1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
|
<?xml version="1.0" ?>
<!DOCTYPE book PUBLIC "-//KDE//DTD DocBook XML V4.5-Based Variant V1.1//EN" "dtd/kdedbx45.dtd" [
<!ENTITY latex "L<superscript>A</superscript>T<subscript>E</subscript>X">
<!ENTITY tex "T<subscript>E</subscript>X">
<!ENTITY LabPlot "<application>LabPlot</application>">
<!ENTITY % addindex "IGNORE">
<!ENTITY % English "INCLUDE">
]>
<book lang="&language;">
<bookinfo>
<title>The &LabPlot; Handbook</title>
<authorgroup>
<author>
<firstname>Stefan</firstname>
<surname>Gerlach</surname>
<affiliation>
<address><email>stefan.gerlach@uni-konstanz.de</email></address>
</affiliation>
</author>
<author>
<firstname>Alexander</firstname>
<surname>Semke</surname>
<affiliation>
<address><email>Alexander.Semke@web.de</email></address>
</affiliation>
</author>
<author>
<firstname>Yuri</firstname>
<surname>Chornoivan</surname>
<affiliation>
<address><email>yurchor@ukr.net</email></address>
</affiliation>
</author>
<author>
<firstname>Garvit</firstname>
<surname>Khatri</surname>
<affiliation>
<address><email>garvitdelhi@gmail.com</email></address>
</affiliation>
</author>
<!-- TRANS:ROLES_OF_TRANSLATORS -->
</authorgroup>
<copyright>
<year>2007-2016</year>
<holder>Stefan Gerlach</holder>
</copyright>
<copyright>
<year>2008-2015</year>
<holder>Alexander Semke</holder>
</copyright>
<copyright>
<year>2014</year>
<holder>Yuri Chornoivan</holder>
</copyright>
<legalnotice>&FDLNotice;</legalnotice>
<date>2016-12-24</date>
<releaseinfo>3.3.1</releaseinfo>
<abstract>
<para>
&LabPlot; is a program for two-dimensional function plotting and data analysis.
</para>
</abstract>
<keywordset>
<keyword>KDE</keyword>
<keyword>LabPlot</keyword>
<keyword>plot</keyword>
</keywordset>
</bookinfo>
<chapter id="introduction">
<title>Introduction</title>
<para>
&LabPlot; is a &kde; application for interactive graphing and analysis of scientific data. &LabPlot; provides an easy way to create, manage and edit plots.
</para>
<para>
Features:
<itemizedlist>
<listitem><para>Project-based management of data</para></listitem>
<listitem><para>Project-explorer for management and organization of created objects in different folders and sub-folders</para></listitem>
<listitem><para>Spreadsheet with basic functionality for manual data entry or for generation of uniform and non-uniform random numbers</para></listitem>
<listitem><para>Import of external ASCII-data into the project for further editing and visualization</para></listitem>
<listitem><para>Export of spreadsheet to an ASCII-file</para></listitem>
<listitem><para>Worksheet as the main parent object for plots, labels &etc;, supports different layouts and zooming functions</para></listitem>
<listitem><para>Export of worksheet to different formats (pdf, eps, png and svg)</para></listitem>
<listitem><para>Great variety of editing capabilities for properties of worksheet and its objects</para></listitem>
<listitem><para>Cartesian plots, created either from imported or manually created data sets or via mathematical equation</para></listitem>
<listitem><para>Definition of mathematical formulas is supported by syntax-highlighting and completion and by the list of thematicaly grouped mathematical and physical constants and functions</para></listitem>
<listitem><para>Investigation of plotted data is supported by many zooming and navigation features</para></listitem>
<listitem><para>Several analysis functions and methods for data reduction, differentiation, integration, interpolation, smoothing, (nonlinear) fitting, Fourier filter and Fourier transform</para></listitem>
<listitem><para>Linear and non-linear fits to data, several fit-models are predefined and custom models with arbitrary number of parameters can be provided</para></listitem>
<listitem><para>Supports many CAS backends like Maxima, Python, KAlgebra, Sage</para></listitem>
<listitem><para>Nice Worksheet view for evaluating expressions</para></listitem>
<listitem><para>Easy plugin based structure to add different Backends</para></listitem>
<listitem><para>Plugin based assistant dialogs for common tasks (like integrating a function or entering a matrix)</para></listitem>
<listitem><para>Datapicker for manual or (semi-)automatic data extraction from imported images containing plots and curves.</para></listitem>
</itemizedlist>
</para>
<para>
&LabPlot; can be found on its homepage at kde.org:
<ulink url="https://labplot.kde.org/">https://labplot.kde.org/</ulink>.
</para>
</chapter>
<chapter id="using-LabPlot">
<title>Using &LabPlot;</title>
<sect1 id="interface-overview">
<title>Interface Overview</title>
<para>
&LabPlot; follows the MDI (Multiple Document Interface) philosophy - all the created application objects are placed as sub-windows in the <link linkend="main-area">Main Area</link> of the application window. The <link linkend="project-explorer">Project Explorer</link> serves as the tool to create and organize those objects in a tree-like structure.
The <link linkend="properties-explorer">Properties Explorer</link> is used to modify the properties of the currently selected object(s).
Many functions are reachable via the main menu and via object specific toolbars and context menus. Additional information and application notifications are shown in the status bar.
</para>
<screenshot>
<screeninfo>The default &LabPlot; window</screeninfo>
<mediaobjectco>
<imageobjectco>
<areaspec units="other" otherunits="imagemap">
<!--these ids are used only internally by DocBook so we keep them short-->
<area id="im-win1a1" linkends="project-explorer" coords="28,69,234,724" />
<area id="im-win1a2" linkends="worksheet" coords="456,382,804,688" />
<area id="im-win1a3" linkends="spreadsheet" coords="249,78,553,390" />
<area id="im-win1a4" linkends="toolbar" coords="1,46,640,68" />
<area id="im-win1a5" linkends="commands" coords="1,19,432,45" />
<!-- <area id="im-win1a6" linkends="statusbar" coords="38,742,1294,777" /> -->
<area id="im-win1a7" linkends="properties-explorer" coords="834,69,1279,724" />
</areaspec>
<imageobject>
<imagedata fileref="labplot.png" format="PNG"/>
</imageobject>
</imageobjectco>
</mediaobjectco>
</screenshot>
<!-- <para>
The default &LabPlot; window has the <link linkend="project-explorer">Project Explorer</link> pane on the left, the <link linkend="properties-explorer">Properties</link> pane on the right, <link linkend="spreadsheet">spreadsheet</link>/<link linkend="worksheet">worksheet</link> area in the center, the <link linkend="toolbar">main toolbar</link> on the top and the status bar on the bottom.
</para>-->
</sect1>
<sect1 id="project-explorer">
<title>Project Explorer</title>
<para>
The Project Explorer is the main part of &LabPlot; aimed to handle its objects. Objects are organized in a tree-like structure representing the parent-child relations between the different objects.
Folders and sub-folders can introduce additional grouping for the different objects.
</para>
<para>
Project explorer is a dockable window and can be placed at an arbitrary place. The user can determine which columns should be shown by selecting/deselecting the columns of interest in the context menu (&RMB; click on an empty place in the tree-view or its header). Furthermore, the list of shown objects can be reduced by providing a filter in the <guilabel>Search/Filter</guilabel> text field.
</para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="project-explorer.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</sect1>
<sect1 id="main-area">
<title>Main Area</title>
<para>
Created objects having a view (like worksheet, spreadsheet &etc;) are placed in the main area of the application. Depending on the current setting for the user interface, windows are placed either as independent and freely moveable sub-windows (interface "Sub-window view") or as tabs in a tabbed view (interface "Tabbed view").
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="sub_window_tabbed_view_interfaces.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
When sub-windows are used, all windows of objects belonging to the currently selected folder only are shown. Alternatively, the visibility of windows can be extended to the currently selected folder and its sub-folders or to all windows in the project. This behaviour is controlled via the parameter "Window visibility policy" accessible via the context menu of the project explorer.
</para>
</sect1>
<sect1 id="properties-explorer">
<title>Properties Explorer</title>
<para>
Properties explorer allows the user to modify the currently selected object in the project explorer. A great variety of object properties can be edited in undoable/redoable way. Editing of multiple objects of the same time is also possible.
</para>
<para>
Properties explorer is a dockable window and can be placed at an arbitrary place.
</para>
</sect1>
<sect1 id="spreadsheet">
<title>Spreadsheet</title>
<para>
The spreadsheet is the main part of &LabPlot; when working with data and consists of columns.
Column is the basic data set in &LabPlot; used for plotting and data analysis.
Every column of the spreadsheet is specified by its name and the type - numeric, text, month names, day names and date and time.
Also, for each type different representation formats can be assigned like decimal or scientific format for numeric columns &etc;
</para>
<para>
You can mask selected data points in the spreadsheet (<menuchoice><guimenu>Selection</guimenu><guimenuitem>Mask Selection</guimenuitem></menuchoice> from the spreadsheet cell context menu).
Masked data is not plotted and is also excluded from data analysis functions like fitting &etc;
Alternatively, you can mask or drop values in a column (<menuchoice><guimenu>Mask Values</guimenu></menuchoice> or <menuchoice><guimenu>Drop Values</guimenu></menuchoice> from the column context menu) by specifying a range.
When specifying which values to mask or to drop, several operators (“equal to”, “greater than”, “lesser than”, &etc;) are available.
These operations can help to hide or to remove some outliers in the data set prior to, ⪚, performing a fit to this data set.
</para>
<para>
Any spreadsheet function can be reached via the context menu (&RMB; click).
You can cut, copy and paste between spreadsheets, generate, normalize and sort data and finally make plots out of your data.
</para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="spreadsheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
<para>
New data can be produced either by entering it manually in the spreadsheet or by generating the data according to a certain prescription.
&LabPlot; provides 5 different methods to generate data, accessible via the context menu of the column:
<itemizedlist>
<listitem>
<para>
Row Numbers - values in the column are set according to its row number, this provide an easy way to quickly create an index.
</para>
</listitem>
<listitem>
<para>
Const Values - values in the column are set to a constant value provided by the user.
</para>
</listitem>
<listitem>
<para>
Equidistant values (for numeric columns only) - given the minimal and the maximal values, the equidistant values can be either generated
by fixing the total number of values in that range or by fixing the increment (distance).
<screenshot><mediaobject><imageobject>
<imagedata fileref="spreadsheet_generate_equidistant_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</listitem>
<listitem>
<para>
Random values (for numeric columns only) - values are randomly generated according to the selected distribution.
To generate uniformly distributed random numbers, select "Flat" distribution.
</para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="spreadsheet_generate_random_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
<para>
In the simplest cases a non-uniform distribution is calculated analytically from the uniform distribution of a random number generator by applying
an appropriate transformation. More complicated distributions are created by the acceptance-rejection method, which compares the desired distribution
against a distribution which is similar and known analytically.
</para>
</listitem>
<listitem>
<para>
Function values (for numeric columns only) - values are generated according to a mathematical function provided by the user,
a column (data set) containing the function arguments has to be provided.
It is possible to define a multivariant function and to provide a data set (a column in a spreadsheet) for each of the variables.
The corresponding dialog supports the creation of arbitrary number of variables.
<screenshot><mediaobject><imageobject>
<imagedata fileref="spreadsheet_generate_multivariant_function_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</listitem>
</itemizedlist>
</para>
<para>
Already existing data can be imported into a spreadsheet from external files via the <link linkend="importdialog">"Import Data" dialog</link>.
Imported data will be stored in the project file. Changes on data, performed either in the spreadsheet or in the external file after the import, are not synchronized anymore.
</para>
<para>
The data in the spreadsheet can be exported to an external file (see <link linkend="exportdialog">Export Dialog</link>).
</para>
</sect1>
<sect1 id="matrix">
<title>Matrix</title>
<para>
Matrix is another container for matrix-like data. This container is presented like a table or, alternatively, as a two-dimensional greyscale image.
The elements of such a table/matrix can be thought as being the Z-values, Z=Z(X,Y), with X and Y values being the row and column numbers, respectively.
The transition from the row and column numbers to the logical coordinates is done via an explicit user-defined mapping of both representations.
<screenshot><mediaobject><imageobject>
<imagedata fileref="matrix.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
The matrix data can either be entered manually or via an import from an external file.
Similar to the data generation for a column in a spreadsheet, the matrix can be filled with constant values or via a formula, too.
The screenshot below shows the image view of a matrix together with the formula that was used to generate the matrix elements:
<screenshot><mediaobject><imageobject>
<imagedata fileref="matrix_function_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</sect1>
<sect1 id="workbook">
<title>Workbook</title>
<para>
Workbook helps the user to better organize and to group different data containers (Spreadsheet and Matrix).
This object serves as the parent container for multiple Spreadsheet- and/or Matrix-objects and puts them together in a view with multiple tabs:
<screenshot><mediaobject><imageobject>
<imagedata fileref="workbook.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
With folders it is already possible to bring some structure in the <link linkend="project-explorer">Project Explorer</link> and to group together several related objects
(spreadsheets with data stemming from text files of similar origin, red, green and blue values of an image imported into three different matrices, &etc;).
With Workbook the user has the possibility for another additional grouping.
