1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
(* This examples combines Cairo and Pango to implement a renderer for
natural deduction trees.
Author: Claudio Sacerdoti Coen
*)
type nd_tree =
{ conclusion: string
; rule : string
; premises: nd_tree list option
}
let test =
{ conclusion = "(A ∨ D ⇒ B) ⇒ (A ⇒ C) ⇒ A ⇒ B ∧ C"
; rule = "⇒<sub>i</sub>"
; premises = Some
[ { conclusion = "(A ⇒ C) ⇒ A ⇒ B ∧ C"
; rule = "⇒i"
; premises = Some
[ { conclusion = "A ⇒ B ∧ C"
; rule = "⇒i"
; premises = Some
[ { conclusion = "B ∧ C"
; rule = "∧i"
; premises = Some
[ { conclusion = "B"
; rule = "⇒e"
; premises = Some
[ { conclusion = "[A ∨ D ⇒ B]"
; rule = ""
; premises = None }
; { conclusion = "A ∨ D"
; rule = "∨i<sub>l</sub>"
; premises = Some
[ { conclusion = "[A]"
; rule = ""
; premises = None } ] } ] }
; { conclusion = "C"
; rule = "⇒e"
; premises = Some
[ { conclusion = "[A ⇒ C]"
; rule = ""
; premises = None }
; { conclusion = "[A]"
; rule = ""
; premises = None } ] } ] } ] } ] } ] }
type sized_layout =
{ layout : GPango.layout
; width : float
; height : float }
type nd_tree_layout =
{ ndl_conclusion : sized_layout
; ndl_rule : sized_layout
; ndl_premises : nd_tree_layout list option
; ndl_padding : float
; ndl_width : float (* total width of tree *)
; ndl_height : float (* total height of tree *)
}
let map_opt f = function None -> None | Some x -> Some (f x)
let map_opt_d d f = function None -> d | Some x -> f x
let rec last = function [] -> assert false | [x] -> x | _::tl -> last tl
(* where the conclusions are printed *)
type area = { x : float ; y : float ; w : float ; h : float }
let font_size = ref 100
let highlighted = ref None
let pressed = ref false
(* the pad must leave enough space for rule names *)
let pad () = float !font_size *. 3. /. 10.
(* the minipad is put between the inference rule and the rule name *)
let minipad () = pad () /. 70.
let resize a d () =
font_size := int_of_float a#value ;
highlighted := None ;
pressed := false ;
d#misc#queue_draw ()
let leave d _ =
highlighted := None ;
pressed := false ;
d#misc#queue_draw () ;
true
let layout_text cr ?(percent=100) text =
let layout = new GPango.layout (Cairo_pango.create_layout cr) in
let pango_context = layout#get_context in
let fd = pango_context#font_description in
fd#modify ~size:(fd#size * !font_size * percent / 10000) () ;
pango_context#set_font_description fd ;
layout#set_markup text ;
let width,height = layout#get_pixel_size in
{ layout; width = float width ; height = float height }
(* turn a nd_tree into a nd_tree_layout by recursively computing all relevant
sizes and by engraving strings into Pango layouts *)
let rec layout_nd_tree cr t =
let ndl_premises = map_opt (List.map (layout_nd_tree cr)) t.premises in
let {layout;width;height} = layout_text cr t.conclusion in
let ndl_rule = layout_text cr ~percent:75 t.rule in
let padding = float (max 0 (map_opt_d 0 List.length ndl_premises - 1)) *. pad () in
let premises_width =
map_opt_d 0. (List.fold_left (fun acc x -> acc +. x.ndl_width) 0.) ndl_premises
+. padding in
let ndl_width = max width premises_width in
let ndl_height =
height +.
