File: index.docbook

package info (click to toggle)
labplot 2.12.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,500 kB
  • sloc: cpp: 241,048; ansic: 6,324; python: 915; xml: 400; yacc: 237; sh: 221; awk: 35; makefile: 11
file content (2398 lines) | stat: -rw-r--r-- 144,462 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
<?xml version="1.0" ?>
<!DOCTYPE book PUBLIC "-//KDE//DTD DocBook XML V4.5-Based Variant V1.1//EN" "dtd/kdedbx45.dtd" [
  <!ENTITY latex "L<superscript>A</superscript>T<subscript>E</subscript>X">
  <!ENTITY tex "T<subscript>E</subscript>X">
  <!ENTITY LabPlot "<application>LabPlot</application>">
  <!ENTITY % addindex "IGNORE">
  <!ENTITY % English "INCLUDE">
]>

<book lang="&language;">
<bookinfo>
<title>The &LabPlot; Handbook</title>

<authorgroup>
	<author>
		<firstname>Stefan</firstname>
		<surname>Gerlach</surname>
		<affiliation>
			<address><email>stefan.gerlach@uni-konstanz.de</email></address>
		</affiliation>
	</author>
	<author>
		<firstname>Alexander</firstname>
		<surname>Semke</surname>
		<affiliation>
			<address><email>Alexander.Semke@web.de</email></address>
		</affiliation>
	</author>
	<author>
		<firstname>Yuri</firstname>
		<surname>Chornoivan</surname>
		<affiliation>
			<address><email>yurchor@ukr.net</email></address>
		</affiliation>
	</author>
	<author>
		<firstname>Garvit</firstname>
		<surname>Khatri</surname>
		<affiliation>
			<address><email>garvitdelhi@gmail.com</email></address>
		</affiliation>
	</author>
<!-- TRANS:ROLES_OF_TRANSLATORS -->
</authorgroup>

<copyright>
  <year>2007-2016</year>
	<holder>Stefan Gerlach</holder>
</copyright>
<copyright>
  <year>2008-2015</year>
	<holder>Alexander Semke</holder>
</copyright>
<copyright>
  <year>2014</year>
	<holder>Yuri Chornoivan</holder>
</copyright>

<legalnotice>&FDLNotice;</legalnotice>
<date>2016-12-24</date>
<releaseinfo>3.3.1</releaseinfo>

<abstract>
	<para>
		&LabPlot; is a program for two-dimensional function plotting and data analysis.
	</para>
</abstract>

<keywordset>
	<keyword>KDE</keyword>
	<keyword>LabPlot</keyword>
	<keyword>plot</keyword>
</keywordset>

</bookinfo>


<chapter id="introduction">
<title>Introduction</title>
<para>
&LabPlot; is a &kde; application for interactive graphing and analysis of scientific data. &LabPlot; provides an easy way to create, manage and edit plots.
</para>

<para>
Features:
<itemizedlist>
<listitem><para>Project-based management of data</para></listitem>
<listitem><para>Project-explorer for management and organization of created objects in different folders and sub-folders</para></listitem>
<listitem><para>Spreadsheet with basic functionality for manual data entry or for generation of uniform and non-uniform random numbers</para></listitem>
<listitem><para>Import of external ASCII-data into the project for further editing and visualization</para></listitem>
<listitem><para>Export of spreadsheet to an ASCII-file</para></listitem>
<listitem><para>Worksheet as the main parent object for plots, labels &etc;, supports different layouts and zooming functions</para></listitem>
<listitem><para>Export of worksheet to different formats (pdf, eps, png and svg)</para></listitem>
<listitem><para>Great variety of editing capabilities for properties of worksheet and its objects</para></listitem>
<listitem><para>Cartesian plots, created either from imported or manually created data sets or via mathematical equation</para></listitem>
<listitem><para>Definition of mathematical formulas is supported by syntax-highlighting and completion and by the list of thematicaly grouped mathematical and physical constants and functions</para></listitem>
<listitem><para>Investigation of plotted data is supported by many zooming and navigation features</para></listitem>
<listitem><para>Several analysis functions and methods for data reduction, differentiation, integration, interpolation, smoothing, (nonlinear) fitting, Fourier filter and Fourier transform</para></listitem>
<listitem><para>Linear and non-linear fits to data, several fit-models are predefined and custom models with arbitrary number of parameters can be provided</para></listitem>
<listitem><para>Supports many CAS backends like Maxima, Python, KAlgebra, Sage</para></listitem>
<listitem><para>Nice Worksheet view for evaluating expressions</para></listitem>
<listitem><para>Easy plugin based structure to add different Backends</para></listitem>
<listitem><para>Plugin based assistant dialogs for common tasks (like integrating a function or entering a matrix)</para></listitem>
<listitem><para>Datapicker for manual or (semi-)automatic data extraction from imported images containing plots and curves.</para></listitem>
</itemizedlist>
</para>

<para>
&LabPlot; can be found on its homepage at kde.org:
<ulink url="https://labplot.kde.org/">https://labplot.kde.org/</ulink>.
</para>

</chapter>


<chapter id="using-LabPlot">
<title>Using &LabPlot;</title>
<sect1 id="interface-overview">
  <title>Interface Overview</title>
  <para>
&LabPlot; follows the MDI (Multiple Document Interface) philosophy - all the created application objects are placed as sub-windows in the <link linkend="main-area">Main Area</link> of the application window. The <link linkend="project-explorer">Project Explorer</link> serves as the tool to create and organize those objects in a tree-like structure.

The <link linkend="properties-explorer">Properties Explorer</link> is used to modify the properties of the currently selected object(s).
Many functions are reachable via the main menu and via object specific toolbars and context menus. Additional information and application notifications are shown in the status bar.
</para>

  <screenshot>
    <screeninfo>The default &LabPlot; window</screeninfo>
    <mediaobjectco>
      <imageobjectco>
	<areaspec units="other" otherunits="imagemap">
	  <!--these ids are used only internally by DocBook so we keep them short-->
	  <area id="im-win1a1" linkends="project-explorer" coords="28,69,234,724" />
	  <area id="im-win1a2" linkends="worksheet" coords="456,382,804,688" />
	  <area id="im-win1a3" linkends="spreadsheet" coords="249,78,553,390" />
	  <area id="im-win1a4" linkends="toolbar" coords="1,46,640,68" />
	  <area id="im-win1a5" linkends="commands" coords="1,19,432,45" />
<!-- 	  <area id="im-win1a6" linkends="statusbar" coords="38,742,1294,777" /> -->
	  <area id="im-win1a7" linkends="properties-explorer" coords="834,69,1279,724" />
	</areaspec>
	<imageobject>
	  <imagedata fileref="labplot.png" format="PNG"/>
	</imageobject>
      </imageobjectco>
    </mediaobjectco>
  </screenshot>
<!--  <para>
    The default &LabPlot; window has the <link linkend="project-explorer">Project Explorer</link> pane on the left, the <link linkend="properties-explorer">Properties</link> pane on the right, <link linkend="spreadsheet">spreadsheet</link>/<link linkend="worksheet">worksheet</link> area in the center, the <link linkend="toolbar">main toolbar</link> on the top and the status bar on the bottom.
  </para>-->
</sect1>

<sect1 id="project-explorer">
<title>Project Explorer</title>
<para>
The Project Explorer is the main part of &LabPlot; aimed to handle its objects. Objects are organized in a tree-like structure representing the parent-child relations between the different objects.
Folders and sub-folders can introduce additional grouping for the different objects.
</para>
<para>
Project explorer is a dockable window and can be placed at an arbitrary place. The user can determine which columns should be shown by selecting/deselecting the columns of interest in the context menu (&RMB; click on an empty place in the tree-view or its header). Furthermore, the list of shown objects can be reduced by providing a filter in the <guilabel>Search/Filter</guilabel> text field.
</para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="project-explorer.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</sect1>

<sect1 id="main-area">
<title>Main Area</title>
<para>
Created objects having a view (like worksheet, spreadsheet &etc;) are placed in the main area of the application. Depending on the current setting for the user interface, windows are placed either as independent and freely moveable sub-windows (interface "Sub-window view") or as tabs in a tabbed view (interface "Tabbed view").
</para>
<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="sub_window_tabbed_view_interfaces.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
When sub-windows are used, all windows of objects belonging to the currently selected folder only are shown. Alternatively, the visibility of windows can be extended to the currently selected folder and its sub-folders or to all windows in the project. This behaviour is controlled via the parameter "Window visibility policy" accessible via the context menu of the project explorer.
</para>
</sect1>

<sect1 id="properties-explorer">
<title>Properties Explorer</title>
<para>
Properties explorer allows the user to modify the currently selected object in the project explorer. A great variety of object properties can be edited in undoable/redoable way. Editing of multiple objects of the same time is also possible. 
</para>
<para>
Properties explorer is a dockable window and can be placed at an arbitrary place.
</para>
</sect1>

<sect1 id="spreadsheet">
<title>Spreadsheet</title>
<para>
The spreadsheet is the main part of &LabPlot; when working with data and consists of columns.
Column is the basic data set in &LabPlot; used for plotting and data analysis.
Every column of the spreadsheet is specified by its name and the type - numeric, text, month names, day names and date and time.
Also, for each type different representation formats can be assigned like decimal or scientific format for numeric columns &etc;
</para>
<para>
You can mask selected data points in the spreadsheet (<menuchoice><guimenu>Selection</guimenu><guimenuitem>Mask Selection</guimenuitem></menuchoice> from the spreadsheet cell context menu).
Masked data is not plotted and is also excluded from data analysis functions like fitting &etc;
Alternatively, you can mask or drop values in a column (<menuchoice><guimenu>Mask Values</guimenu></menuchoice> or <menuchoice><guimenu>Drop Values</guimenu></menuchoice> from the column context menu) by specifying a range.
When specifying which values to mask or to drop, several operators (“equal to”, “greater than”, “lesser than”, &etc;) are available.
These operations can help to hide or to remove some outliers in the data set prior to, &eg;, performing a fit to this data set.
</para>
<para>
Any spreadsheet function can be reached via the context menu (&RMB; click).
You can cut, copy and paste between spreadsheets, generate, normalize and sort data and finally make plots out of your data.
</para>

<screenshot><mediaobject><imageobject>
      <imagedata fileref="spreadsheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>

<para>
New data can be produced either by entering it manually in the spreadsheet or by generating the data according to a certain prescription.
&LabPlot; provides 5 different methods to generate data, accessible via the context menu of the column:

<itemizedlist>
<listitem>
<para>
Row Numbers - values in the column are set according to its row number, this provide an easy way to quickly create an index.
</para>
</listitem>

<listitem>
<para>
Const Values - values in the column are set to a constant value provided by the user.
</para>
</listitem>

<listitem>
<para>
Equidistant values (for numeric columns only) - given the minimal and the maximal values, the equidistant values can be either generated 
by fixing the total number of values in that range or by fixing the increment (distance).
<screenshot><mediaobject><imageobject>
      <imagedata fileref="spreadsheet_generate_equidistant_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</listitem>

<listitem>
<para>
Random values (for numeric columns only) - values are randomly generated according to the selected distribution.
To generate uniformly distributed random numbers, select "Flat" distribution.
</para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="spreadsheet_generate_random_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
<para>
In the simplest cases a non-uniform distribution is calculated analytically from the uniform distribution of a random number generator by applying
an appropriate transformation. More complicated distributions are created by the acceptance-rejection method, which compares the desired distribution
against a distribution which is similar and known analytically.
</para>
</listitem>

<listitem>
<para>
Function values (for numeric columns only) - values are generated according to a mathematical function provided by the user, 
a column (data set) containing the function arguments has to be provided.
It is possible to define a multivariant function and to provide a data set (a column in a spreadsheet) for each of the variables.
The corresponding dialog supports the creation of arbitrary number of variables.
<screenshot><mediaobject><imageobject>
      <imagedata fileref="spreadsheet_generate_multivariant_function_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</listitem>

</itemizedlist>

</para>


<para>
Already existing data can be imported into a spreadsheet from external files via the <link linkend="importdialog">"Import Data" dialog</link>.
Imported data will be stored in the project file. Changes on data, performed either in the spreadsheet or in the external file after the import, are not synchronized anymore.
</para>

<para>
The data in the spreadsheet can be exported to an external file (see <link linkend="exportdialog">Export Dialog</link>).
</para>
</sect1>

<sect1 id="matrix">
<title>Matrix</title>
<para>
Matrix is another container for matrix-like data. This container is presented like a table or, alternatively, as a two-dimensional greyscale image.
The elements of such a table/matrix can be thought as being the Z-values, Z=Z(X,Y), with X and Y values being the row and column numbers, respectively.
The transition from the row and column numbers to the logical coordinates is done via an explicit user-defined mapping of both representations.
<screenshot><mediaobject><imageobject>
      <imagedata fileref="matrix.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
The matrix data can either be entered manually or via an import from an external file.
Similar to the data generation for a column in a spreadsheet, the matrix can be filled with constant values or via a formula, too.
The screenshot below shows the image view of a matrix together with the formula that was used to generate the matrix elements:
<screenshot><mediaobject><imageobject>
      <imagedata fileref="matrix_function_values.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

</sect1>


<sect1 id="workbook">
<title>Workbook</title>
<para>
Workbook helps the user to better organize and to group different data containers (Spreadsheet and Matrix).
This object serves as the parent container for multiple Spreadsheet- and/or Matrix-objects and puts them together in a view with multiple tabs:
<screenshot><mediaobject><imageobject>
      <imagedata fileref="workbook.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
With folders it is already possible to bring some structure in the <link linkend="project-explorer">Project Explorer</link> and to group together several related objects
(spreadsheets with data stemming from text files of similar origin, red, green and blue values of an image imported into three different matrices, &etc;).
With Workbook the user has the possibility for another additional grouping.
</para>

</sect1>


<sect1 id="worksheet">
<title>Worksheet</title>
<para>
The worksheet is, besides the data containers <link linkend="spreadsheet">Spreadsheet</link> and <link linkend="matrix">Matrix</link>, another central part of the application and provides an area for showing and grouping together different kinds of worksheet objects - plots, labels &etc;
</para>
<para>
Worksheets can either have a fixed size (a user defined size or one of the predefined sizes like A4, Letter &etc;) or they can fill out the complete available area for the worksheet window. Multiple plots can be arranged on the worksheet in a vertical, horizontal or grid layouts.
</para>
<para>
Many properties of the worksheet like size, background colour and layout settings can be changed in the "Worksheet properties" pane.
</para>

<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="worksheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
Different worksheet actions dealing with the creation of new objects, changing of the current mouse mode or zooming can be accessed via the toolbar, main menu or the context menu of the worksheet in the <link linkend="project-explorer">project explorer</link>.
</para>

<para>
The results shown on the worksheet can be exported to different formats via the <link linkend="exportdialog">export dialog</link>.
</para>
</sect1>