</para>
</sect1>
<sect1 id="worksheet">
<title>Worksheet</title>
<para>
The worksheet is, besides the data containers <link linkend="spreadsheet">Spreadsheet</link> and <link linkend="matrix">Matrix</link>, another central part of the application and provides an area for showing and grouping together different kinds of worksheet objects - plots, labels &etc;
</para>
<para>
Worksheets can either have a fixed size (a user defined size or one of the predefined sizes like A4, Letter &etc;) or they can fill out the complete available area for the worksheet window. Multiple plots can be arranged on the worksheet in a vertical, horizontal or grid layouts.
</para>
<para>
Many properties of the worksheet like size, background colour and layout settings can be changed in the "Worksheet properties" pane.
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="worksheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
Different worksheet actions dealing with the creation of new objects, changing of the current mouse mode or zooming can be accessed via the toolbar, main menu or the context menu of the worksheet in the <link linkend="project-explorer">project explorer</link>.
</para>
<para>
The results shown on the worksheet can be exported to different formats via the <link linkend="exportdialog">export dialog</link>.
</para>
</sect1>
<sect1 id="CASworksheet">
<title>CAS Worksheet</title>
<para>
The CAS worksheet is, besides the <link linkend="worksheet">worksheet</link>, the third central part of the application and provides an area to you use your favorite mathematical applications from within an elegant Worksheet Interface.
</para>
<para>
&LabPlot; offers you several choices for the backends you wish to use with it. The choice to make depends on what you want to achieve.
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="worksheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
Currently the following backends are available:
<variablelist>
<varlistentry>
<term>Sage:</term>
<listitem>
<para>
Sage is a free open-source mathematics software system licensed under the GPL.
It combines the power of many existing open-source packages, within a common Python-based interface.
See <ulink url="http://sagemath.org">http://sagemath.org</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Maxima:</term>
<listitem>
<para>
Maxima is a system for the manipulation of symbolic and numeric expressions,
including differentiation, integration, Taylor series, Laplace transforms,
ordinary differential equations, systems of linear equations, polynomials, sets,
lists, vectors, matrices, and tensors. Maxima yields high-precision numeric results
by using exact fractions, arbitrary precision integers, and variable precision
floating point numbers. Maxima can plot functions and data in two and three dimensions.
See <ulink url="http://maxima.sourceforge.net">http://maxima.sourceforge.net</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>R:</term>
<listitem>
<para>
R is a language and environment for statistical computing and graphics, similar to the S language and environment.
It provides a wide variety of statistical (linear and nonlinear modelling,
classical statistical tests, time-series analysis, classification, clustering, ...)
and graphical techniques, and is highly extensible. The S language is often the
vehicle of choice for research in statistical methodology,
and R provides an open-source route to this.
See <ulink url="http://www.r-project.org">http://www.r-project.org</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>&kalgebra;:</term>
<listitem>
<para>
&kalgebra; is a MathML-based graph calculator, that ships with &kde; Education project.
See <ulink url="http://edu.kde.org/kalgebra/">http://edu.kde.org/kalgebra/</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Qalculate!:</term>
<listitem>
<para>
Qalculate! is not your regular software replication of the cheapest
available calculator. Qalculate! aims to make full use of the superior
interface, power and flexibility of modern computers. The center of
attention in Qalculate! is the expression entry. Instead of entering each
number in a mathematical expression separately, you can directly write the
whole expression and later modify it. The interpretation of expressions is
flexible and fault tolerant, and if you nevertheless do something wrong,
Qalculate! will tell you so. Not fully solvable expressions are however not
errors. Qalculate! will simplify as far as it can and answer with an
expression. In addition to numbers and arithmetic operators, an expression
may contain any combination of variables, units, and functions.
See <ulink url="http://qalculate.sourceforge.net/">http://qalculate.sourceforge.net/</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Python2:</term>
<listitem>
<para>
Python is a remarkably powerful dynamic programming language that is used
in a wide variety of application domains. There are several Python packages
to scientific programming.
</para>
<para>Python is distributed under Python Software Foundation license (GPL compatible).
See the <ulink url="http://www.python.org/">official website</ulink> for more information.
</para>
<note>
<para>
This backend adds an additional item to the &cantor;'s main menu, <guimenu>Package</guimenu>. The only item of this menu is <menuchoice><guimenu>Package</guimenu><guimenuitem>Import Package</guimenuitem></menuchoice>. This item can be used to import Python packages to the worksheet.
</para>
</note>
<warning>
<para>
This backend supports Python 2 only.
</para>
</warning>
</listitem>
</varlistentry>
<varlistentry>
<term>Scilab:</term>
<listitem>
<para>
Scilab is an free software, cross-platform numerical computational package
and a high-level, numerically oriented programming language.
</para>
<para>Scilab is distributed under CeCILL license (GPL compatible).
See <ulink url="http://www.scilab.org/">http://www.scilab.org/</ulink> for more information.
</para>
<warning>
<para>
You need Scilab version 5.5 or higher to be installed in your system to make this backend usable.
</para>
</warning>
</listitem>
</varlistentry>
<varlistentry>
<term>Octave:</term>
<listitem>
<para>
&GNU; Octave is a high-level language, primarily intended for numerical
computations. It provides a convenient command line interface for
solving linear and nonlinear problems numerically, and for performing other
numerical experiments using a language that is mostly compatible with <ulink url="http://www.mathworks.com/products/matlab/">MATLAB</ulink>.
See <ulink url="http://www.gnu.org/software/octave/">http://www.gnu.org/software/octave/</ulink> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Lua:</term>
<listitem>
<para>
Lua is a fast and lightweight scripting language, with a simple procedural syntax. There are several libraries in Lua aimed at math and science.
</para>
<para>
See <ulink url="http://www.lua.org/">http://www.lua.org/</ulink> for more information.
</para>
<para>
This backend supports <ulink url="http://luajit.org/">luajit 2</ulink>.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</sect1>
<sect1 id="file_data_source">
<title>File Data Source</title>
<para>
A file data source is very similar in spirit to a spreadsheet with imported data from an external file. The difference is that the imported data cannot be shown and edited in &LabPlot; after the import anymore. This can be sufficient ⪚ if you only want to plot the data stemming from a calculation in an external program (and exported to an ASCII-file afterwards).
</para>
<para>
Since no spreadsheet has to be filled with the imported data, the import into a file data source is faster than into a spreadsheet which can be advantageously when dealing with big files.
</para>
<para>
It is possible to store the link to the external file in the project file only and not its content. Each time the project file is opened in &LabPlot;, the content is read from the external file again. Also, it is possible to let &LabPlot; watch the file for changes - the content of the file data source is updated if the external file was changed.
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="file_data_source.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
The additional options determining the import of the data are equivalent to those provided in <link linkend="importdialog">Import Dialog</link>.
</para>
</sect1>
<sect1 id="datapicker">
<title>Datapicker</title>
<para>
Datapicker is a tool that allows you to easily extract data from image files. The process of extraction consists mainly out of the following steps:
<itemizedlist>
<listitem><para>Import an image containing plots and curves where you want to read the data points from.</para></listitem>
<listitem><para>Select the plot type (cartesian, polar, &etc;).</para></listitem>
<listitem><para>Select tree reference points and provide values for them. With the help of these points the logical coordinate system is determined.</para></listitem>
<listitem><para>Create a new datapicker curve and set the type of the error bars.</para></listitem>
<listitem><para>Switch to the mouse mode "Set Curve Points" and start selecting points on the imported image - the coordinates for the selected points are determined and added to the spreadsheet "Data".</para></listitem>
</itemizedlist>
</para>
<para>
It is possible to add more then one datapicker curve. This is useful in case the imported image contains several curves that need to be digitized.
The datapicker curve that is currently being selected in the <link linkend="project-explorer">Project Explorer </link> is the "active" one - points clicked on the datapicker image will be calculated and added to its data spreadsheet.
<screenshot><mediaobject><imageobject>
<imagedata fileref="datapicker_active_curve_data_spreadsheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
Calculated values are stored in different columns in data spreadsheets in the datapicker. These columns behave exactly the same like other columns
in usual spreadsheets and can be directly used as source columns for curves in your own plots.
</para>
<para>
Datapicker supports the process of the data extraction with several helpers. To place the points more precisely, a magnification glass with different magnification levels is available.
Also, the last selected point can be shifted with the help of the navigation keys.
Furthermore, when reading data points having error bars, datapicker automatically creates bars indicating the end points of the error bars.
Those bars can be pulled with the mouse until the required length (the distance to the data point) is reached.
</para>
<para>
The procedure for the extraction of data from an imported plot as described above is feasible when dealing with a limited number of points.
In case the curves in the imported image are given as solid lines, the datapicker tool in &LabPlot; allows to read them (semi-)automatically.
For this, after a new datapicker curve was added as described above, switch to the mouse mode "Select Curve Segments". The curves on the plot are recognized and highlighted.
By clicking on a highlighted curve (or one of its segments), points along this curve are created.
The length of a segment and the density of created points (separation between two points) are adjustable parameters.
On the screenshots below, after switching to the segment mode all black lines were highlighted (green colour).
In this specific case, the curve was recognized as a single segment and a single mouse-click on this segment is sufficient to digitize this curve and to automatically place points along the curve.
<screenshot><mediaobject><imageobject>
<imagedata fileref="datapicker_segments.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
In many cases the plot is not as simple as above (single black curve on white background) and contains grid lines, many curves of different colour and thinness and a non-white background.
In such a case the automatic detection fails (too many or no objects are highlighted). To help the datapicker to determine the curve(s) correctly, the user has to limit the allowed ranges in the HSV (or HSI) colour spaces.
To subtract the non-white background it is possible to limit the range for the foreground colour, too.
Internally, each pixel of the image is converted to black and white where only the points fitting into the user-defined ranges for hue, saturation, value, intensity and foreground are set to black.
</para>
<para>
On the screenshots below, the blue curves in the original image were projected onto by having appropriately reduced the allowed ranges in the colour space (note the peak for blue in the histogram for the hue).
The transformed black and white image contains only the curves the user is interested in and it is now an easy task for the datapicker to determine the curves and to place points on them.
<screenshot><mediaobject><imageobject>
<imagedata fileref="datapicker_original_transformed_segments.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
Similar to <link linkend="worksheet">Worksheet</link>, the currently visible area in the datapicker can be exported.
The supported image formats as described in the section <link linkend="exportdialog">Export Dialog</link>.
</para>
</sect1>
<sect1 id="importdialog">
<title>Import Dialog</title>
<para>
In the import dialog you can import data into one of the available spreadsheets or matrices in &LabPlot;.
The supported data formats are
<itemizedlist>
<listitem><para>ASCII</para></listitem>
<listitem><para>Binary</para></listitem>
<listitem><para>Image</para></listitem>
<listitem><para>NetCDF</para></listitem>
<listitem><para>HDF5</para></listitem>
<listitem><para>FITS</para></listitem>
</itemizedlist>
Preview of all supported file types is available in the import dialog.
For data formats with complex internal structures (like NetCDF, HDF5 and FITS),
the content of the file is presented in a tree view that allows comfortable navigation
through the file. A versatile dialog to edit the headers (keywords) of a FITS file is also
provided.
</para>
<para>
Import of ascii and binary data compressed with gzip, bzip2 or xz can be done directly as the decompression happens transparently for the user.
</para>
<para>
The name of the file containing the data to import has to be provided. The <guibutton>File Info</guibutton> button opens a dialog where some information about the selected file is shown. The type of the data can be specified - currently, only ASCII files containing several data sets (vectors) stored as columns are supported.
The filter - automatic or custom - determines how the file has to be parsed. Selecting the filter "custom", several parameters like separating character &etc; can be provided manually in this case.
</para>
<para>
The start and end row to read can be customized using the <guilabel>Data portion to read</guilabel> tab. To read all data specify <userinput>-1</userinput> as an end row or column.
</para>
<screenshot>
<screeninfo>Importing data into &LabPlot;</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="import-dialog.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Importing data into &LabPlot;</phrase>
</textobject>
</mediaobject>
</screenshot>
</sect1>
<sect1 id="exportdialog">
<title>Export Dialog</title>
<para>
A worksheet can be exported to several graphics format (vector and raster).
The export is done via the export dialog reachable via the
<guibutton>Export</guibutton> in the main toolbar or
<menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice>
in the main menu.
</para>
<para>
Besides the graphics format, the user can specify which part of the worksheet
has to be exported and whether the background has to be exported or not.
Also, for raster graphics the image resolution can be provided.
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="export_worksheet_dialog.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
The content of a spreadsheet can be exported to an external text or FITS file.
In the export dialog for spreadsheets the user can specify the character
separating values of different columns. Optionally, the header of the spreadsheet
(names of the columns in the spreadsheet) can be exported.
</para>
<para>
<screenshot><mediaobject><imageobject>
<imagedata fileref="export_spreadsheet_dialog.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</sect1>
</chapter>
<chapter id="commands">
<title>Command Reference</title>
<sect1 id="file-menu">
<title>The File Menu</title>
<para>
<variablelist>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>N</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>New</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new &LabPlot; project file.</action></para>
<para> In a project file all settings and all plots are stored in ASCII
format.</para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>O</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Open</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens a &LabPlot; project file.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>Open Recent</guisubmenu>
</menuchoice></term>
<listitem><para><action>Opens a recent &LabPlot; project file.</action></para>
<para> Here the last used 10 project files are listed.</para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>S</keycap></keycombo></shortcut>
<guimenu><accel>F</accel>ile</guimenu><guimenuitem><accel>S</accel>ave</guimenuitem>
</menuchoice></term>
<listitem><para><action>Saves the actual project.</action></para>
<para>If you haven't saved the project before the project is saved under a temporary project file name.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Save As</guimenuitem>
</menuchoice></term>
<listitem><para><action>
Saves the actual project under a different name.
