1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
(**************************************************************************)
(* Lablgtk - Examples *)
(* *)
(* This code is in the public domain. *)
(* You may freely copy parts of it in your application. *)
(* *)
(**************************************************************************)
(* $Id$ *)
open StdLabels
(*-
* morph3d.c - Shows 3D morphing objects (TK Version)
*
* This program was inspired on a WindowsNT(R)'s screen saver. It was written
* from scratch and it was not based on any other source code.
*
* Porting it to xlock (the final objective of this code since the moment I
* decided to create it) was possible by comparing the original Mesa's gear
* demo with it's ported version, so thanks for Danny Sung for his indirect
* help (look at gear.c in xlock source tree). NOTE: At the moment this code
* was sent to Brian Paul for package inclusion, the XLock Version was not
* available. In fact, I'll wait it to appear on the next Mesa release (If you
* are reading this, it means THIS release) to send it for xlock package
* inclusion). It will probably there be a GLUT version too.
*
* Thanks goes also to Brian Paul for making it possible and inexpensive
* to use OpenGL at home.
*
* Since I'm not a native english speaker, my apologies for any gramatical
* mistake.
*
* My e-mail addresses are
*
* vianna@cat.cbpf.br
* and
* marcelo@venus.rdc.puc-rio.br
*
* Marcelo F. Vianna (Feb-13-1997)
*)
(*
This document is VERY incomplete, but tries to describe the mathematics used
in the program. At this moment it just describes how the polyhedra are
generated. On futhurer versions, this document will be probabbly improved.
Since I'm not a native english speaker, my apologies for any gramatical
mistake.
Marcelo Fernandes Vianna
- Undergraduate in Computer Engeneering at Catholic Pontifical University
- of Rio de Janeiro (PUC-Rio) Brasil.
- e-mail: vianna@cat.cbpf.br or marcelo@venus.rdc.puc-rio.br
- Feb-13-1997
POLYHEDRA GENERATION
For the purpose of this program it's not sufficient to know the polyhedra
vertexes coordinates. Since the morphing algorithm applies a nonlinear
transformation over the surfaces (faces) of the polyhedron, each face has
to be divided into smaller ones. The morphing algorithm needs to transform
each vertex of these smaller faces individually. It's a very time consoming
task.
In order to reduce calculation overload, and since all the macro faces of
the polyhedron are transformed by the same way, the generation is made by
creating only one face of the polyhedron, morphing it and then rotating it
around the polyhedron center.
What we need to know is the face radius of the polyhedron (the radius of
the inscribed sphere) and the angle between the center of two adjacent
faces using the center of the sphere as the angle's vertex.
The face radius of the regular polyhedra are known values which I decided
to not waste my time calculating. Following is a table of face radius for
the regular polyhedra with edge length = 1:
TETRAHEDRON : 1/(2*sqrt(2))/sqrt(3)
CUBE : 1/2
OCTAHEDRON : 1/sqrt(6)
DODECAHEDRON : T^2 * sqrt((T+2)/5) / 2 -> where T=(sqrt(5)+1)/2
ICOSAHEDRON : (3*sqrt(3)+sqrt(15))/12
I've not found any reference about the mentioned angles, so I needed to
calculate them, not a trivial task until I figured out how :)
Curiously these angles are the same for the tetrahedron and octahedron.
A way to obtain this value is inscribing the tetrahedron inside the cube
by matching their vertexes. So you'll notice that the remaining unmatched
vertexes are in the same straight line starting in the cube/tetrahedron
center and crossing the center of each tetrahedron's face. At this point
it's easy to obtain the bigger angle of the isosceles triangle formed by
the center of the cube and two opposite vertexes on the same cube face.