<sect1 id="CASworksheet">
<title>CAS Worksheet</title>
<para>
The CAS worksheet is, besides the <link linkend="worksheet">worksheet</link>, the third central part of the application and provides an area to you use your favorite mathematical applications from within an elegant Worksheet Interface.
</para>
<para>
  &LabPlot; offers you several choices for the backends you wish to use with it. The choice to make depends on what you want to achieve.
</para>
<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="worksheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
  Currently the following backends are available:
  <variablelist>
    <varlistentry>
      <term>Sage:</term>
      <listitem>
	<para>
	  Sage is a free open-source mathematics software system licensed under the GPL.
	  It combines the power of many existing open-source packages, within a common Python-based interface.
	  See <ulink url="http://sagemath.org">http://sagemath.org</ulink> for more information.
	</para>
	</listitem>
    </varlistentry>
    <varlistentry>
      <term>Maxima:</term>
      <listitem>
	<para>
	  Maxima is a system for the manipulation of symbolic and numeric expressions,
	  including differentiation, integration, Taylor series, Laplace transforms,
	  ordinary differential equations, systems of linear equations, polynomials, sets,
	  lists, vectors, matrices, and tensors. Maxima yields high-precision numeric results
	  by using exact fractions, arbitrary precision integers, and variable precision
	  floating point numbers. Maxima can plot functions and data in two and three dimensions.
	  See <ulink url="http://maxima.sourceforge.net">http://maxima.sourceforge.net</ulink> for more information.
	</para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term>R:</term>
      <listitem>
	<para>
	  R is a language and environment for statistical computing and graphics, similar to the S language and environment.
	  It provides a wide variety of statistical (linear and nonlinear modelling,
	  classical statistical tests, time-series analysis, classification, clustering, ...)
	  and graphical techniques, and is highly extensible. The S language is often the
	  vehicle of choice for research in statistical methodology,
	  and R provides an open-source route to this.
	  See <ulink url="http://www.r-project.org">http://www.r-project.org</ulink> for more information.
	</para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term>&kalgebra;:</term>
      <listitem>
	<para>
	  &kalgebra; is a MathML-based graph calculator, that ships with &kde; Education project.
	  See <ulink url="http://edu.kde.org/kalgebra/">http://edu.kde.org/kalgebra/</ulink> for more information.
	  </para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term>Qalculate!:</term>
      <listitem>
  <para>
    Qalculate! is not your regular software replication of the cheapest
    available calculator. Qalculate! aims to make full use of the superior
    interface, power and flexibility of modern computers. The center of
    attention in Qalculate! is the expression entry. Instead of entering each
    number in a mathematical expression separately, you can directly write the
    whole expression and later modify it. The interpretation of expressions is
    flexible and fault tolerant, and if you nevertheless do something wrong,
    Qalculate! will tell you so. Not fully solvable expressions are however not
    errors. Qalculate! will simplify as far as it can and answer with an
    expression. In addition to numbers and arithmetic operators, an expression
    may contain any combination of variables, units, and functions.
    See <ulink url="http://qalculate.sourceforge.net/">http://qalculate.sourceforge.net/</ulink> for more information.
  </para>
  </listitem>
    </varlistentry>
    <varlistentry>
      <term>Python2:</term>
      <listitem>
  <para>
    Python is a remarkably powerful dynamic programming language that is used
in a wide variety of application domains. There are several Python packages
to scientific programming.
  </para>
  <para>Python is distributed under Python Software Foundation license (GPL compatible).
    See the <ulink url="http://www.python.org/">official website</ulink> for more information.
  </para>
  <note>
    <para>
      This backend adds an additional item to the &cantor;'s main menu, <guimenu>Package</guimenu>. The only item of this menu is <menuchoice><guimenu>Package</guimenu><guimenuitem>Import Package</guimenuitem></menuchoice>. This item can be used to import Python packages to the worksheet.
    </para>
  </note>
  <warning>
    <para>
      This backend supports Python 2 only.
    </para>
  </warning>
  </listitem>
    </varlistentry>
    <varlistentry>
      <term>Scilab:</term>
      <listitem>
  <para>
    Scilab is an free software, cross-platform numerical computational package
    and a high-level, numerically oriented programming language.
  </para>
  <para>Scilab is distributed under CeCILL license (GPL compatible).
    See <ulink url="http://www.scilab.org/">http://www.scilab.org/</ulink> for more information.
  </para>
  <warning>
    <para>
      You need Scilab version 5.5 or higher to be installed in your system to make this backend usable.
    </para>
  </warning>
  </listitem>
    </varlistentry>
    <varlistentry>
      <term>Octave:</term>
      <listitem>
  <para>
    &GNU; Octave is a high-level language, primarily intended for numerical
    computations. It provides a convenient command line interface for
    solving linear and nonlinear problems numerically, and for performing other
    numerical experiments using a language that is mostly compatible with <ulink url="http://www.mathworks.com/products/matlab/">MATLAB</ulink>.
    See <ulink url="http://www.gnu.org/software/octave/">http://www.gnu.org/software/octave/</ulink> for more information.
    </para>
      </listitem>
    </varlistentry>
    <varlistentry>
      <term>Lua:</term>
      <listitem>
  <para>
    Lua is a fast and lightweight scripting language, with a simple procedural syntax. There are several libraries in Lua aimed at math and science.
  </para>
  <para>
    See <ulink url="http://www.lua.org/">http://www.lua.org/</ulink> for more information.
  </para>
  <para>
    This backend supports <ulink url="http://luajit.org/">luajit 2</ulink>.
  </para>
      </listitem>
    </varlistentry>
  </variablelist>
</para>
</sect1>


<sect1 id="file_data_source">
<title>File Data Source</title>
<para>
A file data source is very similar in spirit to a spreadsheet with imported data from an external file. The difference is that the imported data cannot be shown and edited in &LabPlot; after the import anymore. This can be sufficient &eg; if you only want to plot the data stemming from a calculation in an external program (and exported to an ASCII-file afterwards).
</para>
<para>
Since no spreadsheet has to be filled with the imported data, the import into a file data source is faster than into a spreadsheet which can be advantageously when dealing with big files.
</para>
<para>
It is possible to store the link to the external file in the project file only and not its content. Each time the project file is opened in &LabPlot;, the content is read from the external file again. Also, it is possible to let &LabPlot; watch the file for changes - the content of the file data source is updated if the external file was changed.
</para>
<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="file_data_source.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
The additional options determining the import of the data are equivalent to those provided in <link linkend="importdialog">Import Dialog</link>.
</para>
</sect1>


<sect1 id="datapicker">
<title>Datapicker</title>
<para>
Datapicker is a tool that allows you to easily extract data from image files. The process of extraction consists mainly out of the following steps:
<itemizedlist>
<listitem><para>Import an image containing plots and curves where you want to read the data points from.</para></listitem>
<listitem><para>Select the plot type (cartesian, polar, &etc;).</para></listitem>
<listitem><para>Select tree reference points and provide values for them. With the help of these points the logical coordinate system is determined.</para></listitem>
<listitem><para>Create a new datapicker curve and set the type of the error bars.</para></listitem>
<listitem><para>Switch to the mouse mode "Set Curve Points" and start selecting points on the imported image - the coordinates for the selected points are determined and added to the spreadsheet "Data".</para></listitem>
</itemizedlist>
</para>

<para>
It is possible to add more then one datapicker curve. This is useful in case the imported image contains several curves that need to be digitized.
The datapicker curve that is currently being selected in the <link linkend="project-explorer">Project Explorer </link> is the "active" one - points clicked on the datapicker image will be calculated and added to its data spreadsheet.
<screenshot><mediaobject><imageobject>
      <imagedata fileref="datapicker_active_curve_data_spreadsheet.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
Calculated values are stored in different columns in data spreadsheets in the datapicker. These columns behave exactly the same like other columns
in usual spreadsheets and can be directly used as source columns for curves in your own plots.
</para>

<para>
Datapicker supports the process of the data extraction with several helpers. To place the points more precisely, a magnification glass with different magnification levels is available.
Also, the last selected point can be shifted with the help of the navigation keys.
Furthermore, when reading data points having error bars, datapicker automatically creates bars indicating the end points of the error bars.
Those bars can be pulled with the mouse until the required length (the distance to the data point) is reached.
</para>


<para>
The procedure for the extraction of data from an imported plot as described above is feasible when dealing with a limited number of points.
In case the curves in the imported image are given as solid lines, the datapicker tool in &LabPlot; allows to read them (semi-)automatically.
For this, after a new datapicker curve was added as described above, switch to the mouse mode "Select Curve Segments". The curves on the plot are recognized and highlighted.
By clicking on a highlighted curve (or one of its segments), points along this curve are created.
The length of a segment and the density of created points (separation between two points) are adjustable parameters.
On the screenshots below, after switching to the segment mode all black lines were highlighted (green colour).
In this specific case, the curve was recognized as a single segment and a single mouse-click on this segment is sufficient to digitize this curve and to automatically place points along the curve.
<screenshot><mediaobject><imageobject>
      <imagedata fileref="datapicker_segments.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
In many cases the plot is not as simple as above (single black curve on white background) and contains grid lines, many curves of different colour and thinness and a non-white background.
In such a case the automatic detection fails (too many or no objects are highlighted). To help the datapicker to determine the curve(s) correctly, the user has to limit the allowed ranges in the HSV (or HSI) colour spaces.
To subtract the non-white background it is possible to limit the range for the foreground colour, too.
Internally, each pixel of the image is converted to black and white where only the points fitting into the user-defined ranges for hue, saturation, value, intensity and foreground are set to black.
</para>

<para>
On the screenshots below, the blue curves in the original image were projected onto by having appropriately reduced the allowed ranges in the colour space (note the peak for blue in the histogram for the hue).
The transformed black and white image contains only the curves the user is interested in and it is now an easy task for the datapicker to determine the curves and to place points on them.
<screenshot><mediaobject><imageobject>
      <imagedata fileref="datapicker_original_transformed_segments.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>

<para>
Similar to <link linkend="worksheet">Worksheet</link>, the currently visible area in the datapicker can be exported.
The supported image formats as described in the section <link linkend="exportdialog">Export Dialog</link>.
</para>
</sect1>

<sect1 id="importdialog">
<title>Import Dialog</title>
<para>
In the import dialog you can import data into one of the available spreadsheets or matrices in &LabPlot;.
The supported data formats are
<itemizedlist>
<listitem><para>ASCII</para></listitem>
<listitem><para>Binary</para></listitem>
<listitem><para>Image</para></listitem>
<listitem><para>NetCDF</para></listitem>
<listitem><para>HDF5</para></listitem>
<listitem><para>FITS</para></listitem>
</itemizedlist>
Preview of all supported file types is available in the import dialog.
For data formats with complex internal structures (like NetCDF, HDF5 and FITS),
the content of the file is presented in a tree view that allows comfortable navigation
through the file. A versatile dialog to edit the headers (keywords) of a FITS file is also
provided.
</para>

<para>
Import of ascii and binary data compressed with gzip, bzip2 or xz can be done directly as the decompression happens transparently for the user.
</para>


<para>
The name of the file containing the data to import has to be provided. The <guibutton>File Info</guibutton> button opens a dialog where some information about the selected file is shown. The type of the data can be specified - currently, only ASCII files containing several data sets (vectors) stored as columns are supported.
The filter - automatic or custom - determines how the file has to be parsed. Selecting the filter "custom", several parameters like separating character &etc; can be provided manually in this case.
</para>
<para>
The start and end row to read can be customized using the <guilabel>Data portion to read</guilabel> tab. To read all data specify <userinput>-1</userinput> as an end row or column.
</para>
<screenshot>
  <screeninfo>Importing data into &LabPlot;</screeninfo>
  <mediaobject>
    <imageobject>
      <imagedata fileref="import-dialog.png" format="PNG" />
    </imageobject>
    <textobject>
      <phrase>Importing data into &LabPlot;</phrase>
    </textobject>
  </mediaobject>
</screenshot>

</sect1>


<sect1 id="exportdialog">
<title>Export Dialog</title>
<para>
	A worksheet can be exported to several graphics format (vector and raster).
	The export is done via the export dialog reachable via the
	<guibutton>Export</guibutton> in the main toolbar or
	<menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice>
	in the main menu.
</para>
<para>
	Besides the graphics format, the user can specify which part of the worksheet
	has to be exported and whether the background has to be exported or not.
	Also, for raster graphics the image resolution can be provided.
</para>
<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="export_worksheet_dialog.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
<para>
	The content of a spreadsheet can be exported to an external text or FITS file.
	In the export dialog for spreadsheets the user can specify the character
	separating values of different columns. Optionally, the header of the spreadsheet
	(names of the columns in the spreadsheet) can be exported.
</para>
<para>
<screenshot><mediaobject><imageobject>
      <imagedata fileref="export_spreadsheet_dialog.png" format="PNG"/>
</imageobject></mediaobject></screenshot>
</para>
</sect1>

</chapter>

<chapter id="commands">
<title>Command Reference</title>

<sect1 id="file-menu">
<title>The File Menu</title>

<para>
<variablelist>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>N</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>New</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new &LabPlot; project file.</action></para>
<para> In a project file all settings and all plots are stored in ASCII
format.</para></listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>O</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Open</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens a &LabPlot; project file.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>Open Recent</guisubmenu>
</menuchoice></term>
<listitem><para><action>Opens a recent &LabPlot; project file.</action></para>
<para> Here the last used 10 project files are listed.</para></listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>S</keycap></keycombo></shortcut>
<guimenu><accel>F</accel>ile</guimenu><guimenuitem><accel>S</accel>ave</guimenuitem>
</menuchoice></term>
<listitem><para><action>Saves the actual project.</action></para>
<para>If you haven't saved the project before the project is saved under a temporary project file name.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Save As</guimenuitem>
</menuchoice></term>
<listitem><para><action>
Saves the actual project under a different name.
</action></para></listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>P</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Print</guimenuitem>
</menuchoice></term>
<listitem><para><action>Prints the active plot.</action></para>
<para>
Here a print dialog is opened where you can select the printer, different paper sizes, &etc;
</para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Print Preview</guimenuitem>
</menuchoice></term>
<listitem><para><action>Open a print preview window.</action> &LabPlot; allows you to choose print settings using the toolbar of this window and view the result immediately.</para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>=</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Spreadsheet</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Alt;<keycap>X</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Worksheet</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new worksheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>Folder</guimenuitem>
</menuchoice></term>
<listitem><para><action>Creates a new spreadsheet in the current folder of &LabPlot; project.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guisubmenu>New</guisubmenu><guimenuitem>File Data Source</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens <guilabel>Import data to spreadsheet/matrix</guilabel> window.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;&Shift;<keycap>L</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Import</guimenuitem>
</menuchoice></term>
<listitem>
<para><action>Import data into the active spreadsheet</action></para>
<para>
This item can be used to import data into &LabPlot;. Please read more in the <link linkend="importdialog">import dialog</link>
section.
</para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice>
<guimenu>File</guimenu><guimenuitem>Export</guimenuitem>
</menuchoice></term>
<listitem><para><action>Saves the active plot as special format.</action></para>
<para>Currently supported are Encapsulated Postscript (EPS), Portable Document Format (PDF), Scalable Vector Graphics (SVG) and Portable Network Graphics (PNG).</para></listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>W</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Close</guimenuitem>
</menuchoice></term>
<listitem><para><action>Closes the current opened &LabPlot; project file.</action></para>
</listitem>
</varlistentry>