</action></para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>P</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Print</guimenuitem>
</menuchoice></term>
<listitem><para><action>Prints the active plot.</action></para>
<para>
Here a print dialog is opened where you can select the printer, different paper sizes, &etc;
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Print Preview</guimenuitem>
</menuchoice></term>
<listitem><para><action>Open a print preview window.</action> &LabPlot; allows you to choose print settings using the toolbar of this window and view the result immediately.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>=</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Spreadsheet</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Alt;<keycap>X</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Worksheet</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new worksheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Folder</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>File Data Source</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens <guilabel>Import data to spreadsheet/matrix</guilabel> window.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;&Shift;<keycap>L</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Import</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Import data into the active spreadsheet</action></para>
<para>
This item can be used to import data into &LabPlot;. Please read more in the <link linkend="importdialog">import dialog</link>
section.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Export</guimenuitem>
</menuchoice></term>
<listitem><para><action>Saves the active plot as special format.</action></para>
<para>Currently supported are Encapsulated Postscript (EPS), Portable Document Format (PDF), Scalable Vector Graphics (SVG) and Portable Network Graphics (PNG).</para></listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>W</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Close</guimenuitem>
</menuchoice></term>
<listitem><para><action>Closes the current opened &LabPlot; project file.</action></para>
</listitem>
</varlistentry>
<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>Q</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Quit</guimenuitem>
</menuchoice></term>
<listitem><para><action>Quit &LabPlot;.</action></para>
</listitem>
</varlistentry>
</variablelist></para>
</sect1>
<sect1 id="edit-menu">
<title>The Edit Menu</title>
<para><variablelist>
<varlistentry>
<term><menuchoice>
<guimenu>Edit</guimenu><guimenuitem>Undo/Redo History</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens the &LabPlot; action history window.</action> Select an item in the list to navigate to the corresponding step.
</para></listitem>
</varlistentry>
</variablelist></para>
</sect1>
<sect1 id="worksheet-menu">
<title>The Worksheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a worksheet.
The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>
<sect1 id="spreadsheet-menu">
<title>The Spreadsheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a spreadsheet.
The menu is only available when a spreadsheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>
<sect1 id="CASworksheet-menu">
<title>The CAS Worksheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a CAS worksheet.
The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>
<sect1 id="datapicker-menu">
<title>The Datapicker Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a datapicker.
The menu is only available when a datapicker object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>
<sect1 id="settings-menu">
<title>The Settings Menu</title>
<para>This menu gives you the ability to change user settings.</para>
<para>Apart from the common &kde; Settings menu entries described in the <ulink url="help:/fundamentals/menus.html#menus-settings">Settings Menu</ulink> chapter of the &kde; Fundamentals &LabPlot; has this application specific menu entry:
</para>
<variablelist>
<varlistentry><term><menuchoice><shortcut>
<keycombo>&Ctrl;&Shift;<keycap>F</keycap></keycombo></shortcut>
<guimenu>Settings</guimenu><guimenuitem>Full Screen Mode</guimenuitem>
</menuchoice></term>
<listitem><para><action>Show the workspace in full screen mode.</action></para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="help-menu">
<title>The Help Menu</title>
<para>
Additionally, &LabPlot; has the common &kde; Help menu items. For more information, read the section about the <ulink url="help:/fundamentals/menus.html#menus-help">Help Menu</ulink> of the &kde; Fundamentals.
</para>
</sect1>
<sect1 id="toolbar">
<title>Toolbar</title>
<para>
The main toolbar contains the main items that you can find in the different menus. More details on this can be found in the <ulink url="help:/fundamentals/config.html#toolbars">&kde; Fundamentals manual</ulink>.</para>
</sect1>
</chapter>
<chapter id="plotting">
<title>Plotting</title>
<sect1 id="plots">
<title>Plots</title>
<para>
Plots can be created inside a worksheet via "Add new" in the context menu or in the application menu via "Worksheet"
by selecting "xy-plot" and the type of plot you like to have.
</para>
<para>
Within this xy-plot you can add a xy-curve containing data to show (again via the context menu or application menu).
</para>
<para>
The settings of a plot can be changed in the corresponding dock widget. There are general settings like geometry
but also the range of the x- and y-axis (including scaling). The plot title can be set in the "Title" tab of the
dock widget. Background and border styles can be changed in the "Plot Area" tab.
</para>
</sect1>
<sect1 id="curves">
<title>Curves</title>
<para>
Curves contain data points that can be shown in a plot.
There are three different method to create curves: the standard xy-curve, a xy-curve from a mathematical expression
and a xy-curve from a data analysis function.
</para>
<para>
The standard xy-curve can be filled with values of a spreadsheet by selecting the x-data and y-data as column of the
spreadsheet in the xy-curve dock widget. Another method to fill a curve is to use a mathematical expression. Here you can
select any mathematical function and range to create the curve.
The third method to create a curve is to use a data analysis function. The data and the analysis function can be
selected in the dock widget of the analysis function.
</para>
<para>
For all types of curves the line and symbols styles can be changed in the dock widget. Also annotated values
and error bar settings can be changed here.
</para>
</sect1>
<sect1 id="legends">
<title>Legends</title>
<para>
A legend can be easily added to a plot by using the context of application menu. It contains information
about all curves in a plot.
</para>
<para>
The settings of a legend (format and geometry) can be changed in the legend dock widget. Also the legend title
settings, the legend background and the layout can be changed in the corresponding tab of the legend dock widget.
</para>
</sect1>
</chapter>
<chapter id="analysis">
<title>Analysis functions</title>
<sect1 id="analysis_overview">
<title>Overview</title>
<para>
&LabPlot; supports a wide variety of data analysis functions:
</para>
<itemizedlist>
<listitem><para>Data reduction</para></listitem>
<listitem><para>Differentiation</para></listitem>
<listitem><para>Integration</para></listitem>
<listitem><para>Interpolation</para></listitem>
<listitem><para>Smoothing</para></listitem>
<listitem><para>Nonlinear curve fitting</para></listitem>
<listitem><para>Fourier filter</para></listitem>
<listitem><para>Fourier transform</para></listitem>
</itemizedlist>
<para>
All of them can be applied to any data consisting of x- and y-columns.
The analysis functions can be accessed using the Analysis menu or the context menu of a worksheet.
The newly created curves can be customized (line style, symbol style, &etc;) like any other x-y-curve.
</para>
</sect1>
<sect1 id="data_reduction">
<title>Data reduction</title>
<para>
To reduce the number of data points without losing the features of a data set
you can apply one of several line simplification algorithm:
</para>
<itemizedlist>
<listitem><para>Douglas-Peucker</para></listitem>
<listitem><para>Visvalingam-Whyatt</para></listitem>
<listitem><para>Reumann-Witkam</para></listitem>
<listitem><para>Perpendicular distance simplification</para></listitem>
<listitem><para>n-th point simplification</para></listitem>
<listitem><para>Radial distance simplification</para></listitem>
<listitem><para>Interpolation (nearest neighbor)</para></listitem>
<listitem><para>Opheim</para></listitem>
<listitem><para>Lang</para></listitem>
</itemizedlist>
<para>
The desired tolerance is automatically calculated from the data but can also be changed
in the dock widget.
</para>
</sect1>
<sect1 id="differentiation">
<title>Differentiation</title>
<para>
Numerical differentiation of data can be done specifying:
</para>
<itemizedlist>
<listitem><para>order of derivation (first to sixth order)</para></listitem>
<listitem><para>order of accuracy (up to 4th order, depending on derivation order)</para></listitem>
</itemizedlist>
</sect1>
<sect1 id="integration">
<title>Integration</title>
<para>
Numerical integration of data can be done specifying one of the methods
</para>
<itemizedlist>
<listitem><para>rectangle (1-point) rule</para></listitem>
<listitem><para>trapezoid (2-point) rule</para></listitem>
<listitem><para>Simpson-1/3 (3-point) rule</para></listitem>
<listitem><para>Simpson-3/8 (4-point) rule</para></listitem>
</itemizedlist>
<para>
The default method (trapezoid) should be suitable for most cases.
The number of resulting data points is reduced for both Simpson-rules due to the properties of these methods.
</para>
</sect1>
<sect1 id="interpolation">
<title>Interpolation</title>
<para>
Interpolation of data can be done with several algorithm:
</para>
<itemizedlist>
<listitem><para>linear</para></listitem>
<listitem><para>polynomial (if number of data points < 100)</para></listitem>
<listitem><para>cubic spline</para></listitem>
<listitem><para>cubic spline (periodic)</para></listitem>
<listitem><para>Akima spline</para></listitem>
<listitem><para>Akima spline (periodic)</para></listitem>
<listitem><para>Steffen spline (needs GSL ≥ 2.0)</para></listitem>
<listitem><para>cosine</para></listitem>
<listitem><para>exponential</para></listitem>
<listitem><para>piecewise cubic Hermite (finite differences, Catmull-Rom, cardinal, Kochanek-Bartels)</para></listitem>
<listitem><para>rational functions</para></listitem>
</itemizedlist>
<para>
The interpolating function is calculated with the given number n of data points and evaluated as:
</para>
<itemizedlist>
<listitem><para>function</para></listitem>
<listitem><para>derivative</para></listitem>
<listitem><para>second derivative</para></listitem>
<listitem><para>integral (starting from zero)</para></listitem>
</itemizedlist>
</sect1>
<sect1 id="smoothing">
<title>Smoothing</title>
<para>
A number of different smoothing methods are supported:
</para>
<itemizedlist>
<listitem><para>Moving average (central)</para></listitem>
<listitem><para>Moving average (lagged)</para></listitem>
<listitem><para>Percentile filter</para></listitem>
<listitem><para>Savitzky-Golay</para></listitem>
</itemizedlist>
<para>
All smoothing methods support several padding modes (constant, periodic, mirror, nearest, etc.) for the beginning and end
of the data set. The moving averages support several weight functions (uniform, triangular, binomial, parabolic, tricubic, etc.)
which can be selected to weight the selected data points depending on their distance.
</para>
</sect1>
<sect1 id="fitting">
<title>Curve fitting</title>
<para>
Linear and non-linear curve fitting of data can be done with several predefined fit-models
(for instance polynomial, exponential, Gaussian or custom) to data consisting of x- and y-columns
with an optional weight column. With a custom model any function with unlimited number of parameters
can be used for fitting. The results including statistical properties are displayed in the results text.
</para>
<para>
The start values of the parameter can be set in the parameter dialog. It is also possible to fix any parameter and set lower and upper limits to the values here. Be aware that reducing the parameter space by fixing parameter or specifying limits can slow down convergence or avoid finding a good result. It's always a good idea to remove any parameter limitations when good start values are found.
</para>
<para>
Following options can be set in the options dialog to optimize the fitting:
</para>
<itemizedlist>
<listitem><para>Max. iterations: number of maximum iterations</para></listitem>
<listitem><para>Tolerance: desired tolerance for result</para></listitem>
<listitem><para>Evaluated points: number of points to evaluate the fit function</para></listitem>
<listitem><para>Evaluate full range: evaluate the fit function for the full data range instead of evaluating only for the given x range</para></listitem>
<listitem><para>Use results as new start values: results will be the new parameter start values</para></listitem>
</itemizedlist>
</sect1>
<sect1 id="filter">
<title>Fourier filter</title>
<para>
This function can be used to apply a Fourier filter to any data consisting of x- and y-columns. Supported
filter types are:
</para>
<itemizedlist>
<listitem><para>Low pass</para></listitem>
<listitem><para>High pass</para></listitem>
<listitem><para>Band pass</para></listitem>
<listitem><para>Band reject (band block)</para></listitem>
</itemizedlist>
<para>
where any of them can have the form
</para>
<itemizedlist>
<listitem><para>Ideal</para></listitem>
<listitem><para>Butterworth (order 1 to 10)</para></listitem>
<listitem><para>Chebyshev type I or II (order 1 to 10)</para></listitem>
<listitem><para>Optimal "L"egendre (order 1 to 10)</para></listitem>
<listitem><para>Bessel-Thomson (any order)</para></listitem>
</itemizedlist>
<para>
The cutoff value(s) can be specified in the units frequency (Hertz), fraction (0.0 to 1.0) or index
of the data points.
</para>
</sect1>
<sect1 id="dft">
<title>Fourier transform</title>
<para>
To convert a signal from time to frequency domain or to change between other conjugate variables like
position and momentum (k-space) a discrete Fourier transform can be applied.
Following options can be used to suite one needs:
</para>
<itemizedlist>
<listitem><para>Window function (Welch, Hann, Hamming, etc.) to avoid leakage effects</para></listitem>
<listitem><para>Output (magnitude, amplitude, phase, dB, etc.)</para></listitem>
<listitem><para>One or two sided spectrum with or without shifting</para></listitem>
<listitem><para>X axis scaling to frequency, index or period</para></listitem>
</itemizedlist>
</sect1>
</chapter>
<chapter id="digitization">
<title>Curve Tracing</title>
<sect1 id="uploadimage">
<title>Upload Image</title>
<para>
Datapicker can be created inside a project via <guimenuitem>Add new</guimenuitem> in the context menu of project/folder or in the main toolbar.
