE_CHECK
#include <boost/numeric/ublas/vector.hpp>
#endif

// Iterators based on ideas of Jeremy Siek

namespace boost { namespace numeric { namespace ublas {

#ifdef BOOST_UBLAS_STRICT_VECTOR_SPARSE

    template<class V>
    class sparse_vector_element:
       public container_reference<V> {
    public:
        typedef V vector_type;
        typedef typename V::size_type size_type;
        typedef typename V::value_type value_type;
        typedef const value_type &const_reference;
        typedef value_type *pointer;

    private:
        // Proxied element operations
        void get_d () const {
            pointer p = (*this) ().find_element (i_);
            if (p)
                d_ = *p;
            else
                d_ = value_type/*zero*/();
        }

        void set (const value_type &s) const {
            pointer p = (*this) ().find_element (i_);
            if (!p)
                (*this) ().insert_element (i_, s);
            else
                *p = s;
        }

    public:
        // Construction and destruction
        sparse_vector_element (vector_type &v, size_type i):
            container_reference<vector_type> (v), i_ (i) {
        }
        BOOST_UBLAS_INLINE
        sparse_vector_element (const sparse_vector_element &p):
            container_reference<vector_type> (p), i_ (p.i_) {}
        BOOST_UBLAS_INLINE
        ~sparse_vector_element () {
        }

        // Assignment
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator = (const sparse_vector_element &p) {
            // Overide the implict copy assignment
            p.get_d ();
            set (p.d_);
            return *this;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator = (const D &d) {
            set (d);
            return *this;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator += (const D &d) {
            get_d ();
            d_ += d;
            set (d_);
            return *this;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator -= (const D &d) {
            get_d ();
            d_ -= d;
            set (d_);
            return *this;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator *= (const D &d) {
            get_d ();
            d_ *= d;
            set (d_);
            return *this;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        sparse_vector_element &operator /= (const D &d) {
            get_d ();
            d_ /= d;
            set (d_);
            return *this;
        }

        // Comparison
        template<class D>
        BOOST_UBLAS_INLINE
        bool operator == (const D &d) const {
            get_d ();
            return d_ == d;
        }
        template<class D>
        BOOST_UBLAS_INLINE
        bool operator != (const D &d) const {
            get_d ();
            return d_ != d;
        }

        // Conversion - weak link in proxy as d_ is not a perfect alias for the element
        BOOST_UBLAS_INLINE
        operator const_reference () const {
            get_d ();
            return d_;
        }

        // Conversion to reference - may be invalidated
        BOOST_UBLAS_INLINE
        value_type& ref () const {
            const pointer p = (*this) ().find_element (i_);
            if (!p)
                return (*this) ().insert_element (i_, value_type/*zero*/());
            else
                return *p;
        }

    private:
        size_type i_;
        mutable value_type d_;
    };

    /*
     * Generalise explicit reference access
     */
    namespace detail {
        template <class R>
        struct element_reference {
            typedef R& reference;
            static reference get_reference (reference r)
            {
                return r;
            }
        };
        template <class V>
        struct element_reference<sparse_vector_element<V> > {
            typedef typename V::value_type& reference;
            static reference get_reference (const sparse_vector_element<V>& sve)
            {
                return sve.ref ();
            }
        };
    }
    template <class VER>
    typename detail::element_reference<VER>::reference ref (VER& ver) {
        return detail::element_reference<VER>::get_reference (ver);
    }
    template <class VER>
    typename detail::element_reference<VER>::reference ref (const VER& ver) {
        return detail::element_reference<VER>::get_reference (ver);
    }


    template<class V>
    struct type_traits<sparse_vector_element<V> > {
        typedef typename V::value_type element_type;
        typedef type_traits<sparse_vector_element<V> > self_type;
        typedef typename type_traits<element_type>::value_type value_type;
        typedef typename type_traits<element_type>::const_reference const_reference;
        typedef sparse_vector_element<V> reference;
        typedef typename type_traits<element_type>::real_type real_type;
        typedef typename type_traits<element_type>::precision_type precision_type;

        static const unsigned plus_complexity = type_traits<element_type>::plus_complexity;
        static const unsigned multiplies_complexity = type_traits<element_type>::multiplies_complexity;

        static
        BOOST_UBLAS_INLINE
        real_type real (const_reference t) {
            return type_traits<element_type>::real (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type imag (const_reference t) {
            return type_traits<element_type>::imag (t);
        }
        static
        BOOST_UBLAS_INLINE
        value_type conj (const_reference t) {
            return type_traits<element_type>::conj (t);
        }

        static
        BOOST_UBLAS_INLINE
        real_type type_abs (const_reference t) {
            return type_traits<element_type>::type_abs (t);
        }
        static
        BOOST_UBLAS_INLINE
        value_type type_sqrt (const_reference t) {
            return type_traits<element_type>::type_sqrt (t);
        }

        static
        BOOST_UBLAS_INLINE
        real_type norm_1 (const_reference t) {
            return type_traits<element_type>::norm_1 (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_2 (const_reference t) {
            return type_traits<element_type>::norm_2 (t);
        }
        static
        BOOST_UBLAS_INLINE
        real_type norm_inf (const_reference t) {
            return type_traits<element_type>::norm_inf (t);
        }

        static
        BOOST_UBLAS_INLINE
        bool equals (const_reference t1, const_reference t2) {
            return type_traits<element_type>::equals (t1, t2);
        }
    };

    template<class V1, class T2>
    struct promote_traits<sparse_vector_element<V1>, T2> {
        typedef typename promote_traits<typename sparse_vector_element<V1>::value_type, T2>::promote_type promote_type;
    };
    template<class T1, class V2>
    struct promote_traits<T1, sparse_vector_element<V2> > {
        typedef typename promote_traits<T1, typename sparse_vector_element<V2>::value_type>::promote_type promote_type;
    };
    template<class V1, class V2>
    struct promote_traits<sparse_vector_element<V1>, sparse_vector_element<V2> > {
        typedef typename promote_traits<typename sparse_vector_element<V1>::value_type,
                                        typename sparse_vector_element<V2>::value_type>::promote_type promote_type;
    };