<varlistentry>
<term><menuchoice><shortcut>
<keycombo>&Ctrl;<keycap>Q</keycap></keycombo></shortcut>
<guimenu>File</guimenu><guimenuitem>Quit</guimenuitem>
</menuchoice></term>
<listitem><para><action>Quit &LabPlot;.</action></para>
</listitem>
</varlistentry>

</variablelist></para>
</sect1>

<sect1 id="edit-menu">
<title>The Edit Menu</title>

<para><variablelist>

<varlistentry>
<term><menuchoice>
<guimenu>Edit</guimenu><guimenuitem>Undo/Redo History</guimenuitem>
</menuchoice></term>
<listitem><para><action>Opens the &LabPlot; action history window.</action> Select an item in the list to navigate to the corresponding step.
</para></listitem>
</varlistentry>

</variablelist></para>
</sect1>

<sect1 id="worksheet-menu">
<title>The Worksheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a worksheet. 
The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>

<sect1 id="spreadsheet-menu">
<title>The Spreadsheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a spreadsheet. 
The menu is only available when a spreadsheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>

<sect1 id="CASworksheet-menu">
<title>The CAS Worksheet Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a CAS worksheet.
The menu is only available when a worksheet object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>
<sect1 id="datapicker-menu">
<title>The Datapicker Menu</title>
<para>
This menu contains all the items that can also be found in the context menu (right mouse) of a datapicker. 
The menu is only available when a datapicker object is selected on the <guilabel>Project Explorer</guilabel> panel.
</para>
</sect1>

<sect1 id="settings-menu">
<title>The Settings Menu</title>

<para>This menu gives you the ability to change user settings.</para>

<para>Apart from the common &kde; Settings menu entries described in the <ulink url="help:/fundamentals/menus.html#menus-settings">Settings Menu</ulink> chapter of the &kde; Fundamentals &LabPlot; has this application specific menu entry:
</para>

<variablelist>
<varlistentry><term><menuchoice><shortcut>
<keycombo>&Ctrl;&Shift;<keycap>F</keycap></keycombo></shortcut>
<guimenu>Settings</guimenu><guimenuitem>Full Screen Mode</guimenuitem>
</menuchoice></term>
<listitem><para><action>Show the workspace in full screen mode.</action></para>
</listitem>
</varlistentry>
</variablelist>
</sect1>


<sect1 id="help-menu">
<title>The Help Menu</title>

<para>
  Additionally, &LabPlot; has the common &kde; Help menu items. For more information, read the section about the <ulink url="help:/fundamentals/menus.html#menus-help">Help Menu</ulink> of the &kde; Fundamentals.
</para>

</sect1>

<sect1 id="toolbar">
<title>Toolbar</title>

<para>
  The main toolbar contains the main items that you can find in the different menus. More details on this can be found in the <ulink url="help:/fundamentals/config.html#toolbars">&kde; Fundamentals manual</ulink>.</para>
</sect1>

</chapter>

<chapter id="plotting">
<title>Plotting</title>

<sect1 id="plots">
  <title>Plots</title>
  <para>
      Plots can be created inside a worksheet via "Add new" in the context menu or in the application menu via "Worksheet"
      by selecting "xy-plot" and the type of plot you like to have.
  </para>
  <para>
    Within this xy-plot you can add a xy-curve containing data to show (again via the context menu or application menu).
  </para>
  <para>
    The settings of a plot can be changed in the corresponding dock widget. There are general settings like geometry 
    but also the range of the x- and y-axis (including scaling). The plot title can be set in the "Title" tab of the
    dock widget. Background and border styles can be changed in the "Plot Area" tab.
  </para>
</sect1>
  
<sect1 id="curves">
  <title>Curves</title>
  <para>
    Curves contain data points that can be shown in a plot. 
    There are three different method to create curves: the standard xy-curve, a xy-curve from a mathematical expression
    and a xy-curve from a data analysis function.
    </para>
    <para>
    The standard xy-curve can be filled with values of a spreadsheet by selecting the x-data and y-data as column of the 
    spreadsheet in the xy-curve dock widget. Another method to fill a curve is to use a mathematical expression. Here you can
    select any mathematical function and range to create the curve.
    The third method to create a curve is to use a data analysis function. The data and the analysis function can be
    selected in the dock widget of the analysis function.
  </para>
  <para>
   For all types of curves the line and symbols styles can be changed in the dock widget. Also annotated values
   and error bar settings can be changed here.
  </para>
</sect1>

<sect1 id="legends">
  <title>Legends</title>
  <para>
    A legend can be easily added to a plot by using the context of application menu. It contains information
    about all curves in a plot.
  </para>
  <para>
    The settings of a legend (format and geometry) can be changed in the legend dock widget. Also the legend title
    settings, the legend background and the layout can be changed in the corresponding tab of the legend dock widget.
  </para>
</sect1>
  
</chapter>

<chapter id="analysis">
  <title>Analysis functions</title>
  <sect1 id="analysis_overview">
    <title>Overview</title>
  <para>
    &LabPlot; supports a wide variety of data analysis functions:
    </para>
      <itemizedlist>
	<listitem><para>Data reduction</para></listitem>
	<listitem><para>Differentiation</para></listitem>
	<listitem><para>Integration</para></listitem>
	<listitem><para>Interpolation</para></listitem>
	<listitem><para>Smoothing</para></listitem>
	<listitem><para>Nonlinear curve fitting</para></listitem>
	<listitem><para>Fourier filter</para></listitem>
	<listitem><para>Fourier transform</para></listitem>
      </itemizedlist>
    <para>
    All of them can be applied to any data consisting of x- and y-columns. 
    The analysis functions can be accessed using the Analysis menu or the context menu of a worksheet.
    The newly created curves can be customized (line style, symbol style, &etc;) like any other x-y-curve.
    </para>
    </sect1>

  <sect1 id="data_reduction">
    <title>Data reduction</title>
    <para>
      To reduce the number of data points without losing the features of a data set
      you can apply one of several line simplification algorithm:
    </para>
      <itemizedlist>
	<listitem><para>Douglas-Peucker</para></listitem>
	<listitem><para>Visvalingam-Whyatt</para></listitem>
	<listitem><para>Reumann-Witkam</para></listitem>
	<listitem><para>Perpendicular distance simplification</para></listitem>
	<listitem><para>n-th point simplification</para></listitem>
	<listitem><para>Radial distance simplification</para></listitem>
	<listitem><para>Interpolation (nearest neighbor)</para></listitem>
	<listitem><para>Opheim</para></listitem>
	<listitem><para>Lang</para></listitem>
      </itemizedlist>
    <para>
      The desired tolerance is automatically calculated from the data but can also be changed
      in the dock widget.
    </para>
  </sect1>

  <sect1 id="differentiation">
    <title>Differentiation</title>
    <para>
      Numerical differentiation of data can be done specifying:
    </para>
      <itemizedlist>
	<listitem><para>order of derivation (first to sixth order)</para></listitem>
	<listitem><para>order of accuracy (up to 4th order, depending on derivation order)</para></listitem>
      </itemizedlist>
  </sect1>
  
  <sect1 id="integration">
    <title>Integration</title>
    <para>
      Numerical integration of data can be done specifying one of the methods
    </para>
      <itemizedlist>
	<listitem><para>rectangle (1-point) rule</para></listitem>
	<listitem><para>trapezoid (2-point) rule</para></listitem>
	<listitem><para>Simpson-1/3 (3-point) rule</para></listitem>
	<listitem><para>Simpson-3/8 (4-point) rule</para></listitem>
      </itemizedlist>
   <para>
     The default method (trapezoid) should be suitable for most cases. 
     The number of resulting data points is reduced for both Simpson-rules due to the properties of these methods.
   </para>
  </sect1> 

  <sect1 id="interpolation">
    <title>Interpolation</title>
    <para>
      Interpolation of data can be done with several algorithm:
    </para>
      <itemizedlist>
	<listitem><para>linear</para></listitem>
	<listitem><para>polynomial (if number of data points &lt; 100)</para></listitem>
	<listitem><para>cubic spline</para></listitem>
	<listitem><para>cubic spline (periodic)</para></listitem>
	<listitem><para>Akima spline</para></listitem>
	<listitem><para>Akima spline (periodic)</para></listitem>
	<listitem><para>Steffen spline (needs GSL &ge; 2.0)</para></listitem>
	<listitem><para>cosine</para></listitem>
	<listitem><para>exponential</para></listitem>
	<listitem><para>piecewise cubic Hermite (finite differences, Catmull-Rom, cardinal, Kochanek-Bartels)</para></listitem>
	<listitem><para>rational functions</para></listitem>
      </itemizedlist>
    <para>
	The interpolating function is calculated with the given number n of data points and evaluated as:
    </para>
      <itemizedlist>
	<listitem><para>function</para></listitem>
	<listitem><para>derivative</para></listitem>
	<listitem><para>second derivative</para></listitem>
	<listitem><para>integral (starting from zero)</para></listitem>
      </itemizedlist>
  </sect1>

    <sect1 id="smoothing">
    <title>Smoothing</title>
    <para>
      A number of different smoothing methods are supported:
    </para>
      <itemizedlist>
	<listitem><para>Moving average (central)</para></listitem>
	<listitem><para>Moving average (lagged)</para></listitem>
	<listitem><para>Percentile filter</para></listitem>
	<listitem><para>Savitzky-Golay</para></listitem>
      </itemizedlist>
    <para>
      All smoothing methods support several padding modes (constant, periodic, mirror, nearest, etc.) for the beginning and end
      of the data set. The moving averages support several weight functions (uniform, triangular, binomial, parabolic, tricubic, etc.)
      which can be selected to weight the selected data points depending on their distance.
      </para>
  </sect1>
  
  <sect1 id="fitting">
    <title>Curve fitting</title>
    <para>
      Linear and non-linear curve fitting of data can be done with several predefined fit-models 
      (for instance polynomial, exponential, Gaussian or custom) to data consisting of x- and y-columns 
      with an optional weight column. With a custom model any function with unlimited number of parameters
      can be used for fitting. The results including statistical properties are displayed in the results text.
    </para>
    <para>
    The start values of the parameter can be set in the parameter dialog. It is also possible to fix any parameter and set lower and upper limits to the values here. Be aware that reducing the parameter space by fixing parameter or specifying limits can slow down convergence or avoid finding a good result. It's always a good idea to remove any parameter limitations when good start values are found.
    </para>
    <para>
        Following options can be set in the options dialog to optimize the fitting:
    </para>
      <itemizedlist>
	<listitem><para>Max. iterations: number of maximum iterations</para></listitem>
	<listitem><para>Tolerance: desired tolerance for result</para></listitem>
	<listitem><para>Evaluated points: number of points to evaluate the fit function</para></listitem>
	<listitem><para>Evaluate full range: evaluate the fit function for the full data range instead of evaluating only for the given x range</para></listitem>
	<listitem><para>Use results as new start values: results will be the new parameter start values</para></listitem>
	</itemizedlist>

    </sect1>
  
  <sect1 id="filter">
    <title>Fourier filter</title>
    <para>
      This function can be used to apply a Fourier filter to any data consisting of x- and y-columns. Supported
      filter types are:
    </para>
      <itemizedlist>
	<listitem><para>Low pass</para></listitem>
	<listitem><para>High pass</para></listitem>
	<listitem><para>Band pass</para></listitem>
	<listitem><para>Band reject (band block)</para></listitem>
	</itemizedlist>
    <para>
      where any of them can have the form
    </para>
      <itemizedlist>
	<listitem><para>Ideal</para></listitem>
	<listitem><para>Butterworth (order 1 to 10)</para></listitem>
	<listitem><para>Chebyshev type I or II (order 1 to 10)</para></listitem>
	<listitem><para>Optimal "L"egendre (order 1 to 10)</para></listitem>
	<listitem><para>Bessel-Thomson (any order)</para></listitem>
      </itemizedlist>
    <para>
	The cutoff value(s) can be specified in the units frequency (Hertz), fraction (0.0 to 1.0) or index
	of the data points.
    </para>
  </sect1>

  <sect1 id="dft">
    <title>Fourier transform</title>
    <para>
      To convert a signal from time to frequency domain or to change between other conjugate variables like
      position and momentum (k-space) a discrete Fourier transform can be applied.
      Following options can be used to suite one needs:
    </para>
      <itemizedlist>
	<listitem><para>Window function (Welch, Hann, Hamming, etc.) to avoid leakage effects</para></listitem>
	<listitem><para>Output (magnitude, amplitude, phase, dB, etc.)</para></listitem>
	<listitem><para>One or two sided spectrum with or without shifting</para></listitem>
	<listitem><para>X axis scaling to frequency, index or period</para></listitem>
      </itemizedlist>
  </sect1>
</chapter>

<chapter id="digitization">
<title>Curve Tracing</title>

<sect1 id="uploadimage">
  <title>Upload Image</title>
  <para>
    Datapicker can be created inside a project via <guimenuitem>Add new</guimenuitem> in the context menu of project/folder or in the main toolbar.
    After that a new image can be added and can be changed via <guilabel>Plot</guilabel> in the corresponding dock widget.
  </para>
  <para>
    After uploading image different zooming options can be used from the context menu/datapicker toolbar to change width and 
    height of image. Image can also be rotated to an angle using <guilabel>Rotation</guilabel> in the "edit" section of dock widget. After this
    user have to <link linkend="axispoint">set axis points</link>.
  </para>
</sect1>
  
<sect1 id="symbols">
  <title>Symbols</title>
  <para>
    Symbols are the points that can be drawn over image of datapicker. Symbols can be directly created by mouse
     right click over the image. Symbols are mainly of two types, with and without error-bar depending on the type of 
    <link linkend="datapickercurve">curve</link> they belong.
    </para>
  <para>
    Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget.
    "SelectAndMove" mouse mode can be used to select multiple points/symbols and can be moved by using navigation keys.
  </para>
</sect1>

<sect1 id="axispoint">
  <title>Axis Points</title>
  <para>
    Axis Points are the set of three reference  <link linkend="symbols">points</link> over image of datapicker. These points 
    can be set via <guimenuitem>Set Axis Points</guimenuitem> in the context menu of datapicker. After selecting points over image user have to update
    their coordinate system type via <guilabel>Plot Type</guilabel> and logical positions via <guilabel>Ref. Points</guilabel> in the dock widget.
  </para>
</sect1>