After that a new image can be added and can be changed via <guilabel>Plot</guilabel> in the corresponding dock widget.
</para>
<para>
After uploading image different zooming options can be used from the context menu/datapicker toolbar to change width and
height of image. Image can also be rotated to an angle using <guilabel>Rotation</guilabel> in the "edit" section of dock widget. After this
user have to <link linkend="axispoint">set axis points</link>.
</para>
</sect1>
<sect1 id="symbols">
<title>Symbols</title>
<para>
Symbols are the points that can be drawn over image of datapicker. Symbols can be directly created by mouse
right click over the image. Symbols are mainly of two types, with and without error-bar depending on the type of
<link linkend="datapickercurve">curve</link> they belong.
</para>
<para>
Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget.
"SelectAndMove" mouse mode can be used to select multiple points/symbols and can be moved by using navigation keys.
</para>
</sect1>
<sect1 id="axispoint">
<title>Axis Points</title>
<para>
Axis Points are the set of three reference <link linkend="symbols">points</link> over image of datapicker. These points
can be set via <guimenuitem>Set Axis Points</guimenuitem> in the context menu of datapicker. After selecting points over image user have to update
their coordinate system type via <guilabel>Plot Type</guilabel> and logical positions via <guilabel>Ref. Points</guilabel> in the dock widget.
</para>
</sect1>
<sect1 id="datapickercurve">
<title>Datapicker Curve</title>
<para>
Datapicker-Curve can be created inside datapicker via <guimenuitem>New Curve</guimenuitem> in the context menu of datapicker. A curve can have
different types of X and Y errors (No-error, symmetric, asymmetric). This depends on the type of errors dock widget
of datapicker have at the point of creation.
</para>
<para>
Every curve object contains all the curve <link linkend="symbols">points</link> (hidden) and a spreadsheet that contains
logical positions of all its curve points, and provides options to update spreadsheet and to toggle visibility
of its curve points using the context menu. Mode <guimenuitem>Set Curve Points</guimenuitem> in the context menu of datapicker should be
selected in order to create curve points.
</para>
<para>
Multiple curve can be created for same datapicker. The created curve points always correspond to the active
curve of datapicker which can be changed via <guimenuitem>Active Curve</guimenuitem> option in the context menu and dock widget of datapicker.
Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget.
</para>
</sect1>
<sect1 id="curvesegments">
<title>Curve Segments</title>
<para>
Curve segment for datapicker can be created over image by switching mode to <guimenuitem>Select Curve Segments</guimenuitem> in the context menu of
datapicker. A segment is a selectable object over image which can be selected by mouse right click over it.
</para>
<para>
Segments are created by processing of image on the basis range of colour attributes in order to automatically
trace curves. To improve results these range and types of colour attributes can be changed in the "edit"
section of dock-widget. Dock-widget also provides options to switch among processed image and original image,
and to set the minimum possible length of segments.
</para>
<para>
Once a segment is selected it will create curve points over it with a minimum specified distance among them.
The minimum specified distance among the points can be changed in the dock widget of datapicker. User might have
to select the segments again in order to observe the changes.
</para>
</sect1>
</chapter>
<!-- TODO:
Describe import of ascii-data. Import can be done either by importing the
data to an already available spreadsheet or by adding a "File data source".
The latter is more useful for bigger data sets where you don't need a view on
it. A file data source can be updated on file changes and all the xy-curves
consuming the data from this data source will also be updated.
-->
<chapter id="advanced_topics">
<title>Advanced Topics</title>
<para>
Here you will find some explanations of advanced topics.
</para>
<sect1 id="topics">
<title>Topics</title>
<sect2 id="errorbar">
<title>Error bars</title>
<para>If you want to plot data with error bars just import your data with the <link linkend="importdialog">import dialog</link> into your project. Then use the <guilabel>Error bars</guilabel> tab of <link linkend="properties-explorer">the curve properties</link> to select <guilabel>Error type</guilabel>, choose the error column from the <guilabel>Data, +-</guilabel> list. Format of the error bars can be defined using the <guilabel>Format:</guilabel> pane.</para>
</sect2>
<sect2 id="texlabel">
<title>TeX label</title>
<para>For using TeX label you just have to activate the switch button <guiicon>TeX</guiicon> in the <guilabel>Title</guilabel> tab. With that every text you enter in the text box is rendered by TeX and plotted accordingly. Since this conversion takes some time you may see a certain delay when redrawing the plot.</para>
</sect2>
</sect1>
</chapter>
<!-- TODO:
A short tutorial for the basic workflow (create new project, import data,
create worksheet, create plots and layout them, add curves, select columns as
data sources for the curves, add legends, export everything to pdf) would also help to become familiar with the software more quickly.
-->
<chapter id="tutorials">
<title>Short Tutorials</title>
<sect1 id="sineplot">
<title>Building a sine graph with &LabPlot;</title>
<para>
In this chapter you will find explanations on how to build a simple plot for a curve in the Cartesian coordinates from a mathematical equation.
</para>
<screenshot>
<screeninfo>&LabPlot; window after the first start</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function1.png" format="PNG" />
</imageobject>
<textobject>
<phrase>&LabPlot; window after the first start</phrase>
</textobject>
</mediaobject>
</screenshot>
<procedure>
<step>
<para>
Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard.
</para>
<screenshot>
<screeninfo>New &LabPlot; project</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function2.png" format="PNG" />
</imageobject>
<textobject>
<phrase>New &LabPlot; project</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard.
</para>
<screenshot>
<screeninfo>Adding new &LabPlot; worksheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function3.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding new &LabPlot; worksheet</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>two axes, centered</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Adding axes to the plot</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function4.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding axes to the plot</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve from a mathematical equation</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Adding new curve</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function5.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding new curve</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Use the <guilabel>xy-equation-curve properties</guilabel> pane on the right to enter <userinput>sin(x)</userinput> into the <guilabel>y=f(x)</guilabel> field (for the list of available functions please see <xref linkend="parser"/>), <userinput>-6</userinput> into the <guilabel>x, min</guilabel> field, <userinput>6</userinput> into the <guilabel>x, max</guilabel> field and click on the <guibutton>Recalculate</guibutton> button to see the result.
</para>
<screenshot>
<screeninfo>The default curve plot</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function6.png" format="PNG" />
</imageobject>
<textobject>
<phrase>The default curve plot</phrase>
</textobject>
</mediaobject>
</screenshot>
<note>
<para>
&LabPlot; highlights unknown syntax in the <guilabel>y=f(x)</guilabel> field. This is useful to control the correctness of the input.
</para>
</note>
<important>
<para>
The list of the known functions can be found in <link linkend="parser">corresponding section of this manual</link>.
</para>
</important>
</step>
<step>
<para>
Switch to the <guilabel>Line</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>cubic spline (natural)</guimenuitem> from the <guilabel>Type</guilabel> drop down box.
</para>
<screenshot>
<screeninfo>Choosing the line type</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function7.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding the line type</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Switch to the <guilabel>Symbol</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>none</guimenuitem> from the <guilabel>Style</guilabel> drop down list.
</para>
<screenshot>
<screeninfo>Removing symbols from the plot</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function8.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Removing symbols from the plot</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>legend</guimenuitem></menuchoice>. Switch to the <guilabel>Title</guilabel> tab on the <guilabel>Cartesian plot legend properties</guilabel> pane and enter <userinput>Graph of sine</userinput> into the <guilabel>Text</guilabel> field.
</para>
<screenshot>
<screeninfo>Changing the legend title</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function9.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Changing the legend title</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Choose <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice> from the main menu. Select the place and the format to save the plot.
</para>
<screenshot>
<screeninfo>Exporting the plot</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function10.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Exporting the plot</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
</procedure>
</sect1>
<sect1 id="spreadsheetplot">
<title>Building a graph from spreadsheet data with &LabPlot;</title>
<para>
In this chapter you will find explanations on how to build a simple plot from spreadsheet data.
</para>
<screenshot>
<screeninfo>&LabPlot; window after the first start</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function1.png" format="PNG" />
</imageobject>
<textobject>
<phrase>&LabPlot; window after the first start</phrase>
</textobject>
</mediaobject>
</screenshot>
<procedure>
<step>
<para>
Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard.
</para>
<screenshot>
<screeninfo>New &LabPlot; project</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-xy-function2.png" format="PNG" />
</imageobject>
<textobject>
<phrase>New &LabPlot; project</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Spreadsheet</guimenuitem></menuchoice> or press <keycombo>&Ctrl;<keycap>=</keycap></keycombo> on the keyboard.
</para>
<screenshot>
<screeninfo>Adding new &LabPlot; spreadsheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet1.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding new &LabPlot; spreadsheet</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the header of the first column of the spreadsheet with the &LMB; then click on any of its cells with &RMB; and choose <menuchoice><guimenu>Selection</guimenu><guisubmenu>Fill Selection with</guisubmenu><guimenuitem>Row Numbers</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Filling the first column of the spreadsheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet2.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Filling the first column of the spreadsheet</phrase>
</textobject>
</mediaobject>
</screenshot>
<para>
Select <guimenuitem>Automatic (g)</guimenuitem> from the <guilabel>Format</guilabel> drop down box on the <guilabel>Column properties</guilabel> right dock to enhance data presentation for the first column.
</para>
</step>
<step>
<para>
Click on the header of the second column of the spreadsheet with the &RMB; and choose <menuchoice><guimenu>Generate Data</guimenu><guimenuitem>Random Values</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Filling the second column of the spreadsheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet3.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Filling the second column of the spreadsheet</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard.
</para>
<screenshot>
<screeninfo>Adding new &LabPlot; worksheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet4.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding new &LabPlot; worksheet</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>box plot, four axes</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Adding axes to the plot</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet5.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding axes to the plot</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Adding new curve</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet6.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Adding new curve</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Use the <guilabel>xy-curve properties</guilabel> pane on the right to select <menuchoice><guimenu>Project</guimenu><guisubmenu>Spreadsheet</guisubmenu><guimenuitem>1</guimenuitem></menuchoice> in the <guilabel>x-data</guilabel> field (just click on the item and press &Enter;). Use the same procedure to select <guimenuitem>2</guimenuitem> for the <guilabel>y-data</guilabel> field. The results will be shown on the worksheet immediately.
</para>
<screenshot>
<screeninfo>The plot for the unsorted data</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet7.png" format="PNG" />
</imageobject>
<textobject>
<phrase>The plot for the unsorted data</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Spreadsheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; then click on the second column header with the &RMB; and choose <menuchoice><guimenu>Sort</guimenu><guimenuitem>Ascending</guimenuitem></menuchoice>.
</para>
<screenshot>
<screeninfo>Sorting the second column of the spreadsheet</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet8.png" format="PNG" />
</imageobject>
<textobject>
<phrase>Sorting the second column of the spreadsheet</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
<step>
<para>
Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; to see the results.
</para>
<screenshot>
<screeninfo>The plot for the sorted data</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="tutorial-spreadsheet9.png" format="PNG" />
</imageobject>
<textobject>
<phrase>The plot for the sorted data</phrase>
</textobject>
</mediaobject>
</screenshot>
</step>
</procedure>
</sect1>
</chapter>
<chapter id="examples">
<title>Examples</title>
<sect1 id="example-2d-plotting">
<title>2D Plotting</title>
<para>Coming soon ...
</para>
</sect1>
<sect1 id="example-signal">
<title>Signal processing</title>
<para>
</para>
<variablelist>
<varlistentry>
<term>Fourier filter</term>
<listitem>
<para>A time signal containing Morse code is Fourier transformed to frequency space to see the main component. By applying a narrow band pass filter the Morse signal is extracted and a nice ‘SOS’ can be seen:
</para>
<screenshot>
<mediaobject><imageobject><imagedata fileref="example-fourier_filter-1024x532.png"/>
</imageobject></mediaobject>
</screenshot>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="example-computing">
<title>Computing</title>
<para>
</para>
<variablelist>
<varlistentry>
<term>Maxima</term>
<listitem>
<para>Maxima session showing the chaotic dynamics of the Duffing oscillator.
The differential equation of the forced oscillator are solved with Maxima.
Plots of the trajectory, the phase space of the oscillator and the corresponding Poincaré map are done with LabPlot:
</para>
<screenshot>
<mediaobject><imageobject><imagedata fileref="example-maxima_2-1024x532.png"/>
</imageobject></mediaobject>
</screenshot>
</listitem>
</varlistentry>
<varlistentry>
<term>Python</term>
<listitem>
<para>Python session illustrating the effect of Blackman windowing on the Fourier transform:
</para>
<screenshot>
<mediaobject><imageobject><imagedata fileref="example-FFT_python-1024x532.png"/>
</imageobject></mediaobject>
</screenshot>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="example-import-export">
<title>Import/Export</title>
<para>Coming soon ...
</para>
</sect1>
<sect1 id="example-tools">
<title>Tools</title>
<para>Coming soon ...