(map_opt_d 0. (List.fold_left (fun x p -> max x p.ndl_height) 0.) ndl_premises)
in
let ndl_padding = max 0. (width -. premises_width) in
{ ndl_conclusion = { layout ; width ; height } ; ndl_rule
; ndl_premises ; ndl_padding ; ndl_width ; ndl_height }
(* If centered=true then (x,y) is the middle-point below the conclusion;
otherwise it is the lowermost-leftmost point of the bounded box of the
tree. It returns a list of areas. *)
let rec draw_nd_tree_layout ?(map = []) ?(centered = true) cr x y t =
let cw = t.ndl_conclusion.width in
let ch = t.ndl_conclusion.height in
let pw = t.ndl_width in
(* redefine (x,y) to be middle-point above the conclusion *)
let x = if centered then x else x +. pw /. 2. in
let y = y -. ch in
Cairo.move_to cr (x -. cw /. 2.) y ;
Cairo_pango.show_layout cr t.ndl_conclusion.layout#as_layout ;
let map = {x = x -. cw /. 2. ; y ; w=cw ; h=ch}::map in
match t.ndl_premises with
None -> map
| Some l ->
if l <> [] && let fst = List.hd l in let lst = last l in
2. *. pw -. fst.ndl_width -. lst.ndl_width
+. fst.ndl_conclusion.width +. lst.ndl_conclusion.width
>= 2. *. cw
then begin
let fst = List.hd l in
let lst = last l in
Cairo.move_to cr
(x -. (pw -. fst.ndl_width +. fst.ndl_conclusion.width) /. 2.) y ;
Cairo.line_to cr
(x +. (pw -. lst.ndl_width +. lst.ndl_conclusion.width) /. 2.) y ;
end else begin
Cairo.move_to cr (x -. cw /. 2.) y ;
Cairo.line_to cr (x +. cw /. 2.) y ;
end ;
Cairo.rel_move_to cr (minipad ()) (-. t.ndl_rule.height /. 2.) ;
Cairo_pango.show_layout cr t.ndl_rule.layout#as_layout ;
Cairo.stroke cr ;
draw_premises ~map cr (x -. pw /. 2. +. t.ndl_padding /. 2.) y l
and draw_premises ~map cr x y tl =
fst (
List.fold_left
(fun (map,x) t ->
let map = draw_nd_tree_layout ~map cr ~centered:false x y t in
map,x +. t.ndl_width +. pad ())
(map,x) tl)
let areas = ref []
let inside x b w = b <= x && x <= b+.w
let look_for_area x y =
List.find_opt
(fun area -> inside x area.x area.w && inside y area.y area.h) !areas
let draw (drawing_area : #GMisc.drawing_area) cr =
let l = layout_nd_tree cr test in
drawing_area#misc#set_size_request ~width:(int_of_float l.ndl_width)
~height:(int_of_float l.ndl_height) ();
let allocation = drawing_area#misc#allocation in
let w = float allocation.Gtk.width in
let h = float allocation.Gtk.height in
Cairo.set_source_rgba cr 1. 1. 1. 1.;
Cairo.rectangle cr 0. 0. w h ;
Cairo.fill cr ;
Cairo.set_source_rgba cr 0. 0. 0. 1.;
areas := draw_nd_tree_layout cr (w /. 2.) h l ;
(match !highlighted with
None -> ()
| Some {x;y;w;h} ->
if !pressed then
Cairo.set_source_rgba cr 0. 1. 0. 0.5
else
Cairo.set_source_rgba cr 1. 0. 0. 0.5;
Cairo.rectangle cr x y ~w ~h;
Cairo.fill cr;
Cairo.set_source_rgba cr 0. 0. 0. 1.
);
true
let button_press d b =
let x = GdkEvent.Button.x b in
let y = GdkEvent.Button.y b in
highlighted := look_for_area x y;
pressed := true;
d#misc#queue_draw ();
true
let motion_notify d b =
let x = GdkEvent.Motion.x b in
let y = GdkEvent.Motion.y b in
highlighted := look_for_area x y;
pressed := false;
d#misc#queue_draw ();
true
let () =
let _ = GMain.init () in
let w = GWindow.window ~title:"Natural deduction demo" () in
w#set_default_size ~width:400 ~height:(Gdk.Screen.height () * 3 / 4);
ignore(w#connect#destroy ~callback:GMain.quit);
let b = GPack.box `VERTICAL ~packing:w#add () in
let a = GData.adjustment ~lower:50. ~value:100. ~upper:210. () in
let f =
GRange.scale `HORIZONTAL ~draw_value:false ~adjustment:a ~digits:0
~packing:b#pack () in
let s = GBin.scrolled_window ~packing:b#add () in
let d = GMisc.drawing_area ~packing:s#add () in
ignore(d#misc#connect#draw ~callback:(draw d));
ignore(d#event#connect#button_press ~callback:(button_press d));
ignore(d#event#connect#motion_notify ~callback:(motion_notify d));
ignore(f#connect#value_changed ~callback:(resize a d));
ignore(d#event#connect#leave_notify ~callback:(leave d));
d#set_events [`BUTTON_PRESS ; `POINTER_MOTION ; `LEAVE_NOTIFY ];
w#show();
GMain.main()
|