<sect1 id="datapickercurve">
  <title>Datapicker Curve</title>
  <para>
    Datapicker-Curve can be created inside datapicker via <guimenuitem>New Curve</guimenuitem> in the context menu of datapicker. A curve can have 
    different types of X and Y errors (No-error, symmetric, asymmetric). This depends on the type of errors dock widget 
    of datapicker have at the point of creation.
    </para>
  <para>
    Every curve object contains all the curve <link linkend="symbols">points</link> (hidden) and  a spreadsheet that contains 
    logical positions of all its curve points, and provides options to update spreadsheet and to toggle visibility 
    of its curve points using the context menu. Mode <guimenuitem>Set Curve Points</guimenuitem> in the context menu of datapicker should be 
    selected in order to create curve points.
  </para>
  <para>
    Multiple curve can be created for same datapicker. The created curve points always correspond to the active
    curve of datapicker which can be changed via <guimenuitem>Active Curve</guimenuitem> option in the context menu and dock widget of datapicker.
    Every curve of datapicker can have its own symbol style that can be changed in the <guilabel>Symbols</guilabel> section of dock widget.
  </para>
</sect1>

<sect1 id="curvesegments">
  <title>Curve Segments</title>
  <para>
    Curve segment for datapicker can be created over image by switching mode to <guimenuitem>Select Curve Segments</guimenuitem> in the context menu of
    datapicker. A segment is a selectable object over image which can be selected by mouse right click over it.
    </para>
  <para>
    Segments are created by processing of image on the basis range of colour attributes in order to automatically
    trace curves. To improve results these range and types of colour attributes can be changed in the "edit"
    section of dock-widget. Dock-widget also provides options to switch among processed image and original image,
    and to set the minimum possible length of segments.
  </para>
  <para>
    Once a segment is selected it will create curve points over it with a minimum specified distance among them.
    The minimum specified distance among the points can be changed in the dock widget of datapicker. User might have
    to select the segments again in order to observe the changes.
  </para>
</sect1>

</chapter>

<!-- TODO:

Describe import of ascii-data. Import can be done either by importing the 
data to an already available spreadsheet or by adding a "File data source". 
The latter is more useful for bigger data sets where you don't need a view on 
it. A file data source can be updated on file changes and all the xy-curves 
consuming the data from this data source will also be updated.
-->

<chapter id="advanced_topics">
<title>Advanced Topics</title>
<para>
Here you will find some explanations of advanced topics.
</para>

<sect1 id="topics">
<title>Topics</title>
<sect2 id="errorbar">
<title>Error bars</title>
<para>If you want to plot data with error bars just import your data with the <link linkend="importdialog">import dialog</link> into your project. Then use the <guilabel>Error bars</guilabel> tab of <link linkend="properties-explorer">the curve properties</link> to select <guilabel>Error type</guilabel>, choose the error column from the <guilabel>Data, +-</guilabel> list. Format of the error bars can be defined using the <guilabel>Format:</guilabel> pane.</para>
</sect2>

<sect2 id="texlabel">
<title>TeX label</title>
<para>For using TeX label you just have to activate the switch button <guiicon>TeX</guiicon> in the <guilabel>Title</guilabel> tab. With that every text you enter in the text box is rendered by TeX and plotted accordingly. Since this conversion takes some time you may see a certain delay when redrawing the plot.</para>
</sect2>

</sect1>
</chapter>


<!-- TODO:

A short tutorial for the basic workflow (create new project, import data, 
create worksheet, create plots and layout them, add curves, select columns as 
data sources for the curves, add legends, export everything to pdf) would also help to become familiar with the software more quickly.
-->

<chapter id="tutorials">
<title>Short Tutorials</title>
<sect1 id="sineplot">
  <title>Building a sine graph with &LabPlot;</title>
  <para>
    In this chapter you will find explanations on how to build a simple plot for a curve in the Cartesian coordinates from a mathematical equation.
  </para>
  <screenshot>
    <screeninfo>&LabPlot; window after the first start</screeninfo>
    <mediaobject>
      <imageobject>
	<imagedata fileref="tutorial-xy-function1.png" format="PNG" />
      </imageobject>
      <textobject>
	<phrase>&LabPlot; window after the first start</phrase>
      </textobject>
    </mediaobject>
  </screenshot>
  <procedure>
    <step>
      <para>
	Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard.
      </para>
      <screenshot>
      <screeninfo>New &LabPlot; project</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function2.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>New &LabPlot; project</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard.
      </para>
      <screenshot>
      <screeninfo>Adding new &LabPlot; worksheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function3.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding new &LabPlot; worksheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>two axes, centered</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Adding axes to the plot</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function4.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding axes to the plot</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve from a mathematical equation</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Adding new curve</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function5.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding new curve</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Use the <guilabel>xy-equation-curve properties</guilabel> pane on the right to enter <userinput>sin(x)</userinput> into the <guilabel>y=f(x)</guilabel> field (for the list of available functions please see <xref linkend="parser"/>), <userinput>-6</userinput> into the <guilabel>x, min</guilabel> field, <userinput>6</userinput> into the <guilabel>x, max</guilabel> field and click on the <guibutton>Recalculate</guibutton> button to see the result.
      </para>
      <screenshot>
      <screeninfo>The default curve plot</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function6.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>The default curve plot</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
      <note>
	<para>
	  &LabPlot; highlights unknown syntax in the <guilabel>y=f(x)</guilabel> field. This is useful to control the correctness of the input.
	</para>
      </note>
      <important>
	<para>
	  The list of the known functions can be found in <link linkend="parser">corresponding section of this manual</link>.
	</para>
      </important>
    </step>
    <step>
      <para>
	Switch to the <guilabel>Line</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>cubic spline (natural)</guimenuitem> from the <guilabel>Type</guilabel> drop down box.
      </para>
      <screenshot>
      <screeninfo>Choosing the line type</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function7.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding the line type</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Switch to the <guilabel>Symbol</guilabel> tab on the <guilabel>xy-equation-curve properties</guilabel> pane and choose <guimenuitem>none</guimenuitem> from the <guilabel>Style</guilabel> drop down list.
      </para>
      <screenshot>
      <screeninfo>Removing symbols from the plot</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function8.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Removing symbols from the plot</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>legend</guimenuitem></menuchoice>. Switch to the <guilabel>Title</guilabel> tab on the <guilabel>Cartesian plot legend properties</guilabel> pane and enter <userinput>Graph of sine</userinput> into the <guilabel>Text</guilabel> field. 
      </para>
      <screenshot>
      <screeninfo>Changing the legend title</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function9.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Changing the legend title</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Choose <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice> from the main menu. Select the place and the format to save the plot.
      </para>
      <screenshot>
      <screeninfo>Exporting the plot</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function10.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Exporting the plot</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
  </procedure>
</sect1>

<sect1 id="spreadsheetplot">
  <title>Building a graph from spreadsheet data with &LabPlot;</title>
  <para>
    In this chapter you will find explanations on how to build a simple plot from spreadsheet data.
  </para>
  <screenshot>
    <screeninfo>&LabPlot; window after the first start</screeninfo>
    <mediaobject>
      <imageobject>
	<imagedata fileref="tutorial-xy-function1.png" format="PNG" />
      </imageobject>
      <textobject>
	<phrase>&LabPlot; window after the first start</phrase>
      </textobject>
    </mediaobject>
  </screenshot>
  <procedure>
    <step>
      <para>
	Click on the <guibutton>New</guibutton> button or press <keycombo>&Ctrl;<keycap>N</keycap></keycombo> on the keyboard.
      </para>
      <screenshot>
      <screeninfo>New &LabPlot; project</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-xy-function2.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>New &LabPlot; project</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Spreadsheet</guimenuitem></menuchoice> or press <keycombo>&Ctrl;<keycap>=</keycap></keycombo> on the keyboard.
      </para>
      <screenshot>
      <screeninfo>Adding new &LabPlot; spreadsheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet1.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding new &LabPlot; spreadsheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the header of the first column of the spreadsheet with the &LMB; then click on any of its cells with &RMB; and choose <menuchoice><guimenu>Selection</guimenu><guisubmenu>Fill Selection with</guisubmenu><guimenuitem>Row Numbers</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Filling the first column of the spreadsheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet2.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Filling the first column of the spreadsheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
      <para>
	Select <guimenuitem>Automatic (g)</guimenuitem> from the <guilabel>Format</guilabel> drop down box on the <guilabel>Column properties</guilabel> right dock to enhance data presentation for the first column.
      </para>
    </step>
    <step>
      <para>
	Click on the header of the second column of the spreadsheet with the &RMB; and choose <menuchoice><guimenu>Generate Data</guimenu><guimenuitem>Random Values</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Filling the second column of the spreadsheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet3.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Filling the second column of the spreadsheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Project</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>Worksheet</guimenuitem></menuchoice> or press <keycombo>&Alt;<keycap>X</keycap></keycombo> on the keyboard.
      </para>
      <screenshot>
      <screeninfo>Adding new &LabPlot; worksheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet4.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding new &LabPlot; worksheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guisubmenu>xy-plot</guisubmenu><guimenuitem>box plot, four axes</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Adding axes to the plot</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet5.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding axes to the plot</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>xy-plot</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &RMB; and choose <menuchoice><guimenu>Add new</guimenu><guimenuitem>xy-curve</guimenuitem></menuchoice>.
      </para>
      <screenshot>
      <screeninfo>Adding new curve</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet6.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Adding new curve</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Use the <guilabel>xy-curve properties</guilabel> pane on the right to select <menuchoice><guimenu>Project</guimenu><guisubmenu>Spreadsheet</guisubmenu><guimenuitem>1</guimenuitem></menuchoice> in the <guilabel>x-data</guilabel> field (just click on the item and press &Enter;). Use the same procedure to  select <guimenuitem>2</guimenuitem> for the <guilabel>y-data</guilabel> field. The results will be shown on the worksheet immediately.
      </para>
      <screenshot>
      <screeninfo>The plot for the unsorted data</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet7.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>The plot for the unsorted data</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Spreadsheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; then click on the second column header with the &RMB; and choose <menuchoice><guimenu>Sort</guimenu><guimenuitem>Ascending</guimenuitem></menuchoice>. 
      </para>
      <screenshot>
      <screeninfo>Sorting the second column of the spreadsheet</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet8.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>Sorting the second column of the spreadsheet</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
    <step>
      <para>
	Click on the <guilabel>Worksheet</guilabel> item on the <guilabel>Project Explorer</guilabel> panel with the &LMB; to see the results. 
      </para>
      <screenshot>
      <screeninfo>The plot for the sorted data</screeninfo>
      <mediaobject>
	<imageobject>
	  <imagedata fileref="tutorial-spreadsheet9.png" format="PNG" />
	</imageobject>
	<textobject>
	  <phrase>The plot for the sorted data</phrase>
	</textobject>
      </mediaobject>
      </screenshot>
    </step>
  </procedure>
</sect1>
</chapter>

<chapter id="examples">
<title>Examples</title>
<sect1 id="example-2d-plotting">
    <title>2D Plotting</title>
    <para>Coming soon ...
        </para>
    </sect1>
<sect1 id="example-signal">
    <title>Signal processing</title>
    <para>
        </para>
    <variablelist>
    <varlistentry>
    <term>Fourier filter</term>
    <listitem>
        <para>A time signal containing Morse code is Fourier transformed to frequency space to see the main component. By applying a narrow band pass filter the Morse signal is extracted and a nice ‘SOS’ can be seen:
        </para>
        
        <screenshot>
        <mediaobject><imageobject><imagedata fileref="example-fourier_filter-1024x532.png"/>
        </imageobject></mediaobject>            
        </screenshot>
        
        </listitem>
    </varlistentry>
    </variablelist>
    </sect1>
<sect1 id="example-computing">
    <title>Computing</title>
    <para>
        </para>
    <variablelist>
    <varlistentry>
    <term>Maxima</term>
    <listitem>
        <para>Maxima session showing the chaotic dynamics of the Duffing oscillator.
            The differential equation of the forced oscillator are solved with Maxima.
            Plots of the trajectory, the phase space of the oscillator and the corresponding Poincaré map are done with LabPlot:
        </para>
        
        <screenshot>
        <mediaobject><imageobject><imagedata fileref="example-maxima_2-1024x532.png"/>
        </imageobject></mediaobject>            
        </screenshot>
        
        </listitem>
    </varlistentry>
    <varlistentry>
    <term>Python</term>
    <listitem>
        <para>Python session illustrating the effect of Blackman windowing on the Fourier transform:
        </para>
        
        <screenshot>
        <mediaobject><imageobject><imagedata fileref="example-FFT_python-1024x532.png"/>
        </imageobject></mediaobject>            
        </screenshot>
        
        </listitem>
    </varlistentry>
    </variablelist>
    </sect1>
<sect1 id="example-import-export">
    <title>Import/Export</title>
    <para>Coming soon ...
        </para>
    </sect1>
<sect1 id="example-tools">
    <title>Tools</title>
    <para>Coming soon ...
        </para>
    </sect1>
    
</chapter>


<chapter id="parser">
<title>Parser functions</title>
<para>
The &LabPlot; parser allows you to use following functions:
</para>

<sect1 id="parser-standard">
<title>Standard functions</title>

<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Function</entry><entry>Description</entry></row></thead>

<tbody>

<row><entry>cbrt(x)</entry><entry><action>Cube root</action></entry></row>
<row><entry>ceil(x)</entry><entry><action>Truncate upward to integer</action></entry></row>
<row><entry>fabs(x)</entry><entry><action>Absolute value</action></entry></row>
<row><entry>gamma(x)</entry><entry><action>Gamma function</action></entry></row>
<row><entry>ldexp(x,y)</entry><entry><action>x * 2<superscript>y</superscript></action></entry></row>
<row><entry>ln(x)</entry><entry><action>Logarithm, base e</action></entry></row>
<row><entry>log(x)</entry><entry><action>Logarithm, base e</action></entry></row>
<row><entry>log1p(x)</entry><entry><action>log(1+x)</action></entry></row>
<row><entry>log10(x)</entry><entry><action>Logarithm, base 10</action></entry></row>
<row><entry>logb(x)</entry><entry><action>Radix-independent exponent</action></entry></row>
<row><entry>pow(x,n)</entry><entry><action>power function x<superscript>n</superscript></action></entry></row>
<row><entry>powint(x,n)</entry><entry><action>integer power function x<superscript>n</superscript></action></entry></row>
<row><entry>pow2(x)</entry><entry><action>power function x<superscript>2</superscript></action></entry></row>
<row><entry>pow3(x)</entry><entry><action>power function x<superscript>3</superscript></action></entry></row>
<row><entry>pow4(x)</entry><entry><action>power function x<superscript>4</superscript></action></entry></row>
<row><entry>pow5(x)</entry><entry><action>power function x<superscript>5</superscript></action></entry></row>
<row><entry>pow6(x)</entry><entry><action>power function x<superscript>6</superscript></action></entry></row>
<row><entry>pow7(x)</entry><entry><action>power function x<superscript>7</superscript></action></entry></row>
<row><entry>pow8(x)</entry><entry><action>power function x<superscript>8</superscript></action></entry></row>
<row><entry>pow9(x)</entry><entry><action>power function x<superscript>9</superscript></action></entry></row>
<row><entry>rint(x)</entry><entry><action>round to nearest integer</action></entry></row>
<row><entry>round(x)</entry><entry><action>round to nearest integer</action></entry></row>
<row><entry>sqrt(x)</entry><entry><action>Square root</action></entry></row>
<row><entry>tgamma(x)</entry><entry><action>Gamma function</action></entry></row>
<row><entry>trunc(x)</entry><entry><action>Returns the greatest integer less than or equal to x</action></entry></row>