</para>
</sect1>
</chapter>
<chapter id="parser">
<title>Parser functions</title>
<para>
The &LabPlot; parser allows you to use following functions:
</para>
<sect1 id="parser-standard">
<title>Standard functions</title>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Function</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>cbrt(x)</entry><entry><action>Cube root</action></entry></row>
<row><entry>ceil(x)</entry><entry><action>Truncate upward to integer</action></entry></row>
<row><entry>fabs(x)</entry><entry><action>Absolute value</action></entry></row>
<row><entry>gamma(x)</entry><entry><action>Gamma function</action></entry></row>
<row><entry>ldexp(x,y)</entry><entry><action>x * 2<superscript>y</superscript></action></entry></row>
<row><entry>ln(x)</entry><entry><action>Logarithm, base e</action></entry></row>
<row><entry>log(x)</entry><entry><action>Logarithm, base e</action></entry></row>
<row><entry>log1p(x)</entry><entry><action>log(1+x)</action></entry></row>
<row><entry>log10(x)</entry><entry><action>Logarithm, base 10</action></entry></row>
<row><entry>logb(x)</entry><entry><action>Radix-independent exponent</action></entry></row>
<row><entry>pow(x,n)</entry><entry><action>power function x<superscript>n</superscript></action></entry></row>
<row><entry>powint(x,n)</entry><entry><action>integer power function x<superscript>n</superscript></action></entry></row>
<row><entry>pow2(x)</entry><entry><action>power function x<superscript>2</superscript></action></entry></row>
<row><entry>pow3(x)</entry><entry><action>power function x<superscript>3</superscript></action></entry></row>
<row><entry>pow4(x)</entry><entry><action>power function x<superscript>4</superscript></action></entry></row>
<row><entry>pow5(x)</entry><entry><action>power function x<superscript>5</superscript></action></entry></row>
<row><entry>pow6(x)</entry><entry><action>power function x<superscript>6</superscript></action></entry></row>
<row><entry>pow7(x)</entry><entry><action>power function x<superscript>7</superscript></action></entry></row>
<row><entry>pow8(x)</entry><entry><action>power function x<superscript>8</superscript></action></entry></row>
<row><entry>pow9(x)</entry><entry><action>power function x<superscript>9</superscript></action></entry></row>
<row><entry>rint(x)</entry><entry><action>round to nearest integer</action></entry></row>
<row><entry>round(x)</entry><entry><action>round to nearest integer</action></entry></row>
<row><entry>sqrt(x)</entry><entry><action>Square root</action></entry></row>
<row><entry>tgamma(x)</entry><entry><action>Gamma function</action></entry></row>
<row><entry>trunc(x)</entry><entry><action>Returns the greatest integer less than or equal to x</action></entry></row>
</tbody></tgroup></informaltable>
</sect1>
<sect1 id="parser-trig">
<title>Trigonometric functions</title>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Function</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>sin(x)</entry><entry><action>Sine</action></entry></row>
<row><entry>cos(x)</entry><entry><action>Cosine</action></entry></row>
<row><entry>tan(x)</entry><entry><action>Tangent</action></entry></row>
<row><entry>asin(x)</entry><entry><action>Inverse sine</action></entry></row>
<row><entry>acos(x)</entry><entry><action>Inverse cosine</action></entry></row>
<row><entry>atan(x)</entry><entry><action>Inverse tangent</action></entry></row>
<row><entry>atan2(y,x)</entry><entry><action>Inverse tangent function of two variables</action></entry></row>
<row><entry>sinh(x)</entry><entry><action>Hyperbolic sine</action></entry></row>
<row><entry>cosh(x)</entry><entry><action>Hyperbolic cosine</action></entry></row>
<row><entry>tanh(x)</entry><entry><action>Hyperbolic tangent</action></entry></row>
<row><entry>asinh(x)</entry><entry><action>Inverse hyperbolic sine</action></entry></row>
<row><entry>acosh(x)</entry><entry><action>Inverse hyperbolic cosine</action></entry></row>
<row><entry>atanh(x)</entry><entry><action>Inverse hyperbolic tangent</action></entry></row>
<row><entry>sec(x)</entry><entry><action>Secant</action></entry></row>
<row><entry>csc(x)</entry><entry><action>Cosecant</action></entry></row>
<row><entry>cot(x)</entry><entry><action>Cotangent</action></entry></row>
<row><entry>asec(x)</entry><entry><action>Inverse secant</action></entry></row>
<row><entry>acsc(x)</entry><entry><action>Inverse cosecant</action></entry></row>
<row><entry>acot(x)</entry><entry><action>Inverse cotangent</action></entry></row>
<row><entry>sech(x)</entry><entry><action>Hyperbolic secant</action></entry></row>
<row><entry>csch(x)</entry><entry><action>Hyperbolic cosecant</action></entry></row>
<row><entry>coth(x)</entry><entry><action>Hyperbolic cotangent</action></entry></row>
<row><entry>asech(x)</entry><entry><action>Inverse hyperbolic secant</action></entry></row>
<row><entry>acsch(x)</entry><entry><action>Inverse hyperbolic cosecant</action></entry></row>
<row><entry>acoth(x)</entry><entry><action>Inverse hyperbolic cotangent</action></entry></row>
<row><entry>sinc(x)</entry><entry><action>Sinc function sin(π x) / (π x)</action></entry></row>
<row><entry>logsinh(x)</entry><entry><action>log(sinh(x)) for x > 0</action></entry></row>
<row><entry>logcosh(x)</entry><entry><action>log(cosh(x))</action></entry></row>
<row><entry>hypot(x,y)</entry><entry><action>Hypotenuse function √{x<superscript>2</superscript> + y<superscript>2</superscript>}</action></entry></row>
<row><entry>hypot3(x,y,z)</entry><entry><action>√{x<superscript>2</superscript> + y<superscript>2</superscript> + z<superscript>2</superscript>}</action></entry></row>
<row><entry>anglesymm(α)</entry><entry><action>force the angle α to lie in the range (-π,π]</action></entry></row>
<row><entry>anglepos(α)</entry><entry><action>force the angle α to lie in the range (0,2π]</action></entry></row>
</tbody></tgroup></informaltable>
</sect1>
<sect1 id="parser-gsl">
<title>Special functions</title>
<para>
For more information about the functions see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Function</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>Ai(x)</entry><entry><action>Airy function Ai(x)</action></entry></row>
<row><entry>Bi(x)</entry><entry><action>Airy function Bi(x)</action></entry></row>
<row><entry>Ais(x)</entry><entry><action>scaled version of the Airy function S<subscript>Ai</subscript>(x)</action></entry></row>
<row><entry>Bis(x)</entry><entry><action>scaled version of the Airy function S<subscript>Bi</subscript>(x)</action></entry></row>
<row><entry>Aid(x)</entry><entry><action>Airy function derivative Ai'(x)</action></entry></row>
<row><entry>Bid(x)</entry><entry><action>Airy function derivative Bi'(x)</action></entry></row>
<row><entry>Aids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Ai</subscript>(x)</action></entry></row>
<row><entry>Bids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Bi</subscript>(x)</action></entry></row>
<row><entry>Ai0(s)</entry><entry><action>s-th zero of the Airy function Ai(x)</action></entry></row>
<row><entry>Bi0(s)</entry><entry><action>s-th zero of the Airy function Bi(x)</action></entry></row>
<row><entry>Aid0(s)</entry><entry><action>s-th zero of the Airy function derivative Ai'(x)</action></entry></row>
<row><entry>Bid0(s)</entry><entry><action>s-th zero of the Airy function derivative Bi'(x)</action></entry></row>
<row><entry>J0(x)</entry><entry><action>regular cylindrical Bessel function of zeroth order, J<subscript>0</subscript>(x)</action></entry></row>
<row><entry>J1(x)</entry><entry><action>regular cylindrical Bessel function of first order, J<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Jn(n,x)</entry><entry><action>regular cylindrical Bessel function of order n, J<subscript>n</subscript>(x)</action></entry></row>
<row><entry>Y0(x)</entry><entry><action>irregular cylindrical Bessel function of zeroth order, Y<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Y1(x)</entry><entry><action>irregular cylindrical Bessel function of first order, Y<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Yn(n,x)</entry><entry><action>irregular cylindrical Bessel function of order n, Y<subscript>n</subscript>(x)</action></entry></row>
<row><entry>I0(x)</entry><entry><action>regular modified cylindrical Bessel function of zeroth order, I<subscript>0</subscript>(x)</action></entry></row>
<row><entry>I1(x)</entry><entry><action>regular modified cylindrical Bessel function of first order, I<subscript>1</subscript>(x)</action></entry></row>
<row><entry>In(n,x)</entry><entry><action>regular modified cylindrical Bessel function of order n, I<subscript>n</subscript>(x)</action></entry></row>
<row><entry>I0s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of zeroth order, exp (-|x|) I<subscript>0</subscript>(x)</action></entry></row>
<row><entry>I1s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of first order, exp(-|x|) I<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Ins(n,x)</entry><entry><action>scaled regular modified cylindrical Bessel function of order n, exp(-|x|) I<subscript>n</subscript>(x)</action></entry></row>
<row><entry>K0(x)</entry><entry><action>irregular modified cylindrical Bessel function of zeroth order, K<subscript>0</subscript>(x)</action></entry></row>
<row><entry>K1(x)</entry><entry><action>irregular modified cylindrical Bessel function of first order, K<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Kn(n,x)</entry><entry><action>irregular modified cylindrical Bessel function of order n, K<subscript>n</subscript>(x)</action></entry></row>
<row><entry>K0s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of zeroth order, exp(x) K<subscript>0</subscript>(x)</action></entry></row>
<row><entry>K1s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of first order, exp(x) K<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Kns(n,x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of order n, exp(x) K<subscript>n</subscript>(x)</action></entry></row>
<row><entry>j0(x)</entry><entry><action>regular spherical Bessel function of zeroth order, j<subscript>0</subscript>(x)</action></entry></row>
<row><entry>j1(x)</entry><entry><action>regular spherical Bessel function of first order, j<subscript>1</subscript>(x)</action></entry></row>
<row><entry>j2(x)</entry><entry><action>regular spherical Bessel function of second order, j<subscript>2</subscript>(x)</action></entry></row>
<row><entry>jl(l,x)</entry><entry><action>regular spherical Bessel function of order l, j<subscript>l</subscript>(x)</action></entry></row>
<row><entry>y0(x)</entry><entry><action>irregular spherical Bessel function of zeroth order, y<subscript>0</subscript>(x)</action></entry></row>
<row><entry>y1(x)</entry><entry><action>irregular spherical Bessel function of first order, y<subscript>1</subscript>(x)</action></entry></row>
<row><entry>y2(x)</entry><entry><action>irregular spherical Bessel function of second order, y<subscript>2</subscript>(x)</action></entry></row>
<row><entry>yl(l,x)</entry><entry><action>irregular spherical Bessel function of order l, y<subscript>l</subscript>(x)</action></entry></row>
<row><entry>i0s(x)</entry><entry><action>scaled regular modified spherical Bessel function of zeroth order, exp(-|x|) i<subscript>0</subscript>(x)</action></entry></row>
<row><entry>i1s(x)</entry><entry><action>scaled regular modified spherical Bessel function of first order, exp(-|x|) i<subscript>1</subscript>(x)</action></entry></row>
<row><entry>i2s(x)</entry><entry><action>scaled regular modified spherical Bessel function of second order, exp(-|x|) i<subscript>2</subscript>(x)</action></entry></row>
<row><entry>ils(l,x)</entry><entry><action>scaled regular modified spherical Bessel function of order l, exp(-|x|) i<subscript>l</subscript>(x)</action></entry></row>
<row><entry>k0s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of zeroth order, exp(x) k<subscript>0</subscript>(x)</action></entry></row>
<row><entry>k1s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of first order, exp(x) k<subscript>1</subscript>(x)</action></entry></row>
<row><entry>k2s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of second order, exp(x) k<subscript>2</subscript>(x)</action></entry></row>
<row><entry>kls(l,x)</entry><entry><action>scaled irregular modified spherical Bessel function of order l, exp(x) k<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Jnu(ν,x)</entry><entry><action>regular cylindrical Bessel function of fractional order ν, J<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>Ynu(ν,x)</entry><entry><action>irregular cylindrical Bessel function of fractional order ν, Y<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>Inu(ν,x)</entry><entry><action>regular modified Bessel function of fractional order ν, I<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>Inus(ν,x)</entry><entry><action>scaled regular modified Bessel function of fractional order ν, exp(-|x|) I<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>Knu(ν,x)</entry><entry><action>irregular modified Bessel function of fractional order ν, K<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>lnKnu(ν,x)</entry><entry><action>logarithm of the irregular modified Bessel function of fractional order ν,ln(K<subscript>ν</subscript>(x))</action></entry></row>
<row><entry>Knus(ν,x)</entry><entry><action>scaled irregular modified Bessel function of fractional order ν, exp(|x|) K<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>J0_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>0</subscript>(x)</action></entry></row>
<row><entry>J1_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Jnu_0(nu,s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>ν</subscript>(x)</action></entry></row>
<row><entry>clausen(x)</entry><entry><action>Clausen integral Cl<subscript>2</subscript>(x)</action></entry></row>
<row><entry>hydrogenicR_1(Z,R)</entry><entry><action>lowest-order normalized hydrogenic bound state radial wavefunction R<subscript>1</subscript> := 2Z √Z exp(-Z r)</action></entry></row>
<row><entry>hydrogenicR(n,l,Z,R)</entry><entry><action>n-th normalized hydrogenic bound state radial wavefunction</action></entry></row>
<row><entry>dawson(x)</entry><entry><action>Dawson's integral</action></entry></row>