#endif


    /** \brief Index map based sparse vector
     *
     * A sparse vector of values of type T of variable size. The sparse storage type A can be 
     * \c std::map<size_t, T> or \c map_array<size_t, T>. This means that only non-zero elements
     * are effectively stored.
     *
     * For a \f$n\f$-dimensional sparse vector,  and 0 <= i < n the non-zero elements \f$v_i\f$ 
     * are mapped to consecutive elements of the associative container, i.e. for elements 
     * \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of the container, holds \f$i_1 < i_2\f$.
     *
     * Supported parameters for the adapted array are \c map_array<std::size_t, T> and 
     * \c map_std<std::size_t, T>. The latter is equivalent to \c std::map<std::size_t, T>.
     *
     * \tparam T the type of object stored in the vector (like double, float, complex, etc...)
     * \tparam A the type of Storage array
     */
    template<class T, class A>
    class mapped_vector:
        public vector_container<mapped_vector<T, A> > {

        typedef T &true_reference;
        typedef T *pointer;
        typedef const T *const_pointer;
        typedef mapped_vector<T, A> self_type;
    public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
        using vector_container<self_type>::operator ();
#endif
        typedef typename A::size_type size_type;
        typedef typename A::difference_type difference_type;
        typedef T value_type;
        typedef A array_type;
        typedef const value_type &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
        typedef typename detail::map_traits<A,T>::reference reference;
#else
        typedef sparse_vector_element<self_type> reference;
#endif
        typedef const vector_reference<const self_type> const_closure_type;
        typedef vector_reference<self_type> closure_type;
        typedef self_type vector_temporary_type;
        typedef sparse_tag storage_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        mapped_vector ():
            vector_container<self_type> (),
            size_ (0), data_ () {}
        BOOST_UBLAS_INLINE
        mapped_vector (size_type size, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (size), data_ () {
            detail::map_reserve (data(), restrict_capacity (non_zeros));
        }
        BOOST_UBLAS_INLINE
        mapped_vector (const mapped_vector &v):
            vector_container<self_type> (),
            size_ (v.size_), data_ (v.data_) {}
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (ae ().size ()), data_ () {
            detail::map_reserve (data(), restrict_capacity (non_zeros));
            vector_assign<scalar_assign> (*this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size () const {
            return size_;
        }
        BOOST_UBLAS_INLINE
        size_type nnz_capacity () const {
            return detail::map_capacity (data ());
        }
        BOOST_UBLAS_INLINE
        size_type nnz () const {
            return data (). size ();
        }

        // Storage accessors
        BOOST_UBLAS_INLINE
        const array_type &data () const {
            return data_;
        }
        BOOST_UBLAS_INLINE
        array_type &data () {
            return data_;
        }

        // Resizing
    private:
        BOOST_UBLAS_INLINE
        size_type restrict_capacity (size_type non_zeros) const {
            non_zeros = (std::min) (non_zeros, size_);
            return non_zeros;
        }
    public:
        BOOST_UBLAS_INLINE
        void resize (size_type size, bool preserve = true) {
            size_ = size;
            if (preserve) {
                data ().erase (data ().lower_bound(size_), data ().end());
            }
            else {
                data ().clear ();
            }
        }

        // Reserving
        BOOST_UBLAS_INLINE
        void reserve (size_type non_zeros = 0, bool preserve = true) {
            detail::map_reserve (data (), restrict_capacity (non_zeros));
        }

        // Element support
        BOOST_UBLAS_INLINE
        pointer find_element (size_type i) {
            return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
        }
        BOOST_UBLAS_INLINE
        const_pointer find_element (size_type i) const {
            const_subiterator_type it (data ().find (i));
            if (it == data ().end ())
                return 0;
            BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ());   // broken map
            return &(*it).second;
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i) const {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            const_subiterator_type it (data ().find (i));
            if (it == data ().end ())
                return zero_;
            BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ());   // broken map
            return (*it).second;
        }
        BOOST_UBLAS_INLINE
        true_reference ref (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            std::pair<subiterator_type, bool> ii (data ().insert (typename array_type::value_type (i, value_type/*zero*/())));
            BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ());   // broken map
            return (ii.first)->second;
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
            return ref (i);
#else
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            return reference (*this, i);
#endif
        }

        BOOST_UBLAS_INLINE
        const_reference operator [] (size_type i) const {
            return (*this) (i);
        }
        BOOST_UBLAS_INLINE
        reference operator [] (size_type i) {
            return (*this) (i);
        }

        // Element assignment
        BOOST_UBLAS_INLINE
        true_reference insert_element (size_type i, const_reference t) {
            std::pair<subiterator_type, bool> ii = data ().insert (typename array_type::value_type (i, t));
            BOOST_UBLAS_CHECK (ii.second, bad_index ());        // duplicate element
            BOOST_UBLAS_CHECK ((ii.first)->first == i, internal_logic ());   // broken map
            if (!ii.second)     // existing element
                (ii.first)->second = t;
            return (ii.first)->second;
        }
        BOOST_UBLAS_INLINE
        void erase_element (size_type i) {
            subiterator_type it = data ().find (i);
            if (it == data ().end ())
                return;
            data ().erase (it);
        }

        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            data ().clear ();
        }

        // Assignment
        BOOST_UBLAS_INLINE
        mapped_vector &operator = (const mapped_vector &v) {
            if (this != &v) {
                size_ = v.size_;
                data () = v.data ();
            }
            return *this;
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_vector &operator = (const vector_container<C> &v) {
            resize (v ().size (), false);
            assign (v);
            return *this;
        }
        BOOST_UBLAS_INLINE
        mapped_vector &assign_temporary (mapped_vector &v) {
            swap (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &operator = (const vector_expression<AE> &ae) {
            self_type temporary (ae, detail::map_capacity (data()));
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_assign> (*this, ae);
            return *this;
        }

        // Computed assignment
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &operator += (const vector_expression<AE> &ae) {
            self_type temporary (*this + ae, detail::map_capacity (data()));
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_vector &operator += (const vector_container<C> &v) {
            plus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &plus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &operator -= (const vector_expression<AE> &ae) {
            self_type temporary (*this - ae, detail::map_capacity (data()));
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        mapped_vector &operator -= (const vector_container<C> &v) {
            minus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        mapped_vector &minus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        mapped_vector &operator *= (const AT &at) {
            vector_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        mapped_vector &operator /= (const AT &at) {
            vector_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (mapped_vector &v) {
            if (this != &v) {
                std::swap (size_, v.size_);
                data ().swap (v.data ());
            }
        }
        BOOST_UBLAS_INLINE
        friend void swap (mapped_vector &v1, mapped_vector &v2) {
            v1.swap (v2);
        }

        // Iterator types
    private:
        // Use storage iterator
        typedef typename A::const_iterator const_subiterator_type;
        typedef typename A::iterator subiterator_type;

        BOOST_UBLAS_INLINE
        true_reference at_element (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            subiterator_type it (data ().find (i));
            BOOST_UBLAS_CHECK (it != data ().end(), bad_index ());
            BOOST_UBLAS_CHECK ((*it).first == i, internal_logic ());   // broken map
            return it->second;
        }

    public:
        class const_iterator;
        class iterator;