The edges of this triangle have the following lenghts: sqrt(2) for the base
and sqrt(3)/2 for the other two other edges. So the angle we want is:
+-----------------------------------------------------------+
| 2*ARCSIN(sqrt(2)/sqrt(3)) = 109.47122063449069174 degrees |
+-----------------------------------------------------------+
For the cube this angle is obvious, but just for formality it can be
easily obtained because we also know it's isosceles edge lenghts:
sqrt(2)/2 for the base and 1/2 for the other two edges. So the angle we
want is:
+-----------------------------------------------------------+
| 2*ARCSIN((sqrt(2)/2)/1) = 90.000000000000000000 degrees |
+-----------------------------------------------------------+
For the octahedron we use the same idea used for the tetrahedron, but now
we inscribe the cube inside the octahedron so that all cubes's vertexes
matches excatly the center of each octahedron's face. It's now clear that
this angle is the same of the thetrahedron one:
+-----------------------------------------------------------+
| 2*ARCSIN(sqrt(2)/sqrt(3)) = 109.47122063449069174 degrees |
+-----------------------------------------------------------+
For the dodecahedron it's a little bit harder because it's only relationship
with the cube is useless to us. So we need to solve the problem by another
way. The concept of Face radius also exists on 2D polygons with the name
Edge radius:
Edge Radius For Pentagon (ERp)
ERp = (1/2)/TAN(36 degrees) * VRp = 0.6881909602355867905
(VRp is the pentagon's vertex radio).
Face Radius For Dodecahedron
FRd = T^2 * sqrt((T+2)/5) / 2 = 1.1135163644116068404
Why we need ERp? Well, ERp and FRd segments forms a 90 degrees angle,
completing this triangle, the lesser angle is a half of the angle we are
looking for, so this angle is:
+-----------------------------------------------------------+
| 2*ARCTAN(ERp/FRd) = 63.434948822922009981 degrees |
+-----------------------------------------------------------+
For the icosahedron we can use the same method used for dodecahedron (well
the method used for dodecahedron may be used for all regular polyhedra)
Edge Radius For Triangle (this one is well known: 1/3 of the triangle height)
ERt = sin(60)/3 = sqrt(3)/6 = 0.2886751345948128655
Face Radius For Icosahedron
FRi= (3*sqrt(3)+sqrt(15))/12 = 0.7557613140761707538
So the angle is:
+-----------------------------------------------------------+
| 2*ARCTAN(ERt/FRi) = 41.810314895778596167 degrees |
+-----------------------------------------------------------+
*)
let scale = 0.3
let vect_mul (x1,y1,z1) (x2,y2,z2) =
(y1 *. z2 -. z1 *. y2, z1 *. x2 -. x1 *. z2, x1 *. y2 -. y1 *. x2)
let sqr a = a *. a
(* Increasing this values produces better image quality, the price is speed. *)
(* Very low values produces erroneous/incorrect plotting *)
let tetradivisions = 23
let cubedivisions = 20
let octadivisions = 21
let dodecadivisions = 10
let icodivisions = 15
let tetraangle = 109.47122063449069174
let cubeangle = 90.000000000000000000
let octaangle = 109.47122063449069174
let dodecaangle = 63.434948822922009981
let icoangle = 41.810314895778596167
let pi = acos (-1.)
let sqrt2 = sqrt 2.
let sqrt3 = sqrt 3.
let sqrt5 = sqrt 5.
let sqrt6 = sqrt 6.
let sqrt15 = sqrt 15.
