File: olfilter.c

package info (click to toggle)
ladr 0.0.200902a-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 11,400 kB
  • ctags: 7,168
  • sloc: ansic: 59,953; perl: 1,006; python: 620; makefile: 403; sh: 86; csh: 58; modula3: 13
file content (539 lines) | stat: -rw-r--r-- 13,320 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*  Copyright (C) 2006, 2007 William McCune

    This file is part of the LADR Deduction Library.

    The LADR Deduction Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License,
    version 2.

    The LADR Deduction Library is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with the LADR Deduction Library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "../ladr/top_input.h"

#define PROGRAM_NAME    "olfilter"
#include "../VERSION_DATE.h"

static char Help_string[] =
"\nThis program takes a stream of meet/join/complement/0/1/sheffer\n"
"equations (from stdin) and writes (to stdout) those that are\n"
"ortholattice (OL) identities.  Bruns's procedure is used.  An optional\n"
"argument 'fast' says to read and write the clauses in fastparse form\n"
"(e.g., =mxxx.).  The base terms can be either constants or variables.\n\n"
"Example OL identities (f is Sheffer stroke).\n\n"
"  ordinary:  'c(x ^ 0) = f(x,c(x v x)).'\n"
"  fastparse: '=cmx0fxcmxx.' (exactly one per line, without spaces)\n\n"
"Another optional argument 'x' says to output the equations that are\n"
"*not* OL identities.\n\n"
;

/*
 *  Take a stream of equations, and for each, decide if it is an
 *  ortholattice identity.  Use the procedure outlined in
 *
 *      Bruns, Gunter.  Free ortholattices.
 *      Canad. J. Math. 28 (1976), no. 5, 977--985.
 *
 *  I'm not sure this is correct, because there are few things
 *  about the paper I don't understand.
 */

/* Cache the important symbol numbers to avoid symbol table lookups. */

int Meet_sym;
int Join_sym;
int Comp_sym;
int Zero_sym;
int One_sym;
int Sheffer_sym;

#define MEET_TERM(t)        (SYMNUM(t) == Meet_sym)
#define JOIN_TERM(t)        (SYMNUM(t) == Join_sym)
#define COMPLEMENT_TERM(t)  (SYMNUM(t) == Comp_sym)
#define ZERO_TERM(t)        (SYMNUM(t) == Zero_sym)
#define ONE_TERM(t)         (SYMNUM(t) == One_sym)
#define SHEFFER_TERM(t)     (SYMNUM(t) == Sheffer_sym)

/*************
 *
 *   complement() - complement a term.
 *
 *   This is a destructive operation.  That is, if you call it as
 *   a = complement(b), then you should never again refer to b.
 *   So a good way to call it is b = complement(b).
 *
 *************/

static Term complement(Term t)
{
  return build_unary_term(Comp_sym, t);
}  /* complement */

/*************
 *
 *   neg_norm_form(t) - destructively transform t.
 *
 *   Negation normal form (NNF).
 *
 *   Apply the following rules as much as possible (sound for OL).
 *     c(x ^ y) -> c(x) v c(y)
 *     c(x v y) -> c(x) ^ c(y)
 *     c(c(x)) -> x
 *     c(0) -> 1
 *     c(1) -> 0
 *
 *   The Bruns paper doesn't say anything about this, but parts
 *   of it seem to assume that all complements are applied to
 *   simple terms.  So we'll use this to make it so.
 *
 *************/

static Term neg_norm_form(Term t)
{
  if (VARIABLE(t) || (CONSTANT(t)))
    return t;

  else if (JOIN_TERM(t) || MEET_TERM(t)) {
    ARG(t,0) = neg_norm_form(ARG(t,0));
    ARG(t,1) = neg_norm_form(ARG(t,1));
    return t;
  }

  else if (COMPLEMENT_TERM(t)) {
    Term s = ARG(t,0);