        // Element lookup
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        const_iterator find (size_type i) const {
            return const_iterator (*this, data ().lower_bound (i));
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        iterator find (size_type i) {
            return iterator (*this, data ().lower_bound (i));
        }


        class const_iterator:
            public container_const_reference<mapped_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               const_iterator, value_type> {
        public:
            typedef typename mapped_vector::value_type value_type;
            typedef typename mapped_vector::difference_type difference_type;
            typedef typename mapped_vector::const_reference reference;
            typedef const typename mapped_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            const_iterator ():
                container_const_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            const_iterator (const self_type &v, const const_subiterator_type &it):
                container_const_reference<self_type> (v), it_ (it) {}
            BOOST_UBLAS_INLINE
            const_iterator (const typename self_type::iterator &it):  // ISSUE self_type:: stops VC8 using std::iterator here
                container_const_reference<self_type> (it ()), it_ (it.it_) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            const_iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            const_reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*it_).second;
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ());
                return (*it_).first;
            }

            // Assignment
            BOOST_UBLAS_INLINE
            const_iterator &operator = (const const_iterator &it) {
                container_const_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const const_iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            const_subiterator_type it_;
        };

        BOOST_UBLAS_INLINE
        const_iterator begin () const {
            return const_iterator (*this, data ().begin ());
        }
        BOOST_UBLAS_INLINE
        const_iterator cbegin () const {
            return begin ();
        }
        BOOST_UBLAS_INLINE
        const_iterator end () const {
            return const_iterator (*this, data ().end ());
        }
        BOOST_UBLAS_INLINE
        const_iterator cend () const {
            return end ();
        }

        class iterator:
            public container_reference<mapped_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               iterator, value_type> {
        public:
            typedef typename mapped_vector::value_type value_type;
            typedef typename mapped_vector::difference_type difference_type;
            typedef typename mapped_vector::true_reference reference;
            typedef typename mapped_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            iterator ():
                container_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            iterator (self_type &v, const subiterator_type &it):
                container_reference<self_type> (v), it_ (it) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*it_).second;
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*it_).first < (*this) ().size (), bad_index ());
                return (*it_).first;
            }

            // Assignment
            BOOST_UBLAS_INLINE
            iterator &operator = (const iterator &it) {
                container_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            subiterator_type it_;

            friend class const_iterator;
        };

        BOOST_UBLAS_INLINE
        iterator begin () {
            return iterator (*this, data ().begin ());
        }
        BOOST_UBLAS_INLINE
        iterator end () {
            return iterator (*this, data ().end ());
        }

        // Reverse iterator
        typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
        typedef reverse_iterator_base<iterator> reverse_iterator;

        BOOST_UBLAS_INLINE
        const_reverse_iterator rbegin () const {
            return const_reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crbegin () const {
            return rbegin ();
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator rend () const {
            return const_reverse_iterator (begin ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crend () const {
            return rend ();
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rbegin () {
            return reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rend () {
            return reverse_iterator (begin ());
        }

         // Serialization
        template<class Archive>
        void serialize(Archive & ar, const unsigned int /* file_version */){
            serialization::collection_size_type s (size_);
            ar & serialization::make_nvp("size",s);
            if (Archive::is_loading::value) {
                size_ = s;
            }
            ar & serialization::make_nvp("data", data_);
        }

    private:
        size_type size_;
        array_type data_;
        static const value_type zero_;
    };

    template<class T, class A>
    const typename mapped_vector<T, A>::value_type mapped_vector<T, A>::zero_ = value_type/*zero*/();


    // Thanks to Kresimir Fresl for extending this to cover different index bases.
    
    /** \brief Compressed array based sparse vector
     *
     * a sparse vector of values of type T of variable size. The non zero values are stored as 
     * two seperate arrays: an index array and a value array. The index array is always sorted 
     * and there is at most one entry for each index. Inserting an element can be time consuming.
     * If the vector contains a few zero entries, then it is better to have a normal vector.
     * If the vector has a very high dimension with a few non-zero values, then this vector is
     * very memory efficient (at the cost of a few more computations).
     *
     * For a \f$n\f$-dimensional compressed vector and \f$0 \leq i < n\f$ the non-zero elements 
     * \f$v_i\f$ are mapped to consecutive elements of the index and value container, i.e. for 
     * elements \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of these containers holds \f$i_1 < i_2\f$.
     *
     * Supported parameters for the adapted array (indices and values) are \c unbounded_array<> ,
     * \c bounded_array<> and \c std::vector<>.
     *
     * \tparam T the type of object stored in the vector (like double, float, complex, etc...)
     * \tparam IB the index base of the compressed vector. Default is 0. Other supported value is 1
     * \tparam IA the type of adapted array for indices. Default is \c unbounded_array<std::size_t>
     * \tparam TA the type of adapted array for values. Default is unbounded_array<T>
     */
    template<class T, std::size_t IB, class IA, class TA>
    class compressed_vector:
        public vector_container<compressed_vector<T, IB, IA, TA> > {

        typedef T &true_reference;
        typedef T *pointer;
        typedef const T *const_pointer;
        typedef compressed_vector<T, IB, IA, TA> self_type;
    public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
        using vector_container<self_type>::operator ();
#endif
        // ISSUE require type consistency check
        // is_convertable (IA::size_type, TA::size_type)
        typedef typename IA::value_type size_type;
        typedef typename IA::difference_type difference_type;
        typedef T value_type;
        typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
        typedef T &reference;
#else
        typedef sparse_vector_element<self_type> reference;
#endif
        typedef IA index_array_type;
        typedef TA value_array_type;
        typedef const vector_reference<const self_type> const_closure_type;
        typedef vector_reference<self_type> closure_type;
        typedef self_type vector_temporary_type;
        typedef sparse_tag storage_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        compressed_vector ():
            vector_container<self_type> (),
            size_ (0), capacity_ (restrict_capacity (0)), filled_ (0),
            index_data_ (capacity_), value_data_ (capacity_) {
            storage_invariants ();
        }
        explicit BOOST_UBLAS_INLINE
        compressed_vector (size_type size, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (size), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
            index_data_ (capacity_), value_data_ (capacity_) {
        storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        compressed_vector (const compressed_vector &v):
            vector_container<self_type> (),
            size_ (v.size_), capacity_ (v.capacity_), filled_ (v.filled_),
            index_data_ (v.index_data_), value_data_ (v.value_data_) {
            storage_invariants ();
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)), filled_ (0),
            index_data_ (capacity_), value_data_ (capacity_) {
            storage_invariants ();
            vector_assign<scalar_assign> (*this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size () const {
            return size_;
        }
        BOOST_UBLAS_INLINE
        size_type nnz_capacity () const {
            return capacity_;
        }
        BOOST_UBLAS_INLINE
        size_type nnz () const {
            return filled_;
        }

        // Storage accessors
        BOOST_UBLAS_INLINE
        static size_type index_base () {
            return IB;
        }
        BOOST_UBLAS_INLINE
        typename index_array_type::size_type filled () const {
            return filled_;
        }
        BOOST_UBLAS_INLINE
        const index_array_type &index_data () const {
            return index_data_;
        }
        BOOST_UBLAS_INLINE
        const value_array_type &value_data () const {
            return value_data_;
        }
        BOOST_UBLAS_INLINE
        void set_filled (const typename index_array_type::size_type & filled) {
            filled_ = filled;
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        index_array_type &index_data () {
            return index_data_;
        }
        BOOST_UBLAS_INLINE
        value_array_type &value_data () {
            return value_data_;
        }