let cossec36_2 = 0.8506508083520399322
let cosd x = cos (float x /. 180. *. pi)
let sind x = sin (float x /. 180. *. pi)
let cos72 = cosd 72
let sin72 = sind 72
let cos36 = cosd 36
let sin36 = sind 36
(*************************************************************************)
let front_shininess = 60.0
let front_specular = 0.7, 0.7, 0.7, 1.0
let ambient = 0.0, 0.0, 0.0, 1.0
let diffuse = 1.0, 1.0, 1.0, 1.0
let position0 = 1.0, 1.0, 1.0, 0.0
let position1 = -1.0,-1.0, 1.0, 0.0
let lmodel_ambient = 0.5, 0.5, 0.5, 1.0
let lmodel_twoside = true
let materialRed = 0.7, 0.0, 0.0, 1.0
let materialGreen = 0.1, 0.5, 0.2, 1.0
let materialBlue = 0.0, 0.0, 0.7, 1.0
let materialCyan = 0.2, 0.5, 0.7, 1.0
let materialYellow = 0.7, 0.7, 0.0, 1.0
let materialMagenta = 0.6, 0.2, 0.5, 1.0
let materialWhite = 0.7, 0.7, 0.7, 1.0
let materialGray = 0.2, 0.2, 0.2, 1.0
let all_gray = Array.create 20 materialGray
let vertex ~xf ~yf ~zf ~ampvr2 =
let xa = xf +. 0.01 and yb = yf +. 0.01 in
let xf2 = sqr xf and yf2 = sqr yf in
let factor = 1. -. (xf2 +. yf2) *. ampvr2
and factor1 = 1. -. (sqr xa +. yf2) *. ampvr2
and factor2 = 1. -. (xf2 +. sqr yb) *. ampvr2 in
let vertx = factor *. xf and verty = factor *. yf
and vertz = factor *. zf in
let neiax = factor1 *. xa -. vertx and neiay = factor1 *. yf -. verty
and neiaz = factor1 *. zf -. vertz and neibx = factor2 *. xf -. vertx
and neiby = factor2 *. yb -. verty and neibz = factor2 *. zf -. vertz in
GlDraw.normal3 (vect_mul (neiax, neiay, neiaz) (neibx, neiby, neibz));
GlDraw.vertex3 (vertx, verty, vertz)
let triangle ~edge ~amp ~divisions ~z =
let divi = float divisions in
let vr = edge *. sqrt3 /. 3. in
let ampvr2 = amp /. sqr vr
and zf = edge *. z in
let ax = edge *. (0.5 /. divi)
and ay = edge *. (-0.5 *. sqrt3 /. divi)
and bx = edge *. (-0.5 /. divi) in
for ri = 1 to divisions do
GlDraw.begins `triangle_strip;
for ti = 0 to ri - 1 do
vertex ~zf ~ampvr2
~xf:(float (ri-ti) *. ax +. float ti *. bx)
~yf:(vr +. float (ri-ti) *. ay +. float ti *. ay);
vertex ~zf ~ampvr2
~xf:(float (ri-ti-1) *. ax +. float ti *. bx)
~yf:(vr +. float (ri-ti-1) *. ay +. float ti *. ay)
done;
vertex ~xf:(float ri *. bx) ~yf:(vr +. float ri *. ay) ~zf ~ampvr2;
GlDraw.ends ()
done
let square ~edge ~amp ~divisions ~z =
let divi = float divisions in
let zf = edge *. z
and ampvr2 = amp /. sqr (edge *. sqrt2 /. 2.) in
for yi = 0 to divisions - 1 do
let yf = edge *. (-0.5 +. float yi /. divi) in
let yf2 = sqr yf in
let y = yf +. 1.0 /. divi *. edge in
let y2 = sqr y in
GlDraw.begins `quad_strip;
for xi = 0 to divisions do
let xf = edge *. (-0.5 +. float xi /. divi) in
vertex ~xf ~yf:y ~zf ~ampvr2;
vertex ~xf ~yf ~zf ~ampvr2
done;
GlDraw.ends ()
done
let pentagon ~edge ~amp ~divisions ~z =
let divi = float divisions in
let zf = edge *. z
and ampvr2 = amp /. sqr(edge *. cossec36_2) in
let x =
Array.init 6
~f:(fun fi -> -. cos (float fi *. 2. *. pi /. 5. +. pi /. 10.)
/. divi *. cossec36_2 *. edge)
and y =
Array.init 6
~f:(fun fi -> sin (float fi *. 2. *. pi /. 5. +. pi /. 10.)