</tbody></tgroup></informaltable>
</sect1>

<sect1 id="parser-trig">
<title>Trigonometric functions</title>

<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Function</entry><entry>Description</entry></row></thead>

<tbody>

    <row><entry>sin(x)</entry><entry><action>Sine</action></entry></row>
    <row><entry>cos(x)</entry><entry><action>Cosine</action></entry></row>
    <row><entry>tan(x)</entry><entry><action>Tangent</action></entry></row>
    <row><entry>asin(x)</entry><entry><action>Inverse sine</action></entry></row>
    <row><entry>acos(x)</entry><entry><action>Inverse cosine</action></entry></row>
    <row><entry>atan(x)</entry><entry><action>Inverse tangent</action></entry></row>
    <row><entry>atan2(y,x)</entry><entry><action>Inverse tangent function of two variables</action></entry></row>
    <row><entry>sinh(x)</entry><entry><action>Hyperbolic sine</action></entry></row>
    <row><entry>cosh(x)</entry><entry><action>Hyperbolic cosine</action></entry></row>
    <row><entry>tanh(x)</entry><entry><action>Hyperbolic tangent</action></entry></row>
    <row><entry>asinh(x)</entry><entry><action>Inverse hyperbolic sine</action></entry></row>
    <row><entry>acosh(x)</entry><entry><action>Inverse hyperbolic cosine</action></entry></row>
    <row><entry>atanh(x)</entry><entry><action>Inverse hyperbolic tangent</action></entry></row>
    <row><entry>sec(x)</entry><entry><action>Secant</action></entry></row>
    <row><entry>csc(x)</entry><entry><action>Cosecant</action></entry></row>
    <row><entry>cot(x)</entry><entry><action>Cotangent</action></entry></row>
    <row><entry>asec(x)</entry><entry><action>Inverse secant</action></entry></row>
    <row><entry>acsc(x)</entry><entry><action>Inverse cosecant</action></entry></row>
    <row><entry>acot(x)</entry><entry><action>Inverse cotangent</action></entry></row>
    <row><entry>sech(x)</entry><entry><action>Hyperbolic secant</action></entry></row>
    <row><entry>csch(x)</entry><entry><action>Hyperbolic cosecant</action></entry></row>
    <row><entry>coth(x)</entry><entry><action>Hyperbolic cotangent</action></entry></row>
    <row><entry>asech(x)</entry><entry><action>Inverse hyperbolic secant</action></entry></row>
    <row><entry>acsch(x)</entry><entry><action>Inverse hyperbolic cosecant</action></entry></row>
    <row><entry>acoth(x)</entry><entry><action>Inverse hyperbolic cotangent</action></entry></row>
    <row><entry>sinc(x)</entry><entry><action>Sinc function sin(&pi; x) / (&pi; x)</action></entry></row>
    <row><entry>logsinh(x)</entry><entry><action>log(sinh(x)) for x &gt; 0</action></entry></row>
    <row><entry>logcosh(x)</entry><entry><action>log(cosh(x))</action></entry></row>
    <row><entry>hypot(x,y)</entry><entry><action>Hypotenuse function &radic;{x<superscript>2</superscript> + y<superscript>2</superscript>}</action></entry></row>
    <row><entry>hypot3(x,y,z)</entry><entry><action>&radic;{x<superscript>2</superscript> + y<superscript>2</superscript> + z<superscript>2</superscript>}</action></entry></row>
    <row><entry>anglesymm(&alpha;)</entry><entry><action>force the angle &alpha; to lie in the range (-&pi;,&pi;]</action></entry></row>
    <row><entry>anglepos(&alpha;)</entry><entry><action>force the angle &alpha; to lie in the range (0,2&pi;]</action></entry></row>

</tbody></tgroup></informaltable>
</sect1>


<sect1 id="parser-gsl">
<title>Special functions</title>
<para>
For more information about the functions see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Function</entry><entry>Description</entry></row></thead>