        // Resizing
    private:
        BOOST_UBLAS_INLINE
        size_type restrict_capacity (size_type non_zeros) const {
            non_zeros = (std::max) (non_zeros, size_type (1));
            non_zeros = (std::min) (non_zeros, size_);
            return non_zeros;
        }
    public:
        BOOST_UBLAS_INLINE
        void resize (size_type size, bool preserve = true) {
            size_ = size;
            capacity_ = restrict_capacity (capacity_);
            if (preserve) {
                index_data_. resize (capacity_, size_type ());
                value_data_. resize (capacity_, value_type ());
                filled_ = (std::min) (capacity_, filled_);
                while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) {
                    --filled_;
                }
            }
            else {
                index_data_. resize (capacity_);
                value_data_. resize (capacity_);
                filled_ = 0;
            }
            storage_invariants ();
        }

        // Reserving
        BOOST_UBLAS_INLINE
        void reserve (size_type non_zeros, bool preserve = true) {
            capacity_ = restrict_capacity (non_zeros);
            if (preserve) {
                index_data_. resize (capacity_, size_type ());
                value_data_. resize (capacity_, value_type ());
                filled_ = (std::min) (capacity_, filled_);
            }
            else {
                index_data_. resize (capacity_);
                value_data_. resize (capacity_);
                filled_ = 0;
            }
            storage_invariants ();
        }

        // Element support
        BOOST_UBLAS_INLINE
        pointer find_element (size_type i) {
            return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
        }
        BOOST_UBLAS_INLINE
        const_pointer find_element (size_type i) const {
            const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return 0;
            return &value_data_ [it - index_data_.begin ()];
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i) const {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return zero_;
            return value_data_ [it - index_data_.begin ()];
        }
        BOOST_UBLAS_INLINE
        true_reference ref (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return insert_element (i, value_type/*zero*/());
            else
                return value_data_ [it - index_data_.begin ()];
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
            return ref (i) ;
#else
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            return reference (*this, i);
#endif
        }

        BOOST_UBLAS_INLINE
        const_reference operator [] (size_type i) const {
            return (*this) (i);
        }
        BOOST_UBLAS_INLINE
        reference operator [] (size_type i) {
            return (*this) (i);
        }

        // Element assignment
        BOOST_UBLAS_INLINE
        true_reference insert_element (size_type i, const_reference t) {
            BOOST_UBLAS_CHECK (!find_element (i), bad_index ());        // duplicate element
            if (filled_ >= capacity_)
                reserve (2 * capacity_, true);
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            // ISSUE max_capacity limit due to difference_type
            typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
            BOOST_UBLAS_CHECK (filled_ == 0 || filled_ == typename index_array_type::size_type (n) || *it != k_based (i), internal_logic ());   // duplicate found by lower_bound
            ++ filled_;
            it = index_data_.begin () + n;
            std::copy_backward (it, index_data_.begin () + filled_ - 1, index_data_.begin () + filled_);
            *it = k_based (i);
            typename value_array_type::iterator itt (value_data_.begin () + n);
            std::copy_backward (itt, value_data_.begin () + filled_ - 1, value_data_.begin () + filled_);
            *itt = t;
            storage_invariants ();
            return *itt;
        }
        BOOST_UBLAS_INLINE
        void erase_element (size_type i) {
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            typename std::iterator_traits<subiterator_type>::difference_type  n = it - index_data_.begin ();
            if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) {
                std::copy (it + 1, index_data_.begin () + filled_, it);
                typename value_array_type::iterator itt (value_data_.begin () + n);
                std::copy (itt + 1, value_data_.begin () + filled_, itt);
                -- filled_;
            }
            storage_invariants ();
        }

        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            filled_ = 0;
            storage_invariants ();
        }

        // Assignment
        BOOST_UBLAS_INLINE
        compressed_vector &operator = (const compressed_vector &v) {
            if (this != &v) {
                size_ = v.size_;
                capacity_ = v.capacity_;
                filled_ = v.filled_;
                index_data_ = v.index_data_;
                value_data_ = v.value_data_;
            }
            storage_invariants ();
            return *this;
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        compressed_vector &operator = (const vector_container<C> &v) {
            resize (v ().size (), false);
            assign (v);
            return *this;
        }
        BOOST_UBLAS_INLINE
        compressed_vector &assign_temporary (compressed_vector &v) {
            swap (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &operator = (const vector_expression<AE> &ae) {
            self_type temporary (ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_assign> (*this, ae);
            return *this;
        }

        // Computed assignment
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &operator += (const vector_expression<AE> &ae) {
            self_type temporary (*this + ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        compressed_vector &operator += (const vector_container<C> &v) {
            plus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &plus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &operator -= (const vector_expression<AE> &ae) {
            self_type temporary (*this - ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        compressed_vector &operator -= (const vector_container<C> &v) {
            minus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        compressed_vector &minus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        compressed_vector &operator *= (const AT &at) {
            vector_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        compressed_vector &operator /= (const AT &at) {
            vector_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (compressed_vector &v) {
            if (this != &v) {
                std::swap (size_, v.size_);
                std::swap (capacity_, v.capacity_);
                std::swap (filled_, v.filled_);
                index_data_.swap (v.index_data_);
                value_data_.swap (v.value_data_);
            }
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        friend void swap (compressed_vector &v1, compressed_vector &v2) {
            v1.swap (v2);
        }

        // Back element insertion and erasure
        BOOST_UBLAS_INLINE
        void push_back (size_type i, const_reference t) {
            BOOST_UBLAS_CHECK (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i), external_logic ());
            if (filled_ >= capacity_)
                reserve (2 * capacity_, true);
            BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
            index_data_ [filled_] = k_based (i);
            value_data_ [filled_] = t;
            ++ filled_;
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        void pop_back () {
            BOOST_UBLAS_CHECK (filled_ > 0, external_logic ());
            -- filled_;
            storage_invariants ();
        }

        // Iterator types
    private:
        // Use index array iterator
        typedef typename IA::const_iterator const_subiterator_type;
        typedef typename IA::iterator subiterator_type;

        BOOST_UBLAS_INLINE
        true_reference at_element (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ());
            return value_data_ [it - index_data_.begin ()];
        }

    public:
        class const_iterator;
        class iterator;