/. divi *. cossec36_2 *. edge)
in
for ri = 1 to divisions do
for fi = 0 to 4 do
GlDraw.begins `triangle_strip;
for ti = 0 to ri-1 do
vertex ~zf ~ampvr2
~xf:(float(ri-ti) *. x.(fi) +. float ti *. x.(fi+1))
~yf:(float(ri-ti) *. y.(fi) +. float ti *. y.(fi+1));
vertex ~zf ~ampvr2
~xf:(float(ri-ti-1) *. x.(fi) +. float ti *. x.(fi+1))
~yf:(float(ri-ti-1) *. y.(fi) +. float ti *. y.(fi+1))
done;
vertex ~xf:(float ri *. x.(fi+1)) ~yf:(float ri *. y.(fi+1)) ~zf ~ampvr2;
GlDraw.ends ()
done
done
let call_list list color =
GlLight.material ~face:`both (`diffuse color);
GlList.call list
let draw_tetra ~amp ~divisions ~color =
let list = GlList.create `compile in
triangle ~edge:2.0 ~amp ~divisions ~z:(0.5 /. sqrt6);
GlList.ends();
call_list list color.(0);
GlMat.push();
GlMat.rotate ~angle:180.0 ~z:1.0 ();
GlMat.rotate ~angle:(-.tetraangle) ~x:1.0 ();
call_list list color.(1);
GlMat.pop();
GlMat.push();
GlMat.rotate ~angle:180.0 ~y:1.0 ();
GlMat.rotate ~angle:(-180.0 +. tetraangle) ~x:0.5 ~y:(sqrt3 /. 2.) ();
call_list list color.(2);
GlMat.pop();
GlMat.rotate ~angle:180.0 ~y:1.0 ();
GlMat.rotate ~angle:(-180.0 +. tetraangle) ~x:0.5 ~y:(-.sqrt3 /. 2.) ();
call_list list color.(3);
GlList.delete list
let draw_cube ~amp ~divisions ~color =
let list = GlList.create `compile in
square ~edge:2.0 ~amp ~divisions ~z:0.5;
GlList.ends ();
call_list list color.(0);
for i = 1 to 3 do
GlMat.rotate ~angle:cubeangle ~x:1.0 ();
call_list list color.(i)
done;
GlMat.rotate ~angle:cubeangle ~y:1.0 ();
call_list list color.(4);
GlMat.rotate ~angle:(2.0 *. cubeangle) ~y:1.0 ();
call_list list color.(5);
GlList.delete list
let draw_octa ~amp ~divisions ~color =
let list = GlList.create `compile in
triangle ~edge:2.0 ~amp ~divisions ~z:(1.0 /. sqrt6);
GlList.ends ();
let do_list (i,y) =
GlMat.push();
GlMat.rotate ~angle:180.0 ~y:1.0 ();
GlMat.rotate ~angle:(-.octaangle) ~x:0.5 ~y ();
call_list list color.(i);
GlMat.pop()
in
call_list list color.(0);
GlMat.push();
GlMat.rotate ~angle:180.0 ~z:1.0 ();
GlMat.rotate ~angle:(-180.0 +. octaangle) ~x:1.0 ();
call_list list color.(1);
GlMat.pop();
List.iter [2, sqrt3 /. 2.0; 3, -.sqrt3 /. 2.0] ~f:do_list;
GlMat.rotate ~angle:180.0 ~x:1.0 ();
GlLight.material ~face:`both (`diffuse color.(4));
GlList.call list;
GlMat.push();
GlMat.rotate ~angle:180.0 ~z:1.0 ();
GlMat.rotate ~angle:(-180.0 +. octaangle) ~x:1.0 ();
GlLight.material ~face:`both (`diffuse color.(5));
GlList.call list;
GlMat.pop();
List.iter [6, sqrt3 /. 2.0; 7, -.sqrt3 /. 2.0] ~f:do_list;
GlList.delete list
let draw_dodeca ~amp ~divisions ~color =
let tau = (sqrt5 +. 1.0) /. 2.0 in
let list = GlList.create `compile in
pentagon ~edge:2.0 ~amp ~divisions
~z:(sqr(tau) *. sqrt ((tau+.2.0)/.5.0) /. 2.0);
GlList.ends ();
let do_list (i,angle,x,y) =
GlMat.push();
GlMat.rotate ~angle:angle ~x ~y ();
call_list list color.(i);
GlMat.pop();
in
GlMat.push ();
call_list list color.(0);
GlMat.rotate ~angle:180.0 ~z:1.0 ();
List.iter ~f:do_list
[ 1, -.dodecaangle, 1.0, 0.0;
2, -.dodecaangle, cos72, sin72;
3, -.dodecaangle, cos72, -.sin72;