<tbody>

<row><entry>Ai(x)</entry><entry><action>Airy function Ai(x)</action></entry></row>
<row><entry>Bi(x)</entry><entry><action>Airy function Bi(x)</action></entry></row>
<row><entry>Ais(x)</entry><entry><action>scaled version of the Airy function S<subscript>Ai</subscript>(x)</action></entry></row>
<row><entry>Bis(x)</entry><entry><action>scaled version of the Airy function S<subscript>Bi</subscript>(x)</action></entry></row>
<row><entry>Aid(x)</entry><entry><action>Airy function derivative Ai'(x)</action></entry></row>
<row><entry>Bid(x)</entry><entry><action>Airy function derivative Bi'(x)</action></entry></row>
<row><entry>Aids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Ai</subscript>(x)</action></entry></row>
<row><entry>Bids(x)</entry><entry><action>derivative of the scaled Airy function S<subscript>Bi</subscript>(x)</action></entry></row>
<row><entry>Ai0(s)</entry><entry><action>s-th zero of the Airy function Ai(x)</action></entry></row>
<row><entry>Bi0(s)</entry><entry><action>s-th zero of the Airy function Bi(x)</action></entry></row>
<row><entry>Aid0(s)</entry><entry><action>s-th zero of the Airy function derivative Ai'(x)</action></entry></row>
<row><entry>Bid0(s)</entry><entry><action>s-th zero of the Airy function derivative Bi'(x)</action></entry></row>
<row><entry>J0(x)</entry><entry><action>regular cylindrical Bessel function of zeroth order, J<subscript>0</subscript>(x)</action></entry></row>
<row><entry>J1(x)</entry><entry><action>regular cylindrical Bessel function of first order, J<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Jn(n,x)</entry><entry><action>regular cylindrical Bessel function of order n, J<subscript>n</subscript>(x)</action></entry></row>
<row><entry>Y0(x)</entry><entry><action>irregular cylindrical Bessel function of zeroth order, Y<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Y1(x)</entry><entry><action>irregular cylindrical Bessel function of first order, Y<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Yn(n,x)</entry><entry><action>irregular cylindrical Bessel function of order n, Y<subscript>n</subscript>(x)</action></entry></row>
<row><entry>I0(x)</entry><entry><action>regular modified cylindrical Bessel function of zeroth order, I<subscript>0</subscript>(x)</action></entry></row>
<row><entry>I1(x)</entry><entry><action>regular modified cylindrical Bessel function of first order, I<subscript>1</subscript>(x)</action></entry></row>
<row><entry>In(n,x)</entry><entry><action>regular modified cylindrical Bessel function of order n, I<subscript>n</subscript>(x)</action></entry></row>
<row><entry>I0s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of zeroth order, exp (-|x|) I<subscript>0</subscript>(x)</action></entry></row>
<row><entry>I1s(x)</entry><entry><action>scaled regular modified cylindrical Bessel function of first order, exp(-|x|) I<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Ins(n,x)</entry><entry><action>scaled regular modified cylindrical Bessel function of order n, exp(-|x|) I<subscript>n</subscript>(x)</action></entry></row>
<row><entry>K0(x)</entry><entry><action>irregular modified cylindrical Bessel function of zeroth order, K<subscript>0</subscript>(x)</action></entry></row>
<row><entry>K1(x)</entry><entry><action>irregular modified cylindrical Bessel function of first order, K<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Kn(n,x)</entry><entry><action>irregular modified cylindrical Bessel function of order n, K<subscript>n</subscript>(x)</action></entry></row>
<row><entry>K0s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of zeroth order, exp(x) K<subscript>0</subscript>(x)</action></entry></row>
<row><entry>K1s(x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of first order, exp(x) K<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Kns(n,x)</entry><entry><action>scaled irregular modified cylindrical Bessel function of order n, exp(x) K<subscript>n</subscript>(x)</action></entry></row>
<row><entry>j0(x)</entry><entry><action>regular spherical Bessel function of zeroth order, j<subscript>0</subscript>(x)</action></entry></row>
<row><entry>j1(x)</entry><entry><action>regular spherical Bessel function of first order, j<subscript>1</subscript>(x)</action></entry></row>
<row><entry>j2(x)</entry><entry><action>regular spherical Bessel function of second order, j<subscript>2</subscript>(x)</action></entry></row>
<row><entry>jl(l,x)</entry><entry><action>regular spherical Bessel function of order l, j<subscript>l</subscript>(x)</action></entry></row>
<row><entry>y0(x)</entry><entry><action>irregular spherical Bessel function of zeroth order, y<subscript>0</subscript>(x)</action></entry></row>
<row><entry>y1(x)</entry><entry><action>irregular spherical Bessel function of first order, y<subscript>1</subscript>(x)</action></entry></row>
<row><entry>y2(x)</entry><entry><action>irregular spherical Bessel function of second order, y<subscript>2</subscript>(x)</action></entry></row>
<row><entry>yl(l,x)</entry><entry><action>irregular spherical Bessel function of order l, y<subscript>l</subscript>(x)</action></entry></row>
<row><entry>i0s(x)</entry><entry><action>scaled regular modified spherical Bessel function of zeroth order, exp(-|x|) i<subscript>0</subscript>(x)</action></entry></row>
<row><entry>i1s(x)</entry><entry><action>scaled regular modified spherical Bessel function of first order, exp(-|x|) i<subscript>1</subscript>(x)</action></entry></row>
<row><entry>i2s(x)</entry><entry><action>scaled regular modified spherical Bessel function of second order, exp(-|x|) i<subscript>2</subscript>(x)</action></entry></row>
<row><entry>ils(l,x)</entry><entry><action>scaled regular modified spherical Bessel function of order l, exp(-|x|) i<subscript>l</subscript>(x)</action></entry></row>
<row><entry>k0s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of zeroth order, exp(x) k<subscript>0</subscript>(x)</action></entry></row>
<row><entry>k1s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of first order, exp(x) k<subscript>1</subscript>(x)</action></entry></row>
<row><entry>k2s(x)</entry><entry><action>scaled irregular modified spherical Bessel function of second order, exp(x) k<subscript>2</subscript>(x)</action></entry></row>
<row><entry>kls(l,x)</entry><entry><action>scaled irregular modified spherical Bessel function of order l, exp(x) k<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Jnu(&nu;,x)</entry><entry><action>regular cylindrical Bessel function of fractional order &nu;, J<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>Ynu(&nu;,x)</entry><entry><action>irregular cylindrical Bessel function of fractional order &nu;, Y<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>Inu(&nu;,x)</entry><entry><action>regular modified Bessel function of fractional order &nu;, I<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>Inus(&nu;,x)</entry><entry><action>scaled regular modified Bessel function of fractional order &nu;, exp(-|x|) I<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>Knu(&nu;,x)</entry><entry><action>irregular modified Bessel function of fractional order &nu;, K<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>lnKnu(&nu;,x)</entry><entry><action>logarithm of the irregular modified Bessel function of fractional order &nu;,ln(K<subscript>&nu;</subscript>(x))</action></entry></row>
<row><entry>Knus(&nu;,x)</entry><entry><action>scaled irregular modified Bessel function of fractional order &nu;, exp(|x|) K<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>J0_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>0</subscript>(x)</action></entry></row>
<row><entry>J1_0(s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Jnu_0(nu,s)</entry><entry><action>s-th positive zero of the Bessel function J<subscript>&nu;</subscript>(x)</action></entry></row>
<row><entry>clausen(x)</entry><entry><action>Clausen integral Cl<subscript>2</subscript>(x)</action></entry></row>
<row><entry>hydrogenicR_1(Z,R)</entry><entry><action>lowest-order normalized hydrogenic bound state radial wavefunction R<subscript>1</subscript> := 2Z &radic;Z exp(-Z r)</action></entry></row>
<row><entry>hydrogenicR(n,l,Z,R)</entry><entry><action>n-th normalized hydrogenic bound state radial wavefunction</action></entry></row>
<row><entry>dawson(x)</entry><entry><action>Dawson's integral</action></entry></row>
<row><entry>D1(x)</entry><entry><action>first-order Debye function D<subscript>1</subscript>(x) = (1/x) &int;<subscript>0</subscript><superscript>x</superscript>(t/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D2(x)</entry><entry><action>second-order Debye function D<subscript>2</subscript>(x) = (2/x<superscript>2</superscript>) &int;<subscript>0</subscript><superscript>x</superscript> (t<superscript>2</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D3(x)</entry><entry><action>third-order Debye function D<subscript>3</subscript>(x) =  (3/x<superscript>3</superscript>) &int;<subscript>0</subscript><superscript>x</superscript> (t<superscript>3</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D4(x)</entry><entry><action>fourth-order Debye function D<subscript>4</subscript>(x) =  (4/x<superscript>4</superscript>) &int;<subscript>0</subscript><superscript>x</superscript> (t<superscript>4</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D5(x)</entry><entry><action>fifth-order Debye function D<subscript>5</subscript>(x) =  (5/x<superscript>5</superscript>) &int;<subscript>0</subscript><superscript>x</superscript> (t<superscript>5</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>D6(x)</entry><entry><action>sixth-order Debye function D<subscript>6</subscript>(x) =  (6/x<superscript>6</superscript>) &int;<subscript>0</subscript><superscript>x</superscript> (t<superscript>6</superscript>/(e<superscript>t</superscript> - 1)) dt</action></entry></row>
<row><entry>Li2(x)</entry><entry><action>dilogarithm</action></entry></row>
<row><entry>Kc(k)</entry><entry><action>complete elliptic integral K(k)</action></entry></row>
<row><entry>Ec(k)</entry><entry><action>complete elliptic integral E(k)</action></entry></row>
<row><entry>F(phi,k)</entry><entry><action>incomplete elliptic integral F(phi,k)</action></entry></row>
<row><entry>E(phi,k)</entry><entry><action>incomplete elliptic integral E(phi,k)</action></entry></row>
<row><entry>P(phi,k,n)</entry><entry><action>incomplete elliptic integral P(phi,k,n)</action></entry></row>
<row><entry>D(phi,k,n)</entry><entry><action>incomplete elliptic integral D(phi,k,n)</action></entry></row>
<row><entry>RC(x,y)</entry><entry><action>incomplete elliptic integral RC(x,y)</action></entry></row>
<row><entry>RD(x,y,z)</entry><entry><action>incomplete elliptic integral RD(x,y,z)</action></entry></row>
<row><entry>RF(x,y,z)</entry><entry><action>incomplete elliptic integral RF(x,y,z)</action></entry></row>
<row><entry>RJ(x,y,z)</entry><entry><action>incomplete elliptic integral RJ(x,y,z,p)</action></entry></row>
<row><entry>erf(x)</entry><entry><action>error function erf(x) = 2/&radic;&pi; &int;<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row>
<row><entry>erfc(x)</entry><entry><action>complementary error function erfc(x) = 1 - erf(x) = 2/&radic;&pi; &int;<subscript>x</subscript><superscript>&infin;</superscript> exp(-t<superscript>2</superscript>) dt</action></entry></row>
<row><entry>log_erfc(x)</entry><entry><action>logarithm of the complementary error function log(erfc(x))</action></entry></row>
<row><entry>erf_Z(x)</entry><entry><action>Gaussian probability function Z(x) = (1/(2&pi;)) exp(-x<superscript>2</superscript>/2)</action></entry></row>
<row><entry>erf_Q(x)</entry><entry><action>upper tail of the Gaussian probability function Q(x) = (1/(2&pi;)) &int;<subscript>x</subscript><superscript>&infin;</superscript> exp(-t<superscript>2</superscript>/2) dt</action></entry></row>
<row><entry>hazard(x)</entry><entry><action>hazard function for the normal distribution</action></entry></row>
<row><entry>exp(x)</entry><entry><action>Exponential, base e</action></entry></row>
<row><entry>expm1(x)</entry><entry><action>exp(x)-1</action></entry></row>
<row><entry>exp_mult(x,y)</entry><entry><action>exponentiate x and multiply by the factor y to return the product y exp(x)</action></entry></row>
<row><entry>exprel(x)</entry><entry><action>(exp(x)-1)/x using an algorithm that is accurate for small x</action></entry></row>
<row><entry>exprel2(x)</entry><entry><action>2(exp(x)-1-x)/x<superscript>2</superscript> using an algorithm that is accurate for small x</action></entry></row>
<row><entry>expreln(n,x)</entry><entry><action>n-relative exponential, which is the n-th generalization of the functions `exprel'</action></entry></row>
<row><entry>E1(x)</entry><entry><action>exponential integral E<subscript>1</subscript>(x), E<subscript>1</subscript>(x) := Re &int;<subscript>1</subscript><superscript>&infin;</superscript> exp(-xt)/t dt</action></entry></row>
<row><entry>E2(x)</entry><entry><action>second-order exponential integral E<subscript>2</subscript>(x), E<subscript>2</subscript>(x) := Re &int;<subscript>1</subscript><superscript>&infin;</superscript> exp(-xt)/t<superscript>2</superscript> dt</action></entry></row>
<row><entry>En(x)</entry><entry><action>exponential integral E_n(x) of order n, E<subscript>n</subscript>(x) := Re &int;<subscript>1</subscript><superscript>&infin;</superscript> exp(-xt)/t<superscript>n</superscript> dt)</action></entry></row>
<row><entry>Ei(x)</entry><entry><action>exponential integral E_i(x), Ei(x) := PV(&int;<subscript>-x</subscript><superscript>&infin;</superscript> exp(-t)/t dt)</action></entry></row>
<row><entry>shi(x)</entry><entry><action>Shi(x) = &int;<subscript>0</subscript><superscript>x</superscript> sinh(t)/t dt</action></entry></row>
<row><entry>chi(x)</entry><entry><action>integral Chi(x) := Re[ &gamma;<subscript>E</subscript> + log(x) + &int;<subscript>0</subscript><superscript>x</superscript> (cosh[t]-1)/t dt ]</action></entry></row>
<row><entry>Ei3(x)</entry><entry><action>exponential integral Ei<subscript>3</subscript>(x) = &int;<subscript>0</subscript><superscript>x</superscript> exp(-t<superscript>3</superscript>) dt for x &gt;= 0</action></entry></row>
<row><entry>si(x)</entry><entry><action>Sine integral Si(x) = &int;<subscript>0</subscript><superscript>x</superscript> sin(t)/t dt</action></entry></row>
<row><entry>ci(x)</entry><entry><action>Cosine integral Ci(x) = -&int;<subscript>x</subscript><superscript>&infin;</superscript> cos(t)/t dt for x &gt; 0</action></entry></row>
<row><entry>atanint(x)</entry><entry><action>Arctangent integral AtanInt(x) = &int;<subscript>0</subscript><superscript>x</superscript> arctan(t)/t dt</action></entry></row>
<row><entry>Fm1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of -1, F<subscript>-1</subscript>(x) = e<superscript>x</superscript> / (1 + e<superscript>x</superscript>)</action></entry></row>
<row><entry>F0(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 0, F<subscript>0</subscript>(x) = ln(1 + e<superscript>x</superscript>)</action></entry></row>
<row><entry>F1(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 1, F<subscript>1</subscript>(x) = &int;<subscript>0</subscript><superscript>&infin;</superscript> (t /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>F2(x)</entry><entry><action>complete Fermi-Dirac integral with an index of 2, F<subscript>2</subscript>(x) = (1/2) &int;<subscript>0</subscript><superscript>&infin;</superscript> (t<superscript>2</superscript> /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>Fj(j,x)</entry><entry><action>complete Fermi-Dirac integral with an index of j, F<subscript>j</subscript>(x) = (1/&Gamma;(j+1)) &int;<subscript>0</subscript><superscript>&infin;</superscript> (t<superscript>j</superscript> /(exp(t-x)+1)) dt</action></entry></row>
<row><entry>Fmhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>-1/2</subscript>(x)</action></entry></row>
<row><entry>Fhalf(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>1/2</subscript>(x)</action></entry></row>
<row><entry>F3half(x)</entry><entry><action>complete Fermi-Dirac integral F<subscript>3/2</subscript>(x)</action></entry></row>
<row><entry>Finc0(x,b)</entry><entry><action>incomplete Fermi-Dirac integral with an index of zero, F<subscript>0</subscript>(x,b) = ln(1 + e<superscript>b-x</superscript>) - (b-x)</action></entry></row>
<row><entry>lngamma(x)</entry><entry><action>logarithm of the Gamma function</action></entry></row>
<row><entry>gammastar(x)</entry><entry><action>regulated Gamma Function &Gamma;<superscript>*</superscript>(x) for x &gt; 0</action></entry></row>
<row><entry>gammainv(x)</entry><entry><action>reciprocal of the gamma function, 1/&Gamma;(x) using the real Lanczos method.</action></entry></row>
<row><entry>fact(n)</entry><entry><action>factorial n!</action></entry></row>
<row><entry>doublefact(n)</entry><entry><action>double factorial n!! = n(n-2)(n-4)...</action></entry></row>
<row><entry>lnfact(n)</entry><entry><action>logarithm of the factorial of n, log(n!)</action></entry></row>
<row><entry>lndoublefact(n)</entry><entry><action>logarithm of the double factorial log(n!!)</action></entry></row>
<row><entry>choose(n,m)</entry><entry><action>combinatorial factor `n choose m' = n!/(m!(n-m)!)</action></entry></row>
<row><entry>lnchoose(n,m)</entry><entry><action>logarithm of `n choose m'</action></entry></row>
<row><entry>taylor(n,x)</entry><entry><action>Taylor coefficient x<superscript>n</superscript> / n! for x >= 0, n >= 0</action></entry></row>
<row><entry>poch(a,x)</entry><entry><action>Pochhammer symbol (a)<subscript>x</subscript> := &Gamma;(a + x)/&Gamma;(x)</action></entry></row>
<row><entry>lnpoch(a,x)</entry><entry><action>logarithm of the Pochhammer symbol (a)<subscript>x</subscript> := &Gamma;(a + x)/&Gamma;(x)</action></entry></row>
<row><entry>pochrel(a,x)</entry><entry><action>relative Pochhammer symbol ((a,x) - 1)/x where (a,x) = (a)<subscript>x</subscript> := &Gamma;(a + x)/&Gamma;(a)</action></entry></row>
<row><entry>gammainc(a,x)</entry><entry><action>incomplete Gamma Function &Gamma;(a,x) = &int;<subscript>x</subscript><superscript>&infin;</superscript> t<superscript>a-1</superscript> exp(-t) dt for a &gt; 0, x &gt;= 0</action></entry></row>
<row><entry>gammaincQ(a,x)</entry><entry><action>normalized incomplete Gamma Function P(a,x) = 1/&Gamma;(a) &int;<subscript>x</subscript><superscript>&infin;</superscript> t<superscript>a-1</superscript> exp(-t) dt for a &gt; 0, x &gt;= 0</action></entry></row>
<row><entry>gammaincP(a,x)</entry><entry><action>complementary normalized incomplete Gamma Function P(a,x) = 1/&Gamma;(a) &int;<subscript>0</subscript><superscript>x</superscript> t<superscript>a-1</superscript> exp(-t) dt for a &gt; 0, x &gt;= 0</action></entry></row>
<row><entry>beta(a,b)</entry><entry><action>Beta Function, B(a,b) = &Gamma;(a) &Gamma;(b)/&Gamma;(a+b) for a &gt; 0, b &gt; 0</action></entry></row>
<row><entry>lnbeta(a,b)</entry><entry><action>logarithm of the Beta Function, log(B(a,b)) for a &gt; 0, b &gt; 0</action></entry></row>
<row><entry>betainc(a,b,x)</entry><entry><action>normalize incomplete Beta function B_x(a,b)/B(a,b) for a &gt; 0, b &gt; 0 </action></entry></row>
<row><entry>C1(&lambda;,x)</entry><entry><action>Gegenbauer polynomial C<superscript>&lambda;</superscript><subscript>1</subscript>(x)</action></entry></row>
<row><entry>C2(&lambda;,x)</entry><entry><action>Gegenbauer polynomial C<superscript>&lambda;</superscript><subscript>2</subscript>(x)</action></entry></row>
<row><entry>C3(&lambda;,x)</entry><entry><action>Gegenbauer polynomial C<superscript>&lambda;</superscript><subscript>3</subscript>(x)</action></entry></row>
<row><entry>Cn(n,&lambda;,x)</entry><entry><action>Gegenbauer polynomial C<superscript>&lambda;</superscript><subscript>n</subscript>(x)</action></entry></row>
<row><entry>hyperg_0F1(c,x)</entry><entry><action>hypergeometric function <subscript>0</subscript>F<subscript>1</subscript>(c,x)</action></entry></row>
<row><entry>hyperg_1F1i(m,n,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(m,n,x) = M(m,n,x) for integer parameters m, n</action></entry></row>
<row><entry>hyperg_1F1(a,b,x)</entry><entry><action>confluent hypergeometric function <subscript>1</subscript>F<subscript>1</subscript>(a,b,x) = M(a,b,x) for general parameters a,b</action></entry></row>
<row><entry>hyperg_Ui(m,n,x)</entry><entry><action>confluent hypergeometric function U(m,n,x) for integer parameters m,n</action></entry></row>
<row><entry>hyperg_U(a,b,x)</entry><entry><action>confluent hypergeometric function U(a,b,x)</action></entry></row>
<row><entry>hyperg_2F1(a,b,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x)</action></entry></row>
<row><entry>hyperg_2F1c(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) with complex parameters</action></entry></row>
<row><entry>hyperg_2F1r(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a,b,c,x) / &Gamma;(c)</action></entry></row>
<row><entry>hyperg_2F1cr(a<subscript>R</subscript>,a<subscript>I</subscript>,c,x)</entry><entry><action>renormalized Gauss hypergeometric function <subscript>2</subscript>F<subscript>1</subscript>(a<subscript>R</subscript> + i a<subscript>I</subscript>, a<subscript>R</subscript> - i a<subscript>I</subscript>, c, x) / &Gamma;(c)</action></entry></row>
<row><entry>hyperg_2F0(a,b,x)</entry><entry><action>hypergeometric function <subscript>2</subscript>F<subscript>0</subscript>(a,b,x)</action></entry></row>
<row><entry>L1(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>1</subscript>(x)</action></entry></row>
<row><entry>L2(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>2</subscript>(x)</action></entry></row>
<row><entry>L3(a,x)</entry><entry><action>generalized Laguerre polynomials L<superscript>a</superscript><subscript>3</subscript>(x)</action></entry></row>
<row><entry>W0(x)</entry><entry><action>principal branch of the Lambert W function, W<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Wm1(x)</entry><entry><action>secondary real-valued branch of the Lambert W function, W<subscript>-1</subscript>(x)</action></entry></row>
<row><entry>P1(x)</entry><entry><action>Legendre polynomials P<subscript>1</subscript>(x)</action></entry></row>
<row><entry>P2(x)</entry><entry><action>Legendre polynomials P<subscript>2</subscript>(x)</action></entry></row>
<row><entry>P3(x)</entry><entry><action>Legendre polynomials P<subscript>3</subscript>(x)</action></entry></row>
<row><entry>Pl(l,x)</entry><entry><action>Legendre polynomials P<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Q0(x)</entry><entry><action>Legendre polynomials Q<subscript>0</subscript>(x)</action></entry></row>
<row><entry>Q1(x)</entry><entry><action>Legendre polynomials Q<subscript>1</subscript>(x)</action></entry></row>
<row><entry>Ql(l,x)</entry><entry><action>Legendre polynomials Q<subscript>l</subscript>(x)</action></entry></row>
<row><entry>Plm(l,m,x)</entry><entry><action>associated Legendre polynomial P<subscript>l</subscript><superscript>m</superscript>(x)</action></entry></row>
<row><entry>Pslm(l,m,x)</entry><entry><action>normalized associated Legendre polynomial &radic;{(2l+1)/(4&pi;)} &radic;{(l-m)!/(l+m)!} P<subscript>l</subscript><superscript>m</superscript>(x) suitable for use in spherical harmonics</action></entry></row>
<row><entry>Phalf(&lambda;,x)</entry><entry><action>irregular Spherical Conical Function P<superscript>1/2</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1</action></entry></row>
<row><entry>Pmhalf(&lambda;,x)</entry><entry><action>regular Spherical Conical Function P<superscript>-1/2</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1</action></entry></row>
<row><entry>Pc0(&lambda;,x)</entry><entry><action>conical function P<superscript>0</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1</action></entry></row>
<row><entry>Pc1(&lambda;,x)</entry><entry><action>conical function P<superscript>1</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1</action></entry></row>
<row><entry>Psr(l,&lambda;,x)</entry><entry><action>Regular Spherical Conical Function P<superscript>-1/2-l</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1, l &gt;= -1</action></entry></row>
<row><entry>Pcr(l,&lambda;,x)</entry><entry><action>Regular Cylindrical Conical Function P<superscript>-m</superscript><subscript>-1/2 + i &lambda;</subscript>(x) for x &gt; -1, m &gt;= -1</action></entry></row>
<row><entry>H3d0(&lambda;,&eta;)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>0</subscript>(&lambda;,,&eta;) := sin(&lambda; &eta;)/(&lambda; sinh(&eta;)) for &eta; &gt;= 0</action></entry></row>
<row><entry>H3d1(&lambda;,&eta;)</entry><entry><action>zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L<superscript>H3d</superscript><subscript>1</subscript>(&lambda;,&eta;) := 1/&radic;{&lambda;<superscript>2</superscript> + 1} sin(&lambda; &eta;)/(&lambda; sinh(&eta;)) (coth(&eta;) - &lambda; cot(&lambda; &eta;)) for &eta; &gt;= 0</action></entry></row>
<row><entry>H3d(l,&lambda;,&eta;)</entry><entry><action>L'th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space eta &gt;= 0, l &gt;= 0</action></entry></row>
<row><entry>logabs(x)</entry><entry><action>logarithm of the magnitude of X, log(|x|)</action></entry></row>
<row><entry>logp(x)</entry><entry><action>log(1 + x) for x &gt; -1 using an algorithm that is accurate for small x</action></entry></row>
<row><entry>logm(x)</entry><entry><action>log(1 + x) - x for x &gt; -1 using an algorithm that is accurate for small x</action></entry></row>
<row><entry>psiint(n)</entry><entry><action>digamma function &psi;(n) for positive integer n</action></entry></row>
<row><entry>psi(x)</entry><entry><action>digamma function &psi;(n) for general x</action></entry></row>
<row><entry>psi1piy(y)</entry><entry><action>real part of the digamma function on the line 1+i y, Re[&psi;(1 + i y)]</action></entry></row>
<row><entry>psi1int(n)</entry><entry><action>Trigamma function &psi;'(n) for positive integer n</action></entry></row>
<row><entry>psi1(n)</entry><entry><action>Trigamma function &psi;'(x) for general x</action></entry></row>
<row><entry>psin(m,x)</entry><entry><action>polygamma function &psi;<superscript>(m)</superscript>(x) for m &gt;= 0, x &gt; 0</action></entry></row>
<row><entry>synchrotron1(x)</entry><entry><action>first synchrotron function x &int;<subscript>x</subscript><superscript>&infin;</superscript> K<subscript>5/3</subscript>(t) dt for x &gt;= 0</action></entry></row>
<row><entry>synchrotron2(x)</entry><entry><action>second synchrotron function x K<subscript>2/3</subscript>(x) for x &gt;= 0</action></entry></row>
<row><entry>J2(x)</entry><entry><action>transport function J(2,x)</action></entry></row>
<row><entry>J3(x)</entry><entry><action>transport function J(3,x)</action></entry></row>
<row><entry>J4(x)</entry><entry><action>transport function J(4,x)</action></entry></row>
<row><entry>J5(x)</entry><entry><action>transport function J(5,x)</action></entry></row>
<row><entry>zetaint(n)</entry><entry><action>Riemann zeta function &zeta;(n) for integer n</action></entry></row>
<row><entry>zeta(s)</entry><entry><action>Riemann zeta function &zeta;(s) for arbitrary s</action></entry></row>
<row><entry>zetam1int(n)</entry><entry><action>Riemann &zeta; function minus 1 for integer n</action></entry></row>
<row><entry>zetam1(s)</entry><entry><action>Riemann &zeta; function minus 1</action></entry></row>
<row><entry>zetaintm1(s)</entry><entry><action>Riemann &zeta; function for integer n minus 1</action></entry></row>
<row><entry>hzeta(s,q)</entry><entry><action>Hurwitz zeta function &zeta;(s,q) for s &gt; 1, q &gt; 0</action></entry></row>
<row><entry>etaint(n)</entry><entry><action>eta function &eta;(n) for integer n</action></entry></row>
<row><entry>eta(s)</entry><entry><action>eta function &eta;(s) for arbitrary s</action></entry></row>
</tbody>
</tgroup>
</informaltable>
</sect1>