        // Element lookup
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        const_iterator find (size_type i) const {
            return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        iterator find (size_type i) {
            return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
        }


        class const_iterator:
            public container_const_reference<compressed_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               const_iterator, value_type> {
        public:
            typedef typename compressed_vector::value_type value_type;
            typedef typename compressed_vector::difference_type difference_type;
            typedef typename compressed_vector::const_reference reference;
            typedef const typename compressed_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            const_iterator ():
                container_const_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            const_iterator (const self_type &v, const const_subiterator_type &it):
                container_const_reference<self_type> (v), it_ (it) {}
            BOOST_UBLAS_INLINE
            const_iterator (const typename self_type::iterator &it):  // ISSUE self_type:: stops VC8 using std::iterator here
                container_const_reference<self_type> (it ()), it_ (it.it_) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            const_iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            const_reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
                return (*this) ().zero_based (*it_);
            }

            // Assignment
            BOOST_UBLAS_INLINE
            const_iterator &operator = (const const_iterator &it) {
                container_const_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const const_iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            const_subiterator_type it_;
        };

        BOOST_UBLAS_INLINE
        const_iterator begin () const {
            return find (0);
        }
        BOOST_UBLAS_INLINE
        const_iterator cbegin () const {
            return begin ();
        }
        BOOST_UBLAS_INLINE
        const_iterator end () const {
            return find (size_);
        }
        BOOST_UBLAS_INLINE
        const_iterator cend () const {
            return end ();
        }

        class iterator:
            public container_reference<compressed_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               iterator, value_type> {
        public:
            typedef typename compressed_vector::value_type value_type;
            typedef typename compressed_vector::difference_type difference_type;
            typedef typename compressed_vector::true_reference reference;
            typedef typename compressed_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            iterator ():
                container_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            iterator (self_type &v, const subiterator_type &it):
                container_reference<self_type> (v), it_ (it) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
                return (*this) ().zero_based (*it_);
            }

            // Assignment
            BOOST_UBLAS_INLINE
            iterator &operator = (const iterator &it) {
                container_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            subiterator_type it_;

            friend class const_iterator;
        };

        BOOST_UBLAS_INLINE
        iterator begin () {
            return find (0);
        }
        BOOST_UBLAS_INLINE
        iterator end () {
            return find (size_);
        }

        // Reverse iterator
        typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
        typedef reverse_iterator_base<iterator> reverse_iterator;

        BOOST_UBLAS_INLINE
        const_reverse_iterator rbegin () const {
            return const_reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crbegin () const {
            return rbegin ();
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator rend () const {
            return const_reverse_iterator (begin ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crend () const {
            return rend ();
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rbegin () {
            return reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rend () {
            return reverse_iterator (begin ());
        }

         // Serialization
        template<class Archive>
        void serialize(Archive & ar, const unsigned int /* file_version */){
            serialization::collection_size_type s (size_);
            ar & serialization::make_nvp("size",s);
            if (Archive::is_loading::value) {
                size_ = s;
            }
            // ISSUE: filled may be much less than capacity
            // ISSUE: index_data_ and value_data_ are undefined between filled and capacity (trouble with 'nan'-values)
            ar & serialization::make_nvp("capacity", capacity_);
            ar & serialization::make_nvp("filled", filled_);
            ar & serialization::make_nvp("index_data", index_data_);
            ar & serialization::make_nvp("value_data", value_data_);
            storage_invariants();
        }

    private:
        void storage_invariants () const
        {
            BOOST_UBLAS_CHECK (capacity_ == index_data_.size (), internal_logic ());
            BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
            BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ());
            BOOST_UBLAS_CHECK ((0 == filled_) || (zero_based(index_data_[filled_ - 1]) < size_), internal_logic ());
        }

        size_type size_;
        typename index_array_type::size_type capacity_;
        typename index_array_type::size_type filled_;
        index_array_type index_data_;
        value_array_type value_data_;
        static const value_type zero_;

        BOOST_UBLAS_INLINE
        static size_type zero_based (size_type k_based_index) {
            return k_based_index - IB;
        }
        BOOST_UBLAS_INLINE
        static size_type k_based (size_type zero_based_index) {
            return zero_based_index + IB;
        }

        friend class iterator;
        friend class const_iterator;
    };

    template<class T, std::size_t IB, class IA, class TA>
    const typename compressed_vector<T, IB, IA, TA>::value_type compressed_vector<T, IB, IA, TA>::zero_ = value_type/*zero*/();

    // Thanks to Kresimir Fresl for extending this to cover different index bases.

    /** \brief Coordimate array based sparse vector
     *
     * a sparse vector of values of type \c T of variable size. The non zero values are stored 
     * as two seperate arrays: an index array and a value array. The arrays may be out of order 
     * with multiple entries for each vector element. If there are multiple values for the same 
     * index the sum of these values is the real value. It is way more efficient for inserting values
     * than a \c compressed_vector but less memory efficient. Also linearly parsing a vector can 
     * be longer in specific cases than a \c compressed_vector.
     *
     * For a n-dimensional sorted coordinate vector and \f$ 0 \leq i < n\f$ the non-zero elements 
     * \f$v_i\f$ are mapped to consecutive elements of the index and value container, i.e. for 
     * elements \f$k = v_{i_1}\f$ and \f$k + 1 = v_{i_2}\f$ of these containers holds \f$i_1 < i_2\f$.
     *
     * Supported parameters for the adapted array (indices and values) are \c unbounded_array<> ,
     * \c bounded_array<> and \c std::vector<>.
     *
     * \tparam T the type of object stored in the vector (like double, float, complex, etc...)
     * \tparam IB the index base of the compressed vector. Default is 0. Other supported value is 1
     * \tparam IA the type of adapted array for indices. Default is \c unbounded_array<std::size_t>
     * \tparam TA the type of adapted array for values. Default is unbounded_array<T>
     */
    template<class T, std::size_t IB, class IA, class TA>
    class coordinate_vector:
        public vector_container<coordinate_vector<T, IB, IA, TA> > {

        typedef T &true_reference;
        typedef T *pointer;
        typedef const T *const_pointer;
        typedef coordinate_vector<T, IB, IA, TA> self_type;
    public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
        using vector_container<self_type>::operator ();
#endif
        // ISSUE require type consistency check
        // is_convertable (IA::size_type, TA::size_type)
        typedef typename IA::value_type size_type;
        typedef typename IA::difference_type difference_type;
        typedef T value_type;
        typedef const T &const_reference;
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
        typedef T &reference;
#else
        typedef sparse_vector_element<self_type> reference;
#endif
        typedef IA index_array_type;
        typedef TA value_array_type;
        typedef const vector_reference<const self_type> const_closure_type;
        typedef vector_reference<self_type> closure_type;
        typedef self_type vector_temporary_type;
        typedef sparse_tag storage_category;