4, dodecaangle, cos36, -.sin36;
5, dodecaangle, cos36, sin36 ];
GlMat.pop ();
GlMat.rotate ~angle:180.0 ~x:1.0 ();
call_list list color.(6);
GlMat.rotate ~angle:180.0 ~z:1.0 ();
List.iter ~f:do_list
[ 7, -.dodecaangle, 1.0, 0.0;
8, -.dodecaangle, cos72, sin72;
9, -.dodecaangle, cos72, -.sin72;
10, dodecaangle, cos36, -.sin36 ];
GlMat.rotate ~angle:dodecaangle ~x:cos36 ~y:sin36 ();
call_list list color.(11);
GlList.delete list
let draw_ico ~amp ~divisions ~color =
let list = GlList.create `compile in
triangle ~edge:1.5 ~amp ~divisions
~z:((3.0 *. sqrt3 +. sqrt15) /. 12.0);
GlList.ends ();
let do_list1 i =
GlMat.rotate ~angle:180.0 ~y:1.0 ();
GlMat.rotate ~angle:(-180.0 +. icoangle) ~x:0.5 ~y:(sqrt3/.2.0) ();
call_list list color.(i)
and do_list2 i =
GlMat.rotate ~angle:180.0 ~y:1.0 ();
GlMat.rotate ~angle:(-180.0 +. icoangle) ~x:0.5 ~y:(-.sqrt3/.2.0) ();
call_list list color.(i)
and do_list3 i =
GlMat.rotate ~angle:180.0 ~z:1.0 ();
GlMat.rotate ~angle:(-.icoangle) ~x:1.0 ();
call_list list color.(i)
in
GlMat.push ();
call_list list color.(0);
GlMat.push ();
do_list3 1;
GlMat.push ();
do_list1 2;
GlMat.pop ();
do_list2 3;
GlMat.pop ();
GlMat.push ();
do_list1 4;
GlMat.push ();
do_list1 5;
GlMat.pop();
do_list3 6;
GlMat.pop ();
do_list2 7;
GlMat.push ();
do_list2 8;
GlMat.pop ();
do_list3 9;
GlMat.pop ();
GlMat.rotate ~angle:180.0 ~x:1.0 ();
call_list list color.(10);
GlMat.push ();
do_list3 11;
GlMat.push ();
do_list1 12;
GlMat.pop ();
do_list2 13;
GlMat.pop ();
GlMat.push ();
do_list1 14;
GlMat.push ();
do_list1 15;
GlMat.pop ();
do_list3 16;
GlMat.pop ();
do_list2 17;
GlMat.push ();
do_list2 18;
GlMat.pop ();
do_list3 19;
GlList.delete list
class view area = object (self)
val area : GlGtk.area = area
val mutable smooth = true
val mutable step = 0.
val mutable obj = 1
val mutable draw_object = fun ~amp -> ()
val mutable magnitude = 0.
method width = area#misc#allocation.Gtk.width
method height = area#misc#allocation.Gtk.height
method draw () =
let ratio = float self#height /. float self#width in
GlClear.clear [`color;`depth];
GlMat.push();
GlMat.translate ~z:(-10.0) ();
GlMat.scale ~x:(scale *. ratio) ~y:scale ~z:scale ();
GlMat.translate ()
~x:(2.5 *. ratio *. sin (step *. 1.11))
~y:(2.5 *. cos (step *. 1.25 *. 1.11));
GlMat.rotate ~angle:(step *. 100.) ~x:1.0 ();
GlMat.rotate ~angle:(step *. 95.) ~y:1.0 ();
GlMat.rotate ~angle:(step *. 90.) ~z:1.0 ();
draw_object ~amp:((sin step +. 1.0/.3.0) *. (4.0/.5.0) *. magnitude);
GlMat.pop();
Gl.flush();
area#swap_buffers ();
step <- step +. 0.05
method reshape ~width ~height =
GlDraw.viewport ~x:0 ~y:0 ~w:width ~h:height;
GlMat.mode `projection;
GlMat.load_identity();
GlMat.frustum ~x:(-1.0, 1.0) ~y:(-1.0, 1.0) ~z:(5.0, 15.0);
GlMat.mode `modelview
method key sym =
begin match sym with
"1" -> obj <- 1
| "2" -> obj <- 2
| "3" -> obj <- 3
| "4" -> obj <- 4
| "5" -> obj <- 5
| "\r" -> smooth <- not smooth
| "\027" -> area#misc#toplevel#destroy (); exit 0
| _ -> ()
end;
self#pinit
method pinit =
begin match obj with
1 ->