<row><entry>D1(x)</entry><entry><action>first-order Debye function D<subscript>1</subscript>(x) = (1/x) ∫<subscript>0</subscript><superscript>x</superscript>(t/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D2(x)</entry><entry><action>second-order Debye function D<subscript>2</subscript>(x) = (2/x<superscript>2</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>2</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D3(x)</entry><entry><action>third-order Debye function D<subscript>3</subscript>(x) = (3/x<superscript>3</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>3</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D4(x)</entry><entry><action>fourth-order Debye function D<subscript>4</subscript>(x) = (4/x<superscript>4</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>4</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D5(x)</entry><entry><action>fifth-order Debye function D<subscript>5</subscript>(x) = (5/x<superscript>5</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>5</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D6(x)</entry><entry><action>sixth-order Debye function D<subscript>6</subscript>(x) = (6/x<superscript>6</superscript>) ∫<subscript>0</subscript><superscript>x</superscript> (t<superscript>6</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>Li2(x)</entry><entry><action>dilogarithm</action></entry></row>
<row><entry>Kc(k)</entry><entry><action>complete elliptic integral K(k)</action></entry></row>
<row><entry>Ec(k)</entry><entry><action>complete elliptic integral E(k)</action></entry></row>
<row><entry>F(phi,k)</entry><entry><action>incomplete elliptic integral F(phi,k)</action></entry></row>
<row><entry>E(phi,k)</entry><entry><action>incomplete elliptic integral E(phi,k)</action></entry></row>
<row><entry>P(phi,k,n)</entry><entry><action>incomplete elliptic integral P(phi,k,n)</action></entry></row>
<row><entry>D(phi,k,n)</entry><entry><action>incomplete elliptic integral D(phi,k,n)</action></entry></row>
<row><entry>RC(x,y)</entry><entry><action>incomplete elliptic integral RC(x,y)</action></entry></row>
<row><entry>RD(x,y,z)</entry><entry><action>incomplete elliptic integral RD(x,y,z)</action></entry></row>
<row><entry>RF(x,y,z)</entry><entry><action>incomplete elliptic integral RF(x,y,z)</action></entry></row>
<row><entry>RJ(x,y,z)</entry><entry><action>incomplete elliptic integral RJ(x,y,z,p)</action></entry></row>
<row><entry>erf(x)</entry><entry><action>error function erf(x) = 2/√π ∫<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row>
<row><entry>erfc(x)</entry><entry><action>complementary error function erfc(x) = 1 - erf(x) = 2/√π ∫<subscript>x</subscript><superscript>∞</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row>
<row><entry>log_erfc(x)</entry><entry><action>logarithm of the complementary error function log(erfc(x))</action></entry></row>
<row><entry>erf_Z(x)</entry><entry><action>Gaussian probability function Z(x) = (1/(2π)) exp(-x<superscript>2</superscript>/2)</action></entry></row>
<row><entry>erf_Q(x)</entry><entry><action>upper tail of the Gaussian probability function Q(x) = (1/(2π)) ∫<subscript>x</subscript><superscript>∞</superscript> exp(-t<superscript>2</superscript>/2) dt</action></entry></row>
<row><entry>hazard(x)</entry><entry><action>hazard function for the normal distribution</action></entry></row>
<row><entry>exp(x)</entry><entry><action>Exponential, base e</action></entry></row>
<row><entry>expm1(x)</entry><entry><action>exp(x)-1</action></entry></row>
<row><entry>exp_mult(x,y)</entry><entry><action>exponentiate x and multiply by the factor y to return the product y exp(x)</action></entry></row>
<row><entry>exprel(x)</entry><entry><action>(exp(x)-1)/x using an algorithm that is accurate for small x</action></entry></row>
<row><entry>exprel2(x)</entry><entry><action>2(exp(x)-1-x)/x<superscript>2</superscript> using an algorithm that is accurate for small x</action></entry></row>
<row><entry>expreln(n,x)</entry><entry><action>n-relative exponential, which is the n-th generalization of the functions `exprel'</action></entry></row>
<row><entry>E1(x)</entry><entry><action>exponential integral E<subscript>1</subscript>(x), E<subscript>1</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t dt</action></entry></row>
<row><entry>E2(x)</entry><entry><action>second-order exponential integral E<subscript>2</subscript>(x), E<subscript>2</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t<superscript>2</superscript> dt</action></entry></row>
<row><entry>En(x)</entry><entry><action>exponential integral E_n(x) of order n, E<subscript>n</subscript>(x) := Re ∫<subscript>1</subscript><superscript>∞</superscript> exp(-xt)/t<superscript>n</superscript> dt)</action></entry></row>
<row><entry>Ei(x)</entry><entry><action>exponential integral E_i(x), Ei(x) := PV(∫<subscript>-x</subscript><superscript>∞</superscript> exp(-t)/t dt)</action></entry></row>
<row><entry>shi(x)</entry><entry><action>Shi(x) = ∫<subscript>0</subscript><superscript>x</superscript> sinh(t)/t dt</action></entry></row>
<row><entry>chi(x)</entry><entry><action>integral Chi(x) := Re[ γ<subscript>E</subscript> + log(x) + ∫<subscript>0</subscript><superscript>x</superscript> (cosh[t]-1)/t dt ]</action></entry></row>
<row><entry>Ei3(x)</entry><entry><action>exponential integral Ei<subscript>3</subscript>(x) = ∫<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>3</superscript>) dt for x >= 0</action></entry></row>
<row><entry>si(x)</entry><entry><action>Sine integral Si(x) = ∫<subscript>0</subscript><superscript>x</superscript> sin(t)/t dt</action></entry></row>
<row><entry>ci(x)</entry><entry><action>Cosine integral Ci(x) = -∫<subscript>x</subscript><superscript>∞</superscript> cos(t)/t dt for x > 0</action></entry></row>
<row><entry>atanint(x)</entry><entry><action>Arctangent integral AtanInt(x) = ∫<subscript>0</subscript><superscript>x</superscript> arctan(t)/t dt</action></entry></row>
<row><entry>Fm1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of -1, F<subscript>-1</subscript>(x) = e<superscript>x</superscript> / (1 + e<superscript>x</superscript>)</action></entry></row>
<row><entry>F0(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 0, F<subscript>0</subscript>(x) = ln(1 + e<superscript>x</superscript>)</action></entry></row>
<row><entry>F1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 1, F<subscript>1</subscript>(x) = ∫<subscript>0</subscript><superscript>∞</superscript> (t /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>F2(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 2, F<subscript>2</subscript>(x) = (1/2) ∫<subscript>0</subscript><superscript>∞</superscript> (t<superscript>2</superscript> /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>Fj(j,x)</entry><entry><action>complete Fermi-Dirac integral with an index of j, F<subscript>j</subscript>(x) = (1/Γ(j+1)) ∫<subscript>0</subscript><superscript>∞</superscript> (t<superscript>j</superscript> /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>Fmhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>-1/2</subscript>(x)</action></entry></row>
<row><entry>Fhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>1/2</subscript>(x)</action></entry></row>
<row><entry>F3half(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>3/2</subscript>(x)</action></entry></row>
<row><entry>Finc0(x,b)</entry><entry><action>incomplete Fermi-Dirac integral with an index of zero, F<subscript>0</subscript>(x,b) = ln(1 + e<superscript>b-x</superscript>) - (b-x)</action></entry></row>
<row><entry>lngamma(x)</entry><entry><action>logarithm of the Gamma function</action></entry></row>
<row><entry>gammastar(x)</entry><entry><action>regulated Gamma Function Γ<superscript>*</superscript>(x) for x > 0</action></entry></row>
<row><entry>gammainv(x)</entry><entry><action>reciprocal of the gamma function, 1/Γ(x) using the real Lanczos method.</action></entry></row>
<row><entry>fact(n)</entry><entry><action>factorial n!</action></entry></row>
<row><entry>doublefact(n)</entry><entry><action>double factorial n!! = n(n-2)(n-4)...</action></entry></row>
<row><entry>lnfact(n)</entry><entry><action>logarithm of the factorial of n, log(n!)</action></entry></row>
<row><entry>lndoublefact(n)</entry><entry><action>logarithm of the double factorial log(n!!)</action></entry></row>
<row><entry>choose(n,m)</entry><entry><action>combinatorial factor `n choose m' = n!/(m!(n-m)!)</action></entry></row>
<row><entry>lnchoose(n,m)</entry><entry><action>logarithm of `n choose m'</action></entry></row>
<row><entry>taylor(n,x)</entry><entry><action>Taylor coefficient x<superscript>n</superscript> / n! for x >= 0, n >= 0</action></entry></row>
<row><entry>poch(a,x)</entry><entry><action>Pochhammer symbol (a)<subscript>x</subscript> := Γ(a + x)/Γ(x)</action></entry></row>
<row><entry>lnpoch(a,x)</entry><entry><action>logarithm of the Pochhammer symbol (a)<subscript>x</subscript> := Γ(a + x)/Γ(x)</action></entry></row>
<row><entry>pochrel(a,x)</entry><entry><action>relative Pochhammer symbol ((a,x) - 1)/x where (a,x) = (a)<subscript>x</subscript> := Γ(a + x)/Γ(a)</action></entry></row>
<row><entry>gammainc(a,x)</entry><entry><action>incomplete Gamma Function Γ(a,x) = ∫<subscript>x</subscript><superscript>∞</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row>
<row><entry>gammaincQ(a,x)</entry><entry><action>normalized incomplete Gamma Function P(a,x) = 1/Γ(a) ∫<subscript>x</subscript><superscript>∞</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row>
<row><entry>gammaincP(a,x)</entry><entry><action>complementary normalized incomplete Gamma Function P(a,x) = 1/Γ(a) ∫<subscript>0</subscript><superscript>x</superscript> t<superscript>a-1</superscript> exp(-t) dt for a > 0, x >= 0</action></entry></row>
<row><entry>beta(a,b)</entry><entry><action>Beta Function, B(a,b) = Γ(a) Γ(b)/Γ(a+b) for a > 0, b > 0</action></entry></row>
<row><entry>lnbeta(a,b)</entry><entry><action>logarithm of the Beta Function, log(B(a,b)) for a > 0, b > 0</action></entry></row>
<row><entry>betainc(a,b,x)</entry><entry><action>normalize incomplete Beta function B_x(a,b)/B(a,b) for a > 0, b > 0 </action></entry></row>
<row><entry>C1(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>1</subscript>(x)</action></entry></row>
<row><entry>C2(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>2</subscript>(x)</action></entry></row>
<row><entry>C3(λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>3</subscript>(x)</action></entry></row>
<row><entry>Cn(n,λ,x)</entry><entry><action>Gegenbauer polynomial C<superscript>λ</superscript><subscript>n</subscript>(x)</action></entry></row>
<row><entry>hyperg_0F1(c,x)</entry><entry><action>hypergeometric function <subscript>0</subscript>F<subscript>1</subscript>(c,x)</action></entry></row>
<row><entry>hyperg_1F1i(m,n,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(m,n,x) = M(m,n,x) for integer parameters m, n</action></entry></row>
<row><entry>hyperg_1F1(a,b,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(a,b,x) = M(a,b,x) for general parameters a,b</action></entry></row>
<row><entry>hyperg_Ui(m,n,x)</entry><entry><action>confluent hypergeometric function U(m,n,x) for integer parameters m,n</action></entry></row>
<row><entry>hyperg_U(a,b,x)</entry><entry><action>confluent hypergeometric function U(a,b,x)</action></entry></row>
<row><entry>hyperg_2F1(a,b,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x)</action></entry></row>
<row><entry>hyperg_2F1c(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) with complex parameters</action></entry></row>
<row><entry>hyperg_2F1r(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x) / Γ(c)</action></entry></row>
<row><entry>hyperg_2F1cr(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) / Γ(c)</action></entry></row>
<row><entry>hyperg_2F0(a,b,x)</entry><entry><action>hypergeometric function <subscript>2</subscript>F<subscript>0</subscript>(a,b,x)</action></entry></row>
<row><entry>L1(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>1</subscript>(x)</action></entry></row>
<row><entry>L2(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>2</subscript>(x)</action></entry></row>
<row><entry>L3(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>3</subscript>(x)</action></entry></row>
<row><entry>W0(x)</entry><entry><action>principal branch of the Lambert W function, W<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Wm1(x)</entry><entry><action>secondary real-valued branch of the Lambert W function, W<subscript>-1</subscript>(x)</action></entry></row>
<row><entry>P1(x)</entry><entry><action>Legendre polynomials P<subscript>1</subscript>(x)</action></entry></row>
<row><entry>P2(x)</entry><entry><action>Legendre polynomials P<subscript>2</subscript>(x)</action></entry></row>
<row><entry>P3(x)</entry><entry><action>Legendre polynomials P<subscript>3</subscript>(x)</action></entry></row>
<row><entry>Pl(l,x)</entry><entry><action>Legendre polynomials P<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Q0(x)</entry><entry><action>Legendre polynomials Q<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Q1(x)</entry><entry><action>Legendre polynomials Q<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Ql(l,x)</entry><entry><action>Legendre polynomials Q<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Plm(l,m,x)</entry><entry><action>associated Legendre polynomial P<subscript>l</subscript><superscript>m</superscript>(x)</action></entry></row>
<row><entry>Pslm(l,m,x)</entry><entry><action>normalized associated Legendre polynomial √{(2l+1)/(4π)} √{(l-m)!/(l+m)!} P<subscript>l</subscript><superscript>m</superscript>(x) suitable for use in spherical harmonics</action></entry></row>
<row><entry>Phalf(λ,x)</entry><entry><action>irregular Spherical Conical Function P<superscript>1/2</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row>
<row><entry>Pmhalf(λ,x)</entry><entry><action>regular Spherical Conical Function P<superscript>-1/2</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row>
<row><entry>Pc0(λ,x)</entry><entry><action>conical function P<superscript>0</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row>
<row><entry>Pc1(λ,x)</entry><entry><action>conical function P<superscript>1</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1</action></entry></row>