<sect1 id="parser-ran-gsl">
<title>Random number distributions</title>
<para>
For more information about the functions see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Function</entry><entry>Description</entry></row></thead>

<tbody>

<row><entry>gaussian(x,&sigma;)</entry><entry><action>probability density p(x) for a Gaussian distribution with standard deviation &sigma;</action></entry></row>
<row><entry>ugaussian(x)</entry><entry><action>unit Gaussian distribution.  They are equivalent to the functions above with a standard deviation of &sigma; = 1</action></entry></row>
<row><entry>gaussianP(x,&sigma;)</entry><entry><action>cumulative distribution functions P(x) for the Gaussian distribution with standard deviation &sigma;</action></entry></row>
<row><entry>gaussianQ(x,&sigma;)</entry><entry><action>cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation &sigma;</action></entry></row>
<row><entry>gaussianPinv(P,&sigma;)</entry><entry><action>inverse cumulative distribution functions P(x) for the Gaussian distribution with standard deviation &sigma;</action></entry></row>
<row><entry>gaussianQinv(Q,&sigma;)</entry><entry><action>inverse cumulative distribution functions Q(x) for the Gaussian distribution with standard deviation &sigma;</action></entry></row>
<row><entry>ugaussianP(x)</entry><entry><action>cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianQ(x)</entry><entry><action>cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianPinv(P)</entry><entry><action>inverse cumulative distribution function P(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>ugaussianQinv(Q)</entry><entry><action>inverse cumulative distribution function Q(x) for the unit Gaussian distribution</action></entry></row>
<row><entry>gaussiantail(x,a,&sigma;)</entry><entry><action>probability density p(x) for a Gaussian tail distribution with standard deviation &sigma; and lower limit a</action></entry></row>
<row><entry>ugaussiantail(x,a)</entry><entry><action>tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of &sigma; = 1</action></entry></row>
<row><entry>gaussianbi(x,y,&sigma;<subscript>x</subscript>,&sigma;<subscript>y</subscript>,&rho;)</entry><entry><action>probability density p(x,y) for a bivariate gaussian distribution 
      with standard deviations &sigma;<subscript>x</subscript>, &sigma;<subscript>y</subscript> and correlation coefficient &rho;</action></entry></row>
<row><entry>exponential(x,&mu;)</entry><entry><action>probability density p(x) for an exponential distribution with mean &mu;</action></entry></row>
<row><entry>exponentialP(x,&mu;)</entry><entry><action>cumulative distribution function P(x) for an exponential distribution with mean &mu;</action></entry></row>
<row><entry>exponentialQ(x,&mu;)</entry><entry><action>cumulative distribution function Q(x) for an exponential distribution with mean &mu;</action></entry></row>
<row><entry>exponentialPinv(P,&mu;)</entry><entry><action>inverse cumulative distribution function P(x) for an exponential distribution with mean &mu;</action></entry></row>
<row><entry>exponentialQinv(Q,&mu;)</entry><entry><action>inverse cumulative distribution function Q(x) for an exponential distribution with mean &mu;</action></entry></row>
<row><entry>laplace(x,a)</entry><entry><action>probability density p(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplaceP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplaceQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Laplace distribution with width a</action></entry></row>
<row><entry>laplacePinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for an Laplace distribution with width a</action></entry></row>
<row><entry>laplaceQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for an Laplace distribution with width a</action></entry></row>
<row><entry>exppow(x,a,b)</entry><entry><action>probability density p(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>exppowP(x,a,b)</entry><entry><action>cumulative probability density P(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>exppowQ(x,a,b)</entry><entry><action>cumulative probability density Q(x) for an exponential power distribution with scale parameter a and exponent b</action></entry></row>
<row><entry>cauchy(x,a)</entry><entry><action>probability density p(x) for a Cauchy (Lorentz) distribution with scale parameter a</action></entry></row>
<row><entry>cauchyP(x,a)</entry><entry><action>cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>cauchyQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a Cauchy distribution with scale parameter a</action></entry></row>
<row><entry>rayleigh(x,&sigma;)</entry><entry><action>probability density p(x) for a Rayleigh distribution with scale parameter &sigma;</action></entry></row>
<row><entry>rayleighP(x,&sigma;)</entry><entry><action>cumulative distribution function P(x) for a Rayleigh distribution with scale parameter &sigma;</action></entry></row>
<row><entry>rayleighQ(x,&sigma;)</entry><entry><action>cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter &sigma;</action></entry></row>
<row><entry>rayleighPinv(P,&sigma;)</entry><entry><action>inverse cumulative distribution function P(x) for a Rayleigh distribution with scale parameter &sigma;</action></entry></row>
<row><entry>rayleighQinv(Q,&sigma;)</entry><entry><action>inverse cumulative distribution function Q(x) for a Rayleigh distribution with scale parameter &sigma;</action></entry></row>
<row><entry>rayleigh_tail(x,a,&sigma;)</entry><entry><action>probability density p(x) for a Rayleigh tail distribution with scale parameter &sigma; and lower limit a</action></entry></row>
<row><entry>landau(x)</entry><entry><action>probability density p(x) for the Landau distribution</action></entry></row>
<row><entry>gammapdf(x,a,b)</entry><entry><action>probability density p(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>gammaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a gamma distribution with parameters a and b</action></entry></row>
<row><entry>flat(x,a,b)</entry><entry><action>probability density p(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>flatQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a uniform distribution from a to b</action></entry></row>
<row><entry>lognormal(x,&zeta;,&sigma;)</entry><entry><action>probability density p(x) for a lognormal distribution with parameters &zeta; and &sigma;</action></entry></row>
<row><entry>lognormalP(x,&zeta;,&sigma;)</entry><entry><action>cumulative distribution function P(x) for a lognormal distribution with parameters &zeta; and &sigma;</action></entry></row>
<row><entry>lognormalQ(x,&zeta;,&sigma;)</entry><entry><action>cumulative distribution function Q(x) for a lognormal distribution with parameters &zeta; and &sigma;</action></entry></row>
<row><entry>lognormalPinv(P,&zeta;,&sigma;)</entry><entry><action>inverse cumulative distribution function P(x) for a lognormal distribution with parameters &zeta; and &sigma;</action></entry></row>
<row><entry>lognormalQinv(Q,&zeta;,&sigma;)</entry><entry><action>inverse cumulative distribution function Q(x) for a lognormal distribution with parameters &zeta; and &sigma;</action></entry></row>
<row><entry>chisq(x,&nu;)</entry><entry><action>probability density p(x) for a &chi;<superscript>2</superscript> distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>chisqP(x,&nu;)</entry><entry><action>cumulative distribution function P(x) for a &chi;<superscript>2</superscript> distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>chisqQ(x,&nu;)</entry><entry><action>cumulative distribution function Q(x) for a &chi;<superscript>2</superscript> distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>chisqPinv(P,&nu;)</entry><entry><action>inverse cumulative distribution function P(x) for a &chi;<superscript>2</superscript> distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>chisqQinv(Q,&nu;)</entry><entry><action>inverse cumulative distribution function Q(x) for a &chi;<superscript>2</superscript> distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>fdist(x,&nu;<subscript>1</subscript>,&nu;<subscript>2</subscript>)</entry><entry><action>probability density p(x) for an F-distribution with &nu;<subscript>1</subscript> and &nu;<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistP(x,&nu;<subscript>1</subscript>,&nu;<subscript>2</subscript>)</entry><entry><action>cumulative distribution function P(x) for an F-distribution with &nu;<subscript>1</subscript> and &nu;<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistQ(x,&nu;<subscript>1</subscript>,&nu;<subscript>2</subscript>)</entry><entry><action>cumulative distribution function Q(x) for an F-distribution with &nu;<subscript>1</subscript> and &nu;<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistPinv(P,&nu;<subscript>1</subscript>,&nu;<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function P(x) for an F-distribution with &nu;<subscript>1</subscript> and &nu;<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>fdistQinv(Q,&nu;<subscript>1</subscript>,&nu;<subscript>2</subscript>)</entry><entry><action>inverse cumulative distribution function Q(x) for an F-distribution with &nu;<subscript>1</subscript> and &nu;<subscript>2</subscript> degrees of freedom</action></entry></row>
<row><entry>tdist(x,&nu;)</entry><entry><action>probability density p(x) for a t-distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>tdistP(x,&nu;)</entry><entry><action>cumulative distribution function P(x) for a t-distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>tdistQ(x,&nu;)</entry><entry><action>cumulative distribution function Q(x) for a t-distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>tdistPinv(P,&nu;)</entry><entry><action>inverse cumulative distribution function P(x) for a t-distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>tdistQinv(Q,&nu;)</entry><entry><action>inverse cumulative distribution function Q(x) for a t-distribution with &nu; degrees of freedom</action></entry></row>
<row><entry>betapdf(x,a,b)</entry><entry><action>probability density p(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>betaQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a beta distribution with parameters a and b</action></entry></row>
<row><entry>logistic(x,a)</entry><entry><action>probability density p(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticP(x,a)</entry><entry><action>cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticQ(x,a)</entry><entry><action>cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticPinv(P,a)</entry><entry><action>inverse cumulative distribution function P(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>logisticQinv(Q,a)</entry><entry><action>inverse cumulative distribution function Q(x) for a logistic distribution with scale parameter a</action></entry></row>
<row><entry>pareto(x,a,b)</entry><entry><action>probability density p(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>paretoQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Pareto distribution with exponent a and scale b</action></entry></row>
<row><entry>weibull(x,a,b)</entry><entry><action>probability density p(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullP(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullQ(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullPinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>weibullQinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Weibull distribution with scale a and exponent b</action></entry></row>
<row><entry>gumbel1(x,a,b)</entry><entry><action>probability density p(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel1Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-1 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2(x,a,b)</entry><entry><action>probability density p(x) at X for a Type-2 Gumbel distribution with parameters A and B</action></entry></row>
<row><entry>gumbel2P(x,a,b)</entry><entry><action>cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Q(x,a,b)</entry><entry><action>cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Pinv(P,a,b)</entry><entry><action>inverse cumulative distribution function P(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>gumbel2Qinv(Q,a,b)</entry><entry><action>inverse cumulative distribution function Q(x) for a Type-2 Gumbel distribution with parameters a and b</action></entry></row>
<row><entry>poisson(k,&mu;)</entry><entry><action>probability p(k) of obtaining k from a Poisson distribution with mean &mu;</action></entry></row>
<row><entry>poissonP(k,&mu;)</entry><entry><action>cumulative distribution functions P(k) for a Poisson distribution with mean &mu;</action></entry></row>
<row><entry>poissonQ(k,&mu;)</entry><entry><action>cumulative distribution functions Q(k) for a Poisson distribution with mean &mu;</action></entry></row>
<row><entry>bernoulli(k,p)</entry><entry><action>probability p(k) of obtaining k from a Bernoulli distribution with probability parameter p</action></entry></row>
<row><entry>binomial(k,p,n)</entry><entry><action>probability p(k) of obtaining p from a binomial distribution with parameters p and n</action></entry></row>
<row><entry>binomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a binomial distribution with parameters p and n</action></entry></row>
<row><entry>binomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomial(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomialP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>nbinomialQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a negative binomial distribution with parameters p and n</action></entry></row>
<row><entry>pascal(k,p,n)</entry><entry><action>probability p(k) of obtaining k from a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>pascalP(k,p,n)</entry><entry><action>cumulative distribution functions P(k) for a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>pascalQ(k,p,n)</entry><entry><action>cumulative distribution functions Q(k) for a Pascal distribution with parameters p and n</action></entry></row>
<row><entry>geometric(k,p)</entry><entry><action>probability p(k) of obtaining k from a geometric distribution with probability parameter p</action></entry></row>
<row><entry>geometricP(k,p)</entry><entry><action>cumulative distribution functions P(k) for a geometric distribution with parameter p</action></entry></row>
<row><entry>geometricQ(k,p)</entry><entry><action>cumulative distribution functions Q(k) for a geometric distribution with parameter p</action></entry></row>
<row><entry>hypergeometric(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>probability p(k) of obtaining k from a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>hypergeometricP(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function P(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>hypergeometricQ(k,n<subscript>1</subscript>,n<subscript>2</subscript>,t)</entry><entry><action>cumulative distribution function Q(k) for a hypergeometric distribution with parameters n<subscript>1</subscript>, n<subscript>2</subscript>, t</action></entry></row>
<row><entry>logarithmic(k,p)</entry><entry><action>probability p(k) of obtaining K from a logarithmic distribution with probability parameter p</action></entry></row>
</tbody>
</tgroup>
</informaltable>
</sect1>