draw_object <- draw_tetra
~divisions:tetradivisions
~color:[|materialRed; materialGreen;
materialBlue; materialWhite|];
magnitude <- 2.5
| 2 ->
draw_object <- draw_cube
~divisions:cubedivisions
~color:[|materialRed; materialGreen; materialCyan;
materialMagenta; materialYellow; materialBlue|];
magnitude <- 2.0
| 3 ->
draw_object <- draw_octa
~divisions:octadivisions
~color:[|materialRed; materialGreen; materialBlue;
materialWhite; materialCyan; materialMagenta;
materialGray; materialYellow|];
magnitude <- 2.5
| 4 ->
draw_object <- draw_dodeca
~divisions:dodecadivisions
~color:[|materialRed; materialGreen; materialCyan;
materialBlue; materialMagenta; materialYellow;
materialGreen; materialCyan; materialRed;
materialMagenta; materialBlue; materialYellow|];
magnitude <- 2.0
| 5 ->
draw_object <- draw_ico
~divisions:icodivisions
~color:[|materialRed; materialGreen; materialBlue;
materialCyan; materialYellow; materialMagenta;
materialRed; materialGreen; materialBlue;
materialWhite; materialCyan; materialYellow;
materialMagenta; materialRed; materialGreen;
materialBlue; materialCyan; materialYellow;
materialMagenta; materialGray|];
magnitude <- 3.5
| _ -> ()
end;
GlDraw.shade_model (if smooth then `smooth else `flat)
initializer
area#connect#display ~callback:self#draw;
area#connect#reshape ~callback:self#reshape;
()
end
open GMain
let main () =
List.iter ~f:print_string
[ "Morph 3D - Shows morphing platonic polyhedra\n";
"Author: Marcelo Fernandes Vianna (vianna@cat.cbpf.br)\n";
"Ported to LablGL by Jacques Garrigue\n\n";
" [1] - Tetrahedron\n";
" [2] - Hexahedron (Cube)\n";
" [3] - Octahedron\n";
" [4] - Dodecahedron\n";
" [5] - Icosahedron\n";
"[RETURN] - Toggle smooth/flat shading\n";
" [ESC] - Quit\n" ];
flush stdout;
let window =
GWindow.window ~title:"Morph 3D - Shows morphing platonic polyhedra" ()
in
window#connect#destroy ~callback:Main.quit;
window#set_resize_mode `IMMEDIATE;
let area = GlGtk.area [`DEPTH_SIZE 1;`RGBA;`DOUBLEBUFFER]
~width:640 ~height:480 ~packing:window#add () in
let view = new view area in
area#connect#realize ~callback:
begin fun () ->
view#pinit;
GlClear.depth 1.0;
GlClear.color (0.0, 0.0, 0.0);
GlDraw.color (1.0, 1.0, 1.0);
GlClear.clear [`color;`depth];
Gl.flush();
List.iter ~f:(GlLight.light ~num:0)
[`ambient ambient; `diffuse diffuse; `position position0];
List.iter ~f:(GlLight.light ~num:1)
[`ambient ambient; `diffuse diffuse; `position position1];
GlLight.light_model (`ambient lmodel_ambient);
GlLight.light_model (`two_side lmodel_twoside);
List.iter ~f:Gl.enable
[`lighting;`light0;`light1;`depth_test;`normalize];
GlLight.material ~face:`both (`shininess front_shininess);
GlLight.material ~face:`both (`specular front_specular);
GlMisc.hint `fog `fastest;
GlMisc.hint `perspective_correction `fastest;
GlMisc.hint `polygon_smooth `fastest
end;
window#event#connect#key_press
~callback:(fun ev -> view#key (GdkEvent.Key.string ev); true);
Timeout.add ~ms:20
~callback:(fun _ -> if area#misc#visible then view#draw (); true);
window#show ();
Main.main ()
let _ = main ()
|