        // Construction and destruction
        BOOST_UBLAS_INLINE
        coordinate_vector ():
            vector_container<self_type> (),
            size_ (0), capacity_ (restrict_capacity (0)),
            filled_ (0), sorted_filled_ (filled_), sorted_ (true),
            index_data_ (capacity_), value_data_ (capacity_) {
            storage_invariants ();
        }
        explicit BOOST_UBLAS_INLINE
        coordinate_vector (size_type size, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (size), capacity_ (restrict_capacity (non_zeros)),
            filled_ (0), sorted_filled_ (filled_), sorted_ (true),
            index_data_ (capacity_), value_data_ (capacity_) {
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        coordinate_vector (const coordinate_vector &v):
            vector_container<self_type> (),
            size_ (v.size_), capacity_ (v.capacity_),
            filled_ (v.filled_), sorted_filled_ (v.sorted_filled_), sorted_ (v.sorted_),
            index_data_ (v.index_data_), value_data_ (v.value_data_) {
            storage_invariants ();
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector (const vector_expression<AE> &ae, size_type non_zeros = 0):
            vector_container<self_type> (),
            size_ (ae ().size ()), capacity_ (restrict_capacity (non_zeros)),
            filled_ (0), sorted_filled_ (filled_), sorted_ (true),
            index_data_ (capacity_), value_data_ (capacity_) {
            storage_invariants ();
            vector_assign<scalar_assign> (*this, ae);
        }

        // Accessors
        BOOST_UBLAS_INLINE
        size_type size () const {
            return size_;
        }
        BOOST_UBLAS_INLINE
        size_type nnz_capacity () const {
            return capacity_;
        }
        BOOST_UBLAS_INLINE
        size_type nnz () const {
            return filled_;
        }

        // Storage accessors
        BOOST_UBLAS_INLINE
        static size_type index_base () {
            return IB;
        }
        BOOST_UBLAS_INLINE
        typename index_array_type::size_type filled () const {
            return filled_;
        }
        BOOST_UBLAS_INLINE
        const index_array_type &index_data () const {
            return index_data_;
        }
        BOOST_UBLAS_INLINE
        const value_array_type &value_data () const {
            return value_data_;
        }
        BOOST_UBLAS_INLINE
        void set_filled (const typename index_array_type::size_type &sorted, const typename index_array_type::size_type &filled) {
            sorted_filled_ = sorted;
            filled_ = filled;
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        index_array_type &index_data () {
            return index_data_;
        }
        BOOST_UBLAS_INLINE
        value_array_type &value_data () {
            return value_data_;
        }

        // Resizing
    private:
        BOOST_UBLAS_INLINE
        size_type restrict_capacity (size_type non_zeros) const {
             // minimum non_zeros
             non_zeros = (std::max) (non_zeros, size_type (1));
             // ISSUE no maximum as coordinate may contain inserted duplicates
             return non_zeros;
        }
    public:
        BOOST_UBLAS_INLINE
        void resize (size_type size, bool preserve = true) {
            if (preserve)
                sort ();    // remove duplicate elements.
            size_ = size;
            capacity_ = restrict_capacity (capacity_);
            if (preserve) {
                index_data_. resize (capacity_, size_type ());
                value_data_. resize (capacity_, value_type ());
                filled_ = (std::min) (capacity_, filled_);
                while ((filled_ > 0) && (zero_based(index_data_[filled_ - 1]) >= size)) {
                    --filled_;
                }
            }
            else {
                index_data_. resize (capacity_);
                value_data_. resize (capacity_);
                filled_ = 0;
            }
            sorted_filled_ = filled_;
            storage_invariants ();
        }
        // Reserving
        BOOST_UBLAS_INLINE
        void reserve (size_type non_zeros, bool preserve = true) {
            if (preserve)
                sort ();    // remove duplicate elements.
            capacity_ = restrict_capacity (non_zeros);
            if (preserve) {
                index_data_. resize (capacity_, size_type ());
                value_data_. resize (capacity_, value_type ());
                filled_ = (std::min) (capacity_, filled_);
                }
            else {
                index_data_. resize (capacity_);
                value_data_. resize (capacity_);
                filled_ = 0;
            }
            sorted_filled_ = filled_;
            storage_invariants ();
        }

        // Element support
        BOOST_UBLAS_INLINE
        pointer find_element (size_type i) {
            return const_cast<pointer> (const_cast<const self_type&>(*this).find_element (i));
        }
        BOOST_UBLAS_INLINE
        const_pointer find_element (size_type i) const {
            sort ();
            const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return 0;
            return &value_data_ [it - index_data_.begin ()];
        }

        // Element access
        BOOST_UBLAS_INLINE
        const_reference operator () (size_type i) const {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            sort ();
            const_subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return zero_;
            return value_data_ [it - index_data_.begin ()];
        }
        BOOST_UBLAS_INLINE
        true_reference ref (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            sort ();
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            if (it == index_data_.begin () + filled_ || *it != k_based (i))
                return insert_element (i, value_type/*zero*/());
            else
                return value_data_ [it - index_data_.begin ()];
        }
        BOOST_UBLAS_INLINE
        reference operator () (size_type i) {
#ifndef BOOST_UBLAS_STRICT_VECTOR_SPARSE
            return ref (i);
#else
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            return reference (*this, i);
#endif
        }

        BOOST_UBLAS_INLINE
        const_reference operator [] (size_type i) const {
            return (*this) (i);
        }
        BOOST_UBLAS_INLINE
        reference operator [] (size_type i) {
            return (*this) (i);
        }

        // Element assignment
        BOOST_UBLAS_INLINE
        void append_element (size_type i, const_reference t) {
            if (filled_ >= capacity_)
                reserve (2 * filled_, true);
            BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
            index_data_ [filled_] = k_based (i);
            value_data_ [filled_] = t;
            ++ filled_;
            sorted_ = false;
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        true_reference insert_element (size_type i, const_reference t) {
            BOOST_UBLAS_CHECK (!find_element (i), bad_index ());        // duplicate element
            append_element (i, t);
            return value_data_ [filled_ - 1];
        }
        BOOST_UBLAS_INLINE
        void erase_element (size_type i) {
            sort ();
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            typename std::iterator_traits<subiterator_type>::difference_type n = it - index_data_.begin ();
            if (filled_ > typename index_array_type::size_type (n) && *it == k_based (i)) {
                std::copy (it + 1, index_data_.begin () + filled_, it);
                typename value_array_type::iterator itt (value_data_.begin () + n);
                std::copy (itt + 1, value_data_.begin () + filled_, itt);
                -- filled_;
                sorted_filled_ = filled_;
            }
            storage_invariants ();
        }

        // Zeroing
        BOOST_UBLAS_INLINE
        void clear () {
            filled_ = 0;
            sorted_filled_ = filled_;
            sorted_ = true;
            storage_invariants ();
        }