<row><entry>Psr(l,λ,x)</entry><entry><action>Regular Spherical Conical Function P<superscript>-1/2-l</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1, l >= -1</action></entry></row>
<row><entry>Pcr(l,λ,x)</entry><entry><action>Regular Cylindrical Conical Function P<superscript>-m</superscript><subscript>-1/2 + i λ</subscript>(x) for x > -1, m >= -1</action></entry></row>
<row><entry>H3d0(λ,η)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>0</subscript>(λ,,η) := sin(λ η)/(λ sinh(η)) for η >= 0</action></entry></row>
<row><entry>H3d1(λ,η)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>1</subscript>(λ,η) := 1/√{λ<superscript>2</superscript> + 1} sin(λ η)/(λ sinh(η)) (coth(η) - λ cot(λ η)) for η >= 0</action></entry></row>
<row><entry>H3d(l,λ,η)</entry><entry><action>L'th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space eta >= 0, l >= 0</action></entry></row>
<row><entry>logabs(x)</entry><entry><action>logarithm of the magnitude of X, log(|x|)</action></entry></row>
<row><entry>logp(x)</entry><entry><action>log(1 + x) for x > -1 using an algorithm that is accurate for small x</action></entry></row>
<row><entry>logm(x)</entry><entry><action>log(1 + x) - x for x > -1 using an algorithm that is accurate for small x</action></entry></row>
<row><entry>psiint(n)</entry><entry><action>digamma function ψ(n) for positive integer n</action></entry></row>
<row><entry>psi(x)</entry><entry><action>digamma function ψ(n) for general x</action></entry></row>
<row><entry>psi1piy(y)</entry><entry><action>real part of the digamma function on the line 1+i y, Re[ψ(1 + i y)]</action></entry></row>
<row><entry>psi1int(n)</entry><entry><action>Trigamma function ψ'(n) for positive integer n</action></entry></row>
<row><entry>psi1(n)</entry><entry><action>Trigamma function ψ'(x) for general x</action></entry></row>
<row><entry>psin(m,x)</entry><entry><action>polygamma function ψ<superscript>(m)</superscript>(x) for m >= 0, x > 0</action></entry></row>
<row><entry>synchrotron1(x)</entry><entry><action>first synchrotron function x ∫<subscript>x</subscript><superscript>∞</superscript> K<subscript>5/3</subscript>(t) dt for x >= 0</action></entry></row>
<row><entry>synchrotron2(x)</entry><entry><action>second synchrotron function x K<subscript>2/3</subscript>(x) for x >= 0</action></entry></row>
<row><entry>J2(x)</entry><entry><action>transport function J(2,x)</action></entry></row>
<row><entry>J3(x)</entry><entry><action>transport function J(3,x)</action></entry></row>
<row><entry>J4(x)</entry><entry><action>transport function J(4,x)</action></entry></row>
<row><entry>J5(x)</entry><entry><action>transport function J(5,x)</action></entry></row>
<row><entry>zetaint(n)</entry><entry><action>Riemann zeta function ζ(n) for integer n</action></entry></row>
<row><entry>zeta(s)</entry><entry><action>Riemann zeta function ζ(s) for arbitrary s</action></entry></row>
<row><entry>zetam1int(n)</entry><entry><action>Riemann ζ function minus 1 for integer n</action></entry></row>
<row><entry>zetam1(s)</entry><entry><action>Riemann ζ function minus 1</action></entry></row>
<row><entry>zetaintm1(s)</entry><entry><action>Riemann ζ function for integer n minus 1</action></entry></row>
<row><entry>hzeta(s,q)</entry><entry><action>Hurwitz zeta function ζ(s,q) for s > 1, q > 0</action></entry></row>
<row><entry>etaint(n)</entry><entry><action>eta function η(n) for integer n</action></entry></row>
<row><entry>eta(s)</entry><entry><action>eta function η(s) for arbitrary s</action></entry></row>
</tbody>
</tgroup>
</informaltable>
</sect1>
<sect1 id="parser-ran-gsl">
<title>Random number distributions</title>
<para>
For more information about the functions see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Function</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>gaussian(x,σ)</entry><entry><action>probability density p(x) for a Gaussian distribution with standard deviation σ</action></entry></row>
<row><entry>ugaussian(x)</entry><entry><action>unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of σ = 1</action></entry></row>
<row><entry>gaussianP(x,σ)</entry><entry><action>cumulative distribution functions P(x) for the Gaussian distribution with standard deviation σ</action></entry></row>
<row><entry>gaussianQ(x,σ)</entry><entry><action>cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation σ</action></entry></row>
<row><entry>gaussianPinv(P,σ)</entry><entry><action>inverse cumulative distribution functions P(x) for the Gaussian distribution with standard deviation σ</action></entry></row>
<row><entry>gaussianQinv(Q,σ)</entry><entry><action>inverse cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation σ</action></entry></row>
<row><entry>ugaussianP(x)</entry><entry><action>cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianQ(x)</entry><entry><action>cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianPinv(P)</entry><entry><action>inverse cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianQinv(Q)</entry><entry><action>inverse cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>gaussiantail(x,a,σ)</entry><entry><action>probability density p(x) for a Gaussian tail distribution with standard deviation σ and lower limit a</action></entry></row>
<row><entry>ugaussiantail(x,a)</entry><entry><action>tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of σ = 1</action></entry></row>
<row><entry>gaussianbi(x,y,σ<subscript>x</subscript>,σ<subscript>y</subscript>,ρ)</entry><entry><action>probability density p(x,y) for a bivariate gaussian distribution
with standard deviations σ<subscript>x</subscript>, σ<subscript>y</subscript> and correlation coefficient ρ</action></entry></row>
<row><entry>exponential(x,μ)</entry><entry><action>probability density p(x) for an exponential distribution with mean μ</action></entry></row>
<row><entry>exponentialP(x,μ)</entry><entry><action>cumulative distribution function P(x) for an exponential distribution with mean μ</action></entry></row>
<row><entry>exponentialQ(x,μ)</entry><entry><action>cumulative distribution function Q(x) for an exponential distribution with mean μ</action></entry></row>
<row><entry>exponentialPinv(P,μ)</entry><entry><action>inverse cumulative distribution function P(x) for an exponential distribution with mean μ</action></entry></row>
<row><entry>exponentialQinv(Q,μ)</entry><entry><action>inverse cumulative distribution function Q(x) for an exponential distribution with mean μ</action></entry></row>
<row><entry>laplace(x,a)</entry><entry><action>probability density p(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplaceP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplaceQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplacePinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for an Laplace distribution with width a</action></entry></row>
<row><entry>laplaceQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for an Laplace distribution with width a</action></entry></row>
<row><entry>exppow(x,a,b)</entry><entry><action>probability density p(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>exppowP(x,a,b)</entry><entry><action>cumulative probability density P(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>exppowQ(x,a,b)</entry><entry><action>cumulative probability density Q(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>cauchy(x,a)</entry><entry><action>probability density p(x) for a Cauchy (Lorentz) distribution with scale parameter a</action></entry></row>
<row><entry>cauchyP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>rayleigh(x,σ)</entry><entry><action>probability density p(x) for a Rayleigh distribution with scale parameter σ</action></entry></row>
<row><entry>rayleighP(x,σ)</entry><entry><action>cumulative distribution function P(x) for a Rayleigh distribution with scale parameter σ</action></entry></row>
<row><entry>rayleighQ(x,σ)</entry><entry><action>cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter σ</action></entry></row>
<row><entry>rayleighPinv(P,σ)</entry><entry><action>inverse cumulative distribution function P(x) for a Rayleigh distribution with scale parameter σ</action></entry></row>
<row><entry>rayleighQinv(Q,σ)</entry><entry><action>inverse cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter σ</action></entry></row>
<row><entry>rayleigh_tail(x,a,σ)</entry><entry><action>probability density p(x) for a Rayleigh tail distribution with scale parameter σ and lower limit a</action></entry></row>
<row><entry>landau(x)</entry><entry><action>probability density p(x) for the Landau distribution</action></entry></row>
<row><entry>gammapdf(x,a,b)</entry><entry><action>probability density p(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>flat(x,a,b)</entry><entry><action>probability density p(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>lognormal(x,ζ,σ)</entry><entry><action>probability density p(x) for a lognormal distribution with parameters ζ and σ</action></entry></row>
<row><entry>lognormalP(x,ζ,σ)</entry><entry><action>cumulative distribution function P(x) for a lognormal distribution with parameters ζ and σ</action></entry></row>
<row><entry>lognormalQ(x,ζ,σ)</entry><entry><action>cumulative distribution function Q(x) for a lognormal distribution with parameters ζ and σ</action></entry></row>
<row><entry>lognormalPinv(P,ζ,σ)</entry><entry><action>inverse cumulative distribution function P(x) for a lognormal distribution with parameters ζ and σ</action></entry></row>
<row><entry>lognormalQinv(Q,ζ,σ)</entry><entry><action>inverse cumulative distribution function Q(x) for a lognormal distribution with parameters ζ and σ</action></entry></row>
<row><entry>chisq(x,ν)</entry><entry><action>probability density p(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row>
<row><entry>chisqP(x,ν)</entry><entry><action>cumulative distribution function P(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row>
<row><entry>chisqQ(x,ν)</entry><entry><action>cumulative distribution function Q(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row>
<row><entry>chisqPinv(P,ν)</entry><entry><action>inverse cumulative distribution function P(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row>
<row><entry>chisqQinv(Q,ν)</entry><entry><action>inverse cumulative distribution function Q(x) for a χ<superscript>2</superscript> distribution with ν degrees of freedom</action></entry></row>
<row><entry>fdist(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>probability density p(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistP(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>cumulative distribution function P(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistQ(x,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>cumulative distribution function Q(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistPinv(P,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function P(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistQinv(Q,ν<subscript>1</subscript>,ν<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function Q(x) for an F-distribution with ν<subscript>1</subscript> and ν<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>tdist(x,ν)</entry><entry><action>probability density p(x) for a t-distribution with ν degrees of freedom</action></entry></row>
<row><entry>tdistP(x,ν)</entry><entry><action>cumulative distribution function P(x) for a t-distribution with ν degrees of freedom</action></entry></row>
<row><entry>tdistQ(x,ν)</entry><entry><action>cumulative distribution function Q(x) for a t-distribution with ν degrees of freedom</action></entry></row>
<row><entry>tdistPinv(P,ν)</entry><entry><action>inverse cumulative distribution function P(x) for a t-distribution with ν degrees of freedom</action></entry></row>
<row><entry>tdistQinv(Q,ν)</entry><entry><action>inverse cumulative distribution function Q(x) for a t-distribution with ν degrees of freedom</action></entry></row>
<row><entry>betapdf(x,a,b)</entry><entry><action>probability density p(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>logistic(x,a)</entry><entry><action>probability density p(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticP(x,a)</entry><entry><action>cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>pareto(x,a,b)</entry><entry><action>probability density p(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>weibull(x,a,b)</entry><entry><action>probability density p(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>gumbel1(x,a,b)</entry><entry><action>probability density p(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2(x,a,b)</entry><entry><action>probability density p(x) at X for a Type-2 Gumbel distribution with parameters A and B</action></entry></row>
<row><entry>gumbel2P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>poisson(k,μ)</entry><entry><action>probability p(k) of obtaining k from a Poisson distribution with mean μ</action></entry></row>
<row><entry>poissonP(k,μ)</entry><entry><action>cumulative distribution functions P(k) for a Poisson distribution with mean μ</action></entry></row>
<row><entry>poissonQ(k,μ)</entry><entry><action>cumulative distribution functions Q(k) for a Poisson distribution with mean μ</action></entry></row>
<row><entry>bernoulli(k,p)</entry><entry><action>probability p(k) of obtaining k from a Bernoulli distribution with probability parameter p</action></entry></row>
<row><entry>binomial(k,p,n)</entry><entry><action>probability p(k) of obtaining p from a binomial distribution with parameters p and n</action></entry></row>
<row><entry>binomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a binomial distribution with parameters p and n</action></entry></row>
<row><entry>binomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomial(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>pascal(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>pascalP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>pascalQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>geometric(k,p)</entry><entry><action>probability p(k) of obtaining k from a geometric distribution with probability parameter p</action></entry></row>
<row><entry>geometricP(k,p)</entry><entry><action>cumulative distribution functions P(k) for a geometric distribution with parameter p</action></entry></row>