<sect1 id="parser-const">
<title>Constants</title>

<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Constant</entry><entry>Description</entry></row></thead>

<tbody>

<row><entry>e</entry><entry><action>The base of natural logarithms</action></entry></row>
<row><entry>pi</entry><entry><action>&pi;</action></entry></row>

</tbody></tgroup></informaltable>
</sect1>

<sect1 id="parser-const-gsl">
<title>GSL constants</title>
<para>
For more information about this constants see the documentation of GSL.
</para>
<informaltable pgwide="1"><tgroup cols="2">

<thead><row><entry>Constant</entry><entry>Description</entry></row></thead>

<tbody>

<row><entry>c</entry><entry><action> The speed of light in vacuum</action></entry></row>
<row><entry>mu0</entry><entry><action>The permeability of free space</action></entry></row>
<row><entry>e0</entry><entry><action>The permittivity of free space</action></entry></row>
<row><entry>h</entry><entry><action>The Planck constant h</action></entry></row>
<row><entry>hbar</entry><entry><action>The reduced Planck constant &planck;</action></entry></row>
<row><entry>na</entry><entry><action>Avogadro's number</action></entry></row>
<row><entry>f</entry><entry><action>The molar charge of 1 Faraday</action></entry></row>
<row><entry>k</entry><entry><action>The Boltzmann constant</action></entry></row>
<row><entry>r0</entry><entry><action>The molar gas constant</action></entry></row>
<row><entry>v0</entry><entry><action>The standard gas volume</action></entry></row>
<row><entry>sigma</entry><entry><action>The Stefan–Boltzmann constant</action></entry></row>
<row><entry>gauss</entry><entry><action>The magnetic field of 1 Gauss</action></entry></row>
<row><entry>au</entry><entry><action>The length of 1 astronomical unit (mean earth-sun distance)</action></entry></row>
<row><entry>G</entry><entry><action>The gravitational constant</action></entry></row>
<row><entry>ly</entry><entry><action>The distance of 1 light-year</action></entry></row>
<row><entry>pc</entry><entry><action>The distance of 1 parsec</action></entry></row>
<row><entry>gg</entry><entry><action>The standard gravitational acceleration on Earth</action></entry></row>
<row><entry>ms</entry><entry><action>The mass of the Sun</action></entry></row>
<row><entry>ee</entry><entry><action>The charge of the electron</action></entry></row>
<row><entry>eV</entry><entry><action>The energy of 1 electron volt</action></entry></row>
<row><entry>amu</entry><entry><action>The unified atomic mass</action></entry></row>
<row><entry>me</entry><entry><action>The mass of the electron</action></entry></row>
<row><entry>mmu</entry><entry><action>The mass of the muon</action></entry></row>
<row><entry>mp</entry><entry><action>The mass of the proton</action></entry></row>
<row><entry>mn</entry><entry><action>The mass of the neutron</action></entry></row>
<row><entry>alpha</entry><entry><action>The electromagnetic fine structure constant</action></entry></row>
<row><entry>ry</entry><entry><action>The Rydberg constant</action></entry></row>
<row><entry>a0</entry><entry><action>The Bohr radius</action></entry></row>
<row><entry>a</entry><entry><action>The length of 1 angstrom</action></entry></row>
<row><entry>barn</entry><entry><action> The area of 1 barn</action></entry></row>
<row><entry>muB</entry><entry><action>The Bohr Magneton</action></entry></row>
<row><entry>mun</entry><entry><action>The Nuclear Magneton</action></entry></row>
<row><entry>mue</entry><entry><action>The magnetic moment of the electron</action></entry></row>
<row><entry>mup</entry><entry><action>The magnetic moment of the proton</action></entry></row>
<row><entry>sigmaT</entry><entry><action>The Thomson cross section for an electron</action></entry></row>
<row><entry>pD</entry><entry><action>The debye</action></entry></row>
<row><entry>min</entry><entry><action>The number of seconds in 1 minute</action></entry></row>
<row><entry>h</entry><entry><action>The number of seconds in 1 hour</action></entry></row>
<row><entry>d</entry><entry><action> The number of seconds in 1 day</action></entry></row>
<row><entry>week</entry><entry><action>The number of seconds in 1 week</action></entry></row>
<row><entry>in</entry><entry><action>The length of 1 inch</action></entry></row>
<row><entry>ft</entry><entry><action>The length of 1 foot</action></entry></row>
<row><entry>yard</entry><entry><action>The length of 1 yard</action></entry></row>
<row><entry>mil</entry><entry><action>The length of 1 mil (1/1000th of an inch)</action></entry></row>
<row><entry>v_km_per_h</entry><entry><action>The speed of 1 kilometer per hour</action></entry></row>
<row><entry>v_mile_per_h</entry><entry><action>The speed of 1 mile per hour</action></entry></row>
<row><entry>nmile</entry><entry><action>The length of 1 nautical mile</action></entry></row>
<row><entry>fathom</entry><entry><action>The length of 1 fathom</action></entry></row>
<row><entry>knot</entry><entry><action>The speed of 1 knot</action></entry></row>
<row><entry>pt</entry><entry><action> The length of 1 printer's point (1/72 inch)</action></entry></row>
<row><entry>texpt</entry><entry><action>The length of 1 TeX point (1/72.27 inch)</action></entry></row>
<row><entry>micron</entry><entry><action>The length of 1 micrometre</action></entry></row>
<row><entry>hectare</entry><entry><action>The area of 1 hectare</action></entry></row>
<row><entry>acre</entry><entry><action>The area of 1 acre</action></entry></row>
<row><entry>liter</entry><entry><action>The volume of 1 liter</action></entry></row>
<row><entry>us_gallon</entry><entry><action>The volume of 1 US gallon</action></entry></row>
<row><entry>can_gallon</entry><entry><action>The volume of 1 Canadian gallon</action></entry></row>
<row><entry>uk_gallon</entry><entry><action>The volume of 1 UK gallon</action></entry></row>
<row><entry>quart</entry><entry><action>The volume of 1 quart</action></entry></row>
<row><entry>pint</entry><entry><action>The volume of 1 pint</action></entry></row>
<row><entry>pound</entry><entry><action>The mass of 1 pound</action></entry></row>
<row><entry>ounce</entry><entry><action>The mass of 1 ounce</action></entry></row>
<row><entry>ton</entry><entry><action>The mass of 1 ton</action></entry></row>
<row><entry>mton</entry><entry><action>The mass of 1 metric ton (1000 kg)</action></entry></row>
<row><entry>uk_ton</entry><entry><action>The mass of 1 UK ton</action></entry></row>
<row><entry>troy_ounce</entry><entry><action>The mass of 1 troy ounce</action></entry></row>
<row><entry>carat</entry><entry><action>The mass of 1 carat</action></entry></row>
<row><entry>gram_force</entry><entry><action>The force of 1 gram weight</action></entry></row>
<row><entry>pound_force</entry><entry><action>The force of 1 pound weight</action></entry></row>
<row><entry>kilepound_force</entry><entry><action>The force of 1 kilopound weight</action></entry></row>
<row><entry>poundal</entry><entry><action>The force of 1 poundal</action></entry></row>
<row><entry>cal</entry><entry><action>The energy of 1 calorie</action></entry></row>
<row><entry>btu</entry><entry><action>The energy of 1 British Thermal Unit</action></entry></row>
<row><entry>therm</entry><entry><action>The energy of 1 Therm</action></entry></row>
<row><entry>hp</entry><entry><action>The power of 1 horsepower</action></entry></row>
<row><entry>bar</entry><entry><action>The pressure of 1 bar</action></entry></row>
<row><entry>atm</entry><entry><action>The pressure of 1 standard atmosphere</action></entry></row>
<row><entry>torr</entry><entry><action>The pressure of 1 torr</action></entry></row>
<row><entry>mhg</entry><entry><action>The pressure of 1 meter of mercury</action></entry></row>
<row><entry>inhg</entry><entry><action>The pressure of 1 inch of mercury</action></entry></row>
<row><entry>inh2o</entry><entry><action>The pressure of 1 inch of water</action></entry></row>
<row><entry>psi</entry><entry><action>The pressure of 1 pound per square inch</action></entry></row>
<row><entry>poise</entry><entry><action>The dynamic viscosity of 1 poise</action></entry></row>
<row><entry>stokes</entry><entry><action>The kinematic viscosity of 1 stokes</action></entry></row>
<row><entry>stilb</entry><entry><action>The luminance of 1 stilb</action></entry></row>
<row><entry>lumen</entry><entry><action>The luminous flux of 1 lumen</action></entry></row>
<row><entry>lux</entry><entry><action>The illuminance of 1 lux</action></entry></row>
<row><entry>phot</entry><entry><action>The illuminance of 1 phot</action></entry></row>
<row><entry>ftcandle</entry><entry><action>The illuminance of 1 footcandle</action></entry></row>
<row><entry>lambert</entry><entry><action>The luminance of 1 lambert</action></entry></row>
<row><entry>ftlambert</entry><entry><action>The luminance of 1 footlambert</action></entry></row>
<row><entry>curie</entry><entry><action>The activity of 1 curie</action></entry></row>
<row><entry>roentgen</entry><entry><action>The exposure of 1 roentgen</action></entry></row>
<row><entry>rad</entry><entry><action>The absorbed dose of 1 rad</action></entry></row>
<row><entry>N</entry><entry><action>The force of 1 newton</action></entry></row>
<row><entry>dyne</entry><entry><action>The force of 1 dyne</action></entry></row>
<row><entry>J</entry><entry><action>The energy of 1 joule</action></entry></row>
<row><entry>erg</entry><entry><action>The energy of 1 erg</action></entry></row>

</tbody></tgroup></informaltable>

</sect1>

</chapter>

<chapter id="faq">
<title>Questions and Answers</title>

<qandaset id="faqlist">

<qandaentry>
<question>
<para>For which platforms is &LabPlot; available?</para>
</question>
<answer>
<para>
&LabPlot; is developed for Unix platforms and uses the &Qt; toolkit and &kde-frameworks;. Normally you can expect &LabPlot;
to build and run on every platform &kde-frameworks; supports.
A recent list of supported platforms and tips for compiling and running &LabPlot; can be found on
<ulink url="http://labplot.wiki.sourceforge.net/Download">
http://labplot.wiki.sourceforge.net/Download</ulink>.
</para>
</answer>
</qandaentry>

<qandaentry><question>
<para>How do I export the active worksheet as image?</para>
</question>
<answer><para>
The standard way is to use <menuchoice><guimenu>File</guimenu><guimenuitem>Export</guimenuitem></menuchoice>. All &Qt; supported image formats are allowed. Just select the desired format and the active worksheet is exported.
</para></answer>
</qandaentry>

<qandaentry>
<question>
<para>How do I use Greek letters for title, axes label, &etc;?</para>
</question>
<answer>
<para>
  Use <guiicon>&pi;</guiicon> button to open character selector window or <guiicon>&tex;</guiicon> to generate Greek letters and other symbols using &latex;.
</para>
</answer>
</qandaentry>

<qandaentry>
<question>
<para>I miss an important feature. What can I do?</para>
</question>
<answer>
<para>
Please take a look at the TODO file in the documentation of &LabPlot;.
Here, all planned features are listed in more or
less sorted order which I will implement in future releases of &LabPlot;.
If you like to have additional
features or like to have a listed feature soon, mail me your wishes and, if possible, send me
example data or a short
description of what you like to do.
It is not unlikely that your feature will appear in the next stable release
of &LabPlot; :-)
</para>
</answer>
</qandaentry>

<qandaentry><question>
<para>Many Analysis functions are disabled. What can I do?</para>
</question>
<answer><para>
It looks like your &LabPlot; package was compiled without GSL (&GNU; Scientific Library) support. &LabPlot; was designed to even work on systems that
are missing most of the standard libraries. Many distributions are shipping &LabPlot; packages without this additional functionality. In this case some functions are not available. Fortunately some programs (like <application>pstoedit</application> or <application>texvc</application>) can be added without recompiling &LabPlot;. You can always check your system environment in the help menu of &LabPlot;.
</para>
<para>
The packages provided on the official download page are always built with the standard libraries (GSL, &etc;). You should use them
to have all the features.
</para>
</answer>
</qandaentry>

<qandaentry><question>
<para>I want to help. How can I contribute to &LabPlot;?</para>
</question>
<answer><para>
Yes, of course. There are a lot things to do. Even if you don't know anything about programming we always
need people to find bugs, test things and make suggestions. Also the translation and documentation always
needs a lot of work.
</para></answer>
</qandaentry>


</qandaset>
</chapter>

<chapter id="license">

<title>License</title>

<para>&LabPlot;</para>
<para>
Program copyright &copy; 2007-2016 Stefan Gerlach <email>stefan.gerlach@uni-konstanz.de</email>
Program copyright &copy; 2008-2016 Alexander Semke <email>Alexander.Semke@web.de</email>
</para>

<important>
<para>
&LabPlot; is still under development. There is a long list of missing features that will be implemented in later versions of &LabPlot;.
</para>
</important>

<para>
Because there are a lot things to do, developers need every help you can give. Any contribution like wishes, corrections,
patches, bug reports or screen shots is welcome.
</para>

<para>
Documentation copyright &copy; 2007-2016 Stefan Gerlach
<email>stefan.gerlach@uni-konstanz.de</email>

Documentation copyright &copy; 2008-2015 Alexander Semke
<email>Alexander.Semke@web.de</email>

Documentation copyright &copy; 2014 Yuri Chornoivan
<email>yurchor@ukr.net</email>
</para>

<!-- TRANS:CREDIT_FOR_TRANSLATORS -->

&underFDL;
&underGPL;

</chapter>




&documentation.index;
</book>