        // Assignment
        BOOST_UBLAS_INLINE
        coordinate_vector &operator = (const coordinate_vector &v) {
            if (this != &v) {
                size_ = v.size_;
                capacity_ = v.capacity_;
                filled_ = v.filled_;
                sorted_filled_ = v.sorted_filled_;
                sorted_ = v.sorted_;
                index_data_ = v.index_data_;
                value_data_ = v.value_data_;
            }
            storage_invariants ();
            return *this;
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        coordinate_vector &operator = (const vector_container<C> &v) {
            resize (v ().size (), false);
            assign (v);
            return *this;
        }
        BOOST_UBLAS_INLINE
        coordinate_vector &assign_temporary (coordinate_vector &v) {
            swap (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &operator = (const vector_expression<AE> &ae) {
            self_type temporary (ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_assign> (*this, ae);
            return *this;
        }

        // Computed assignment
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &operator += (const vector_expression<AE> &ae) {
            self_type temporary (*this + ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        coordinate_vector &operator += (const vector_container<C> &v) {
            plus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &plus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_plus_assign> (*this, ae);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &operator -= (const vector_expression<AE> &ae) {
            self_type temporary (*this - ae, capacity_);
            return assign_temporary (temporary);
        }
        template<class C>          // Container assignment without temporary
        BOOST_UBLAS_INLINE
        coordinate_vector &operator -= (const vector_container<C> &v) {
            minus_assign (v);
            return *this;
        }
        template<class AE>
        BOOST_UBLAS_INLINE
        coordinate_vector &minus_assign (const vector_expression<AE> &ae) {
            vector_assign<scalar_minus_assign> (*this, ae);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        coordinate_vector &operator *= (const AT &at) {
            vector_assign_scalar<scalar_multiplies_assign> (*this, at);
            return *this;
        }
        template<class AT>
        BOOST_UBLAS_INLINE
        coordinate_vector &operator /= (const AT &at) {
            vector_assign_scalar<scalar_divides_assign> (*this, at);
            return *this;
        }

        // Swapping
        BOOST_UBLAS_INLINE
        void swap (coordinate_vector &v) {
            if (this != &v) {
                std::swap (size_, v.size_);
                std::swap (capacity_, v.capacity_);
                std::swap (filled_, v.filled_);
                std::swap (sorted_filled_, v.sorted_filled_);
                std::swap (sorted_, v.sorted_);
                index_data_.swap (v.index_data_);
                value_data_.swap (v.value_data_);
            }
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        friend void swap (coordinate_vector &v1, coordinate_vector &v2) {
            v1.swap (v2);
        }

        // replacement if STL lower bound algorithm for use of inplace_merge
        size_type lower_bound (size_type beg, size_type end, size_type target) const {
            while (end > beg) {
                size_type mid = (beg + end) / 2;
                if (index_data_[mid] < index_data_[target]) {
                    beg = mid + 1;
                } else {
                    end = mid;
                }
            }
            return beg;
        }

        // specialized replacement of STL inplace_merge to avoid compilation
        // problems with respect to the array_triple iterator
        void inplace_merge (size_type beg, size_type mid, size_type end) const {
            size_type len_lef = mid - beg;
            size_type len_rig = end - mid;

            if (len_lef == 1 && len_rig == 1) {
                if (index_data_[mid] < index_data_[beg]) {
                    std::swap(index_data_[beg], index_data_[mid]);
                    std::swap(value_data_[beg], value_data_[mid]);
                }
            } else if (len_lef > 0 && len_rig > 0) {
                size_type lef_mid, rig_mid;
                if (len_lef >= len_rig) {
                    lef_mid = (beg + mid) / 2;
                    rig_mid = lower_bound(mid, end, lef_mid);
                } else {
                    rig_mid = (mid + end) / 2;
                    lef_mid = lower_bound(beg, mid, rig_mid);
                }
                std::rotate(&index_data_[0] + lef_mid, &index_data_[0] + mid, &index_data_[0] + rig_mid);
                std::rotate(&value_data_[0] + lef_mid, &value_data_[0] + mid, &value_data_[0] + rig_mid);

                size_type new_mid = lef_mid + rig_mid - mid;
                inplace_merge(beg, lef_mid, new_mid);
                inplace_merge(new_mid, rig_mid, end);
            }
        }

        // Sorting and summation of duplicates
        BOOST_UBLAS_INLINE
        void sort () const {
            if (! sorted_ && filled_ > 0) {
                typedef index_pair_array<index_array_type, value_array_type> array_pair;
                array_pair ipa (filled_, index_data_, value_data_);
#ifndef BOOST_UBLAS_COO_ALWAYS_DO_FULL_SORT
                const typename array_pair::iterator iunsorted = ipa.begin () + sorted_filled_;
                // sort new elements and merge
                std::sort (iunsorted, ipa.end ());
                inplace_merge(0, sorted_filled_, filled_);
#else
                const typename array_pair::iterator iunsorted = ipa.begin ();
                std::sort (iunsorted, ipa.end ());
#endif

                // sum duplicates with += and remove
                size_type filled = 0;
                for (size_type i = 1; i < filled_; ++ i) {
                    if (index_data_ [filled] != index_data_ [i]) {
                        ++ filled;
                        if (filled != i) {
                            index_data_ [filled] = index_data_ [i];
                            value_data_ [filled] = value_data_ [i];
                        }
                    } else {
                        value_data_ [filled] += value_data_ [i];
                    }
                }
                filled_ = filled + 1;
                sorted_filled_ = filled_;
                sorted_ = true;
                storage_invariants ();
            }
        }

        // Back element insertion and erasure
        BOOST_UBLAS_INLINE
        void push_back (size_type i, const_reference t) {
            // must maintain sort order
            BOOST_UBLAS_CHECK (sorted_ && (filled_ == 0 || index_data_ [filled_ - 1] < k_based (i)), external_logic ());
            if (filled_ >= capacity_)
                reserve (2 * filled_, true);
            BOOST_UBLAS_CHECK (filled_ < capacity_, internal_logic ());
            index_data_ [filled_] = k_based (i);
            value_data_ [filled_] = t;
            ++ filled_;
            sorted_filled_ = filled_;
            storage_invariants ();
        }
        BOOST_UBLAS_INLINE
        void pop_back () {
            // ISSUE invariants could be simpilfied if sorted required as precondition
            BOOST_UBLAS_CHECK (filled_ > 0, external_logic ());
            -- filled_;
            sorted_filled_ = (std::min) (sorted_filled_, filled_);
            sorted_ = sorted_filled_ = filled_;
            storage_invariants ();
        }

        // Iterator types
    private:
        // Use index array iterator
        typedef typename IA::const_iterator const_subiterator_type;
        typedef typename IA::iterator subiterator_type;

        BOOST_UBLAS_INLINE
        true_reference at_element (size_type i) {
            BOOST_UBLAS_CHECK (i < size_, bad_index ());
            sort ();
            subiterator_type it (detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
            BOOST_UBLAS_CHECK (it != index_data_.begin () + filled_ && *it == k_based (i), bad_index ());
            return value_data_ [it - index_data_.begin ()];
        }

    public:
        class const_iterator;
        class iterator;