<row><entry>geometricQ(k,p)</entry><entry><action>cumulative distribution functions Q(k) for a geometric distribution with parameter p</action></entry></row>
<row><entry>hypergeometric(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>probability p(k) of obtaining k from a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>hypergeometricP(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function P(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>hypergeometricQ(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function Q(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>logarithmic(k,p)</entry><entry><action>probability p(k) of obtaining K from a logarithmic distribution with probability parameter p</action></entry></row>
</tbody>
</tgroup>
</informaltable>
</sect1>
<sect1 id="parser-const">
<title>Constants</title>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Constant</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>e</entry><entry><action>The base of natural logarithms</action></entry></row>
<row><entry>pi</entry><entry><action>π</action></entry></row>
</tbody></tgroup></informaltable>
</sect1>
<sect1 id="parser-const-gsl">
<title>GSL constants</title>
<para>
For more information about this constants see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">
<thead><row><entry>Constant</entry><entry>Description</entry></row></thead>
<tbody>
<row><entry>c</entry><entry><action> The speed of light in vacuum</action></entry></row>
<row><entry>mu0</entry><entry><action>The permeability of free space</action></entry></row>
<row><entry>e0</entry><entry><action>The permittivity of free space</action></entry></row>
<row><entry>h</entry><entry><action>The Planck constant h</action></entry></row>
<row><entry>hbar</entry><entry><action>The reduced Planck constant ℏ</action></entry></row>
<row><entry>na</entry><entry><action>Avogadro's number</action></entry></row>
<row><entry>f</entry><entry><action>The molar charge of 1 Faraday</action></entry></row>
<row><entry>k</entry><entry><action>The Boltzmann constant</action></entry></row>
<row><entry>r0</entry><entry><action>The molar gas constant</action></entry></row>
<row><entry>v0</entry><entry><action>The standard gas volume</action></entry></row>
<row><entry>sigma</entry><entry><action>The Stefan–Boltzmann constant</action></entry></row>
<row><entry>gauss</entry><entry><action>The magnetic field of 1 Gauss</action></entry></row>
<row><entry>au</entry><entry><action>The length of 1 astronomical unit (mean earth-sun distance)</action></entry></row>
<row><entry>G</entry><entry><action>The gravitational constant</action></entry></row>
<row><entry>ly</entry><entry><action>The distance of 1 light-year</action></entry></row>
<row><entry>pc</entry><entry><action>The distance of 1 parsec</action></entry></row>
<row><entry>gg</entry><entry><action>The standard gravitational acceleration on Earth</action></entry></row>
<row><entry>ms</entry><entry><action>The mass of the Sun</action></entry></row>
<row><entry>ee</entry><entry><action>The charge of the electron</action></entry></row>
<row><entry>eV</entry><entry><action>The energy of 1 electron volt</action></entry></row>
<row><entry>amu</entry><entry><action>The unified atomic mass</action></entry></row>
<row><entry>me</entry><entry><action>The mass of the electron</action></entry></row>
<row><entry>mmu</entry><entry><action>The mass of the muon</action></entry></row>
<row><entry>mp</entry><entry><action>The mass of the proton</action></entry></row>
<row><entry>mn</entry><entry><action>The mass of the neutron</action></entry></row>
<row><entry>alpha</entry><entry><action>The electromagnetic fine structure constant</action></entry></row>
<row><entry>ry</entry><entry><action>The Rydberg constant</action></entry></row>
<row><entry>a0</entry><entry><action>The Bohr radius</action></entry></row>
<row><entry>a</entry><entry><action>The length of 1 angstrom</action></entry></row>
<row><entry>barn</entry><entry><action> The area of 1 barn</action></entry></row>
<row><entry>muB</entry><entry><action>The Bohr Magneton</action></entry></row>
<row><entry>mun</entry><entry><action>The Nuclear Magneton</action></entry></row>
<row><entry>mue</entry><entry><action>The magnetic moment of the electron</action></entry></row>
<row><entry>mup</entry><entry><action>The magnetic moment of the proton</action></entry></row>
<row><entry>sigmaT</entry><entry><action>The Thomson cross section for an electron</action></entry></row>
<row><entry>pD</entry><entry><action>The debye</action></entry></row>
<row><entry>min</entry><entry><action>The number of seconds in 1 minute</action></entry></row>
<row><entry>h</entry><entry><action>The number of seconds in 1 hour</action></entry></row>
<row><entry>d</entry><entry><action> The number of seconds in 1 day</action></entry></row>
<row><entry>week</entry><entry><action>The number of seconds in 1 week</action></entry></row>
<row><entry>in</entry><entry><action>The length of 1 inch</action></entry></row>
<row><entry>ft</entry><entry><action>The length of 1 foot</action></entry></row>
<row><entry>yard</entry><entry><action>The length of 1 yard</action></entry></row>
<row><entry>mil</entry><entry><action>The length of 1 mil (1/1000th of an inch)</action></entry></row>
<row><entry>v_km_per_h</entry><entry><action>The speed of 1 kilometer per hour</action></entry></row>
<row><entry>v_mile_per_h</entry><entry><action>The speed of 1 mile per hour</action></entry></row>
<row><entry>nmile</entry><entry><action>The length of 1 nautical mile</action></entry></row>
<row><entry>fathom</entry><entry><action>The length of 1 fathom</action></entry></row>
<row><entry>knot</entry><entry><action>The speed of 1 knot</action></entry></row>
<row><entry>pt</entry><entry><action> The length of 1 printer's point (1/72 inch)</action></entry></row>
<row><entry>texpt</entry><entry><action>The length of 1 TeX point (1/72.27 inch)</action></entry></row>
<row><entry>micron</entry><entry><action>The length of 1 micrometre</action></entry></row>
<row><entry>hectare</entry><entry><action>The area of 1 hectare</action></entry></row>
<row><entry>acre</entry><entry><action>The area of 1 acre</action></entry></row>
<row><entry>liter</entry><entry><action>The volume of 1 liter</action></entry></row>
<row><entry>us_gallon</entry><entry><action>The volume of 1 US gallon</action></entry></row>
<row><entry>can_gallon</entry><entry><action>The volume of 1 Canadian gallon</action></entry></row>
<row><entry>uk_gallon</entry><entry><action>The volume of 1 UK gallon</action></entry></row>
<row><entry>quart</entry><entry><action>The volume of 1 quart</action></entry></row>
<row><entry>pint</entry><entry><action>The volume of 1 pint</action></entry></row>
<row><entry>pound</entry><entry><action>The mass of 1 pound</action></entry></row>
<row><entry>ounce</entry><entry><action>The mass of 1 ounce</action></entry></row>
<row><entry>ton</entry><entry><action>The mass of 1 ton</action></entry></row>
<row><entry>mton</entry><entry><action>The mass of 1 metric ton (1000 kg)</action></entry></row>
<row><entry>uk_ton</entry><entry><action>The mass of 1 UK ton</action></entry></row>
<row><entry>troy_ounce</entry><entry><action>The mass of 1 troy ounce</action></entry></row>
<row><entry>carat</entry><entry><action>The mass of 1 carat</action></entry></row>
<row><entry>gram_force</entry><entry><action>The force of 1 gram weight</action></entry></row>
<row><entry>pound_force</entry><entry><action>The force of 1 pound weight</action></entry></row>
<row><entry>kilepound_force</entry><entry><action>The force of 1 kilopound weight</action></entry></row>
<row><entry>poundal</entry><entry><action>The force of 1 poundal</action></entry></row>
<row><entry>cal</entry><entry><action>The energy of 1 calorie</action></entry></row>
<row><entry>btu</entry><entry><action>The energy of 1 British Thermal Unit</action></entry></row>
<row><entry>therm</entry><entry><action>The energy of 1 Therm</action></entry></row>
<row><entry>hp</entry><entry><action>The power of 1 horsepower</action></entry></row>
<row><entry>bar</entry><entry><action>The pressure of 1 bar</action></entry></row>
<row><entry>atm</entry><entry><action>The pressure of 1 standard atmosphere</action></entry></row>
<row><entry>torr</entry><entry><action>The pressure of 1 torr</action></entry></row>
<row><entry>mhg</entry><entry><action>The pressure of 1 meter of mercury</action></entry></row>
<row><entry>inhg</entry><entry><action>The pressure of 1 inch of mercury</action></entry></row>
<row><entry>inh2o</entry><entry><action>The pressure of 1 inch of water</action></entry></row>
<row><entry>psi</entry><entry><action>The pressure of 1 pound per square inch</action></entry></row>
<row><entry>poise</entry><entry><action>The dynamic viscosity of 1 poise</action></entry></row>
<row><entry>stokes</entry><entry><action>The kinematic viscosity of 1 stokes</action></entry></row>
<row><entry>stilb</entry><entry><action>The luminance of 1 stilb</action></entry></row>
<row><entry>lumen</entry><entry><action>The luminous flux of 1 lumen</action></entry></row>
<row><entry>lux</entry><entry><action>The illuminance of 1 lux</action></entry></row>
<row><entry>phot</entry><entry><action>The illuminance of 1 phot</action></entry></row>
<row><entry>ftcandle</entry><entry><action>The illuminance of 1 footcandle</action></entry></row>
<row><entry>lambert</entry><entry><action>The luminance of 1 lambert</action></entry></row>
<row><entry>ftlambert</entry><entry><action>The luminance of 1 footlambert</action></entry></row>
<row><entry>curie</entry><entry><action>The activity of 1 curie</action></entry></row>
<row><entry>roentgen</entry><entry><action>The exposure of 1 roentgen</action></entry></row>
<row><entry>rad</entry><entry><action>The absorbed dose of 1 rad</action></entry></row>
<row><entry>N</entry><entry><action>The force of 1 newton</action></entry></row>
<row><entry>dyne</entry><entry><action>The force of 1 dyne</action></entry></row>
<row><entry>J</entry><entry><action>The energy of 1 joule</action></entry></row>
<row><entry>erg</entry><entry><action>The energy of 1 erg</action></entry></row>
</tbody></tgroup></informaltable>
</sect1>
</chapter>
<chapter id="faq">
<title>Questions and Answers</title>
<qandaset id="faqlist">
<qandaentry>
<question>
<para>For which platforms is &LabPlot; available?</para>
</question>
<answer>
<para>
&LabPlot; is developed for Unix platforms and uses the &Qt; toolkit and &kde-frameworks;. Normally you can expect &LabPlot;
to build and run on every platform &kde-frameworks; supports.
A recent list of supported platforms and tips for compiling and running &LabPlot; can be found on
<ulink url="http://labplot.wiki.sourceforge.net/Download">
http://labplot.wiki.sourceforge.net/Download</ulink>.
</para>
</answer>
</qandaentry>
<qandaentry><question>
<para>How do I export the active worksheet as image?</para>
</question>
<answer><para>
The standard way is to use <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice>. All &Qt; supported image formats are allowed. Just select the desired format and the active worksheet is exported.
</para></answer>
</qandaentry>
<qandaentry>
<question>
<para>How do I use Greek letters for title, axes label, &etc;?</para>
</question>
<answer>
<para>
Use <guiicon>π</guiicon> button to open character selector window or <guiicon>&tex;</guiicon> to generate Greek letters and other symbols using &latex;.
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>I miss an important feature. What can I do?</para>
</question>
<answer>
<para>
Please take a look at the TODO file in the documentation of &LabPlot;.
Here, all planned features are listed in more or
less sorted order which I will implement in future releases of &LabPlot;.
If you like to have additional
features or like to have a listed feature soon, mail me your wishes and, if possible, send me
example data or a short
description of what you like to do.
It is not unlikely that your feature will appear in the next stable release
of &LabPlot; :-)
</para>
</answer>
</qandaentry>
<qandaentry><question>
<para>Many Analysis functions are disabled. What can I do?</para>
</question>
<answer><para>
It looks like your &LabPlot; package was compiled without GSL (&GNU; Scientific Library) support. &LabPlot; was designed to even work on systems that
are missing most of the standard libraries. Many distributions are shipping &LabPlot; packages without this additional functionality. In this case some functions are not available. Fortunately some programs (like <application>pstoedit</application> or <application>texvc</application>) can be added without recompiling &LabPlot;. You can always check your system environment in the help menu of &LabPlot;.
</para>
<para>
The packages provided on the official download page are always built with the standard libraries (GSL, &etc;). You should use them
to have all the features.
</para>
</answer>
</qandaentry>
<qandaentry><question>
<para>I want to help. How can I contribute to &LabPlot;?</para>
</question>
<answer><para>
Yes, of course. There are a lot things to do. Even if you don't know anything about programming we always
need people to find bugs, test things and make suggestions. Also the translation and documentation always
needs a lot of work.
</para></answer>
</qandaentry>
</qandaset>
</chapter>
<chapter id="license">
<title>License</title>
<para>&LabPlot;</para>
<para>
Program copyright © 2007-2016 Stefan Gerlach <email>stefan.gerlach@uni-konstanz.de</email>
Program copyright © 2008-2016 Alexander Semke <email>Alexander.Semke@web.de</email>
</para>
<important>
<para>
&LabPlot; is still under development. There is a long list of missing features that will be implemented in later versions of &LabPlot;.
</para>
</important>
<para>
Because there are a lot things to do, developers need every help you can give. Any contribution like wishes, corrections,
patches, bug reports or screen shots is welcome.
</para>
<para>
Documentation copyright © 2007-2016 Stefan Gerlach
<email>stefan.gerlach@uni-konstanz.de</email>
Documentation copyright © 2008-2015 Alexander Semke
<email>Alexander.Semke@web.de</email>
Documentation copyright © 2014 Yuri Chornoivan
<email>yurchor@ukr.net</email>
</para>
<!-- TRANS:CREDIT_FOR_TRANSLATORS -->
&underFDL;
&underGPL;
</chapter>
&documentation.index;
</book>
|