        // Element lookup
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        const_iterator find (size_type i) const {
            sort ();
            return const_iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
        }
        // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it.
        iterator find (size_type i) {
            sort ();
            return iterator (*this, detail::lower_bound (index_data_.begin (), index_data_.begin () + filled_, k_based (i), std::less<size_type> ()));
        }


        class const_iterator:
            public container_const_reference<coordinate_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               const_iterator, value_type> {
        public:
            typedef typename coordinate_vector::value_type value_type;
            typedef typename coordinate_vector::difference_type difference_type;
            typedef typename coordinate_vector::const_reference reference;
            typedef const typename coordinate_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            const_iterator ():
                container_const_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            const_iterator (const self_type &v, const const_subiterator_type &it):
                container_const_reference<self_type> (v), it_ (it) {}
            BOOST_UBLAS_INLINE
            const_iterator (const typename self_type::iterator &it):  // ISSUE self_type:: stops VC8 using std::iterator here
                container_const_reference<self_type> (it ()), it_ (it.it_) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            const_iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            const_iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            const_reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
                return (*this) ().zero_based (*it_);
            }

            // Assignment
            BOOST_UBLAS_INLINE
            const_iterator &operator = (const const_iterator &it) {
                container_const_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const const_iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            const_subiterator_type it_;
        };

        BOOST_UBLAS_INLINE
        const_iterator begin () const {
            return find (0);
        }
        BOOST_UBLAS_INLINE
        const_iterator cbegin () const {
            return begin();
        }
        BOOST_UBLAS_INLINE
        const_iterator end () const {
            return find (size_);
        }
        BOOST_UBLAS_INLINE
        const_iterator cend () const {
            return end();
        }

        class iterator:
            public container_reference<coordinate_vector>,
            public bidirectional_iterator_base<sparse_bidirectional_iterator_tag,
                                               iterator, value_type> {
        public:
            typedef typename coordinate_vector::value_type value_type;
            typedef typename coordinate_vector::difference_type difference_type;
            typedef typename coordinate_vector::true_reference reference;
            typedef typename coordinate_vector::pointer pointer;

            // Construction and destruction
            BOOST_UBLAS_INLINE
            iterator ():
                container_reference<self_type> (), it_ () {}
            BOOST_UBLAS_INLINE
            iterator (self_type &v, const subiterator_type &it):
                container_reference<self_type> (v), it_ (it) {}

            // Arithmetic
            BOOST_UBLAS_INLINE
            iterator &operator ++ () {
                ++ it_;
                return *this;
            }
            BOOST_UBLAS_INLINE
            iterator &operator -- () {
                -- it_;
                return *this;
            }

            // Dereference
            BOOST_UBLAS_INLINE
            reference operator * () const {
                BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ());
                return (*this) ().value_data_ [it_ - (*this) ().index_data_.begin ()];
            }

            // Index
            BOOST_UBLAS_INLINE
            size_type index () const {
                BOOST_UBLAS_CHECK (*this != (*this) ().end (), bad_index ());
                BOOST_UBLAS_CHECK ((*this) ().zero_based (*it_) < (*this) ().size (), bad_index ());
                return (*this) ().zero_based (*it_);
            }

            // Assignment
            BOOST_UBLAS_INLINE
            iterator &operator = (const iterator &it) {
                container_reference<self_type>::assign (&it ());
                it_ = it.it_;
                return *this;
            }

            // Comparison
            BOOST_UBLAS_INLINE
            bool operator == (const iterator &it) const {
                BOOST_UBLAS_CHECK (&(*this) () == &it (), external_logic ());
                return it_ == it.it_;
            }

        private:
            subiterator_type it_;

            friend class const_iterator;
        };

        BOOST_UBLAS_INLINE
        iterator begin () {
            return find (0);
        }
        BOOST_UBLAS_INLINE
        iterator end () {
            return find (size_);
        }

        // Reverse iterator
        typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
        typedef reverse_iterator_base<iterator> reverse_iterator;

        BOOST_UBLAS_INLINE
        const_reverse_iterator rbegin () const {
            return const_reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crbegin () const {
            return rbegin ();
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator rend () const {
            return const_reverse_iterator (begin ());
        }
        BOOST_UBLAS_INLINE
        const_reverse_iterator crend () const {
            return rend ();
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rbegin () {
            return reverse_iterator (end ());
        }
        BOOST_UBLAS_INLINE
        reverse_iterator rend () {
            return reverse_iterator (begin ());
        }

         // Serialization
        template<class Archive>
        void serialize(Archive & ar, const unsigned int /* file_version */){
            serialization::collection_size_type s (size_);
            ar & serialization::make_nvp("size",s);
            if (Archive::is_loading::value) {
                size_ = s;
            }
            // ISSUE: filled may be much less than capacity
            // ISSUE: index_data_ and value_data_ are undefined between filled and capacity (trouble with 'nan'-values)
            ar & serialization::make_nvp("capacity", capacity_);
            ar & serialization::make_nvp("filled", filled_);
            ar & serialization::make_nvp("sorted_filled", sorted_filled_);
            ar & serialization::make_nvp("sorted", sorted_);
            ar & serialization::make_nvp("index_data", index_data_);
            ar & serialization::make_nvp("value_data", value_data_);
            storage_invariants();
        }

    private:
        void storage_invariants () const
        {
            BOOST_UBLAS_CHECK (capacity_ == index_data_.size (), internal_logic ());
            BOOST_UBLAS_CHECK (capacity_ == value_data_.size (), internal_logic ());
            BOOST_UBLAS_CHECK (filled_ <= capacity_, internal_logic ());
            BOOST_UBLAS_CHECK (sorted_filled_ <= filled_, internal_logic ());
            BOOST_UBLAS_CHECK (sorted_ == (sorted_filled_ == filled_), internal_logic ());
            BOOST_UBLAS_CHECK ((0 == filled_) || (zero_based(index_data_[filled_ - 1]) < size_), internal_logic ());
        }

        size_type size_;
        size_type capacity_;
        mutable typename index_array_type::size_type filled_;
        mutable typename index_array_type::size_type sorted_filled_;
        mutable bool sorted_;
        mutable index_array_type index_data_;
        mutable value_array_type value_data_;
        static const value_type zero_;

        BOOST_UBLAS_INLINE
        static size_type zero_based (size_type k_based_index) {
            return k_based_index - IB;
        }
        BOOST_UBLAS_INLINE
        static size_type k_based (size_type zero_based_index) {
            return zero_based_index + IB;
        }

        friend class iterator;
        friend class const_iterator;
    };

    template<class T, std::size_t IB, class IA, class TA>
    const typename coordinate_vector<T, IB, IA, TA>::value_type coordinate_vector<T, IB, IA, TA>::zero_ = value_type/*zero*/();

}}}

#endif