    if (ZERO_TERM(s) || ONE_TERM(s)) {
      zap_term(t);
      return get_rigid_term_dangerously(ZERO_TERM(s) ? One_sym : Zero_sym, 0);
    }
    else if (VARIABLE(s) || CONSTANT(s))
      return t;
    else if (COMPLEMENT_TERM(s)) {
      Term a = ARG(s,0);
      free_term(t);
      free_term(s);
      return neg_norm_form(a);
    }
    else if (MEET_TERM(s) || JOIN_TERM(s)) {
      int dual_sym = MEET_TERM(s) ? Join_sym : Meet_sym;
      Term a0 = ARG(s,0);
      Term a1 = ARG(s,1);
      free_term(t);
      free_term(s);
      return build_binary_term(dual_sym,
			       neg_norm_form(build_unary_term(Comp_sym, a0)),
			       neg_norm_form(build_unary_term(Comp_sym, a1)));
    }
    else {
      fatal_error("neg_norm_form: bad term");
      return NULL;
    }
  }
  else {
    fatal_error("neg_norm_form: bad term");
    return NULL;
  }
}  /* neg_norm_form */

/*************
 *
 *   simplify_01(t) - destructively transform t.
 *
 *   Get rid of 0 and 1 by the ordinary rules 
 *   (unless, of course, the top is 0 or 1).
 *
 *************/

static Term simplify_01(Term t)
{
  if (VARIABLE(t) || (CONSTANT(t)))
    return t;

  else if (COMPLEMENT_TERM(t)) {
    Term s0;
    ARG(t, 0) = simplify_01(ARG(t,0));
    s0 = ARG(t, 0);
    if (ONE_TERM(s0)) {
      zap_term(t);
      return get_rigid_term_dangerously(Zero_sym, 0);
    }
    else if (ZERO_TERM(s0)) {
      zap_term(t);
      return get_rigid_term_dangerously(One_sym, 0);
    }
    else
      return t;
  }

  else if (JOIN_TERM(t) || MEET_TERM(t)) {
    Term s0, s1;
    ARG(t, 0) = simplify_01(ARG(t,0));
    ARG(t, 1) = simplify_01(ARG(t,1));
    s0 = ARG(t, 0);
    s1 = ARG(t, 1);

    if (MEET_TERM(t) && (ZERO_TERM(s0) || ZERO_TERM(s1))) {
      zap_term(t);
      return get_rigid_term_dangerously(Zero_sym, 0);
    }
    else if (JOIN_TERM(t) && (ONE_TERM(s0) || ONE_TERM(s1))) {
      zap_term(t);
      return get_rigid_term_dangerously(One_sym, 0);
    }
    else if ((JOIN_TERM(t) && ZERO_TERM(s0)) ||
	     (MEET_TERM(t) && ONE_TERM(s0))) {
      free_term(t);  /* frees top node only */
      zap_term(s0);  /* frees entire term */
      return s1;
    }
    else if ((JOIN_TERM(t) && ZERO_TERM(s1)) ||
	     (MEET_TERM(t) && ONE_TERM(s1))) {
      free_term(t);
      zap_term(s1);
      return s0;
    }
    else
      return t;
  }
  else
    return t;
}  /* simplify_01 */

/*************
 *
 *   ol_leq()
 *
 *************/

/* DOCUMENTATION
Given OL terms S and T, which have already been preprocessed
by the beta() operation, this routine checks if S <= T.
It is assumed that S and T are in terms of operations
\{meet,join,complement,0,1\}.
<P>
<P>
This is an extension of Whitman's procedure for lattice theory, and
it should work also as a decision procedure for LT {meet,join} terms.
<P>
Solutions to subproblems are not cached, so the behavior of
this implementation can be exponential.
*/

BOOL ol_leq(Term s, Term t)
{
  BOOL result;

  if (VARIABLE(s) && (VARIABLE(t)))
    result = (VARNUM(s) == VARNUM(t));

  else if (ZERO_TERM(s))
    result = TRUE;
  else if (ONE_TERM(t))
    result = TRUE;
#if 0
  else if (ZERO_TERM(t))
    result = FALSE;
  else if (ONE_TERM(s))
    result = FALSE;
#endif

  else if (CONSTANT(s) && (CONSTANT(t)))
    result = (SYMNUM(s) == SYMNUM(t));

  else if (JOIN_TERM(s))
    result = (ol_leq(ARG(s,0), t) &&
	      ol_leq(ARG(s,1), t));

  else if (MEET_TERM(t))
    result = (ol_leq(s, ARG(t,0)) &&
	      ol_leq(s, ARG(t,1)));
					 
  else if (MEET_TERM(s) && JOIN_TERM(t))
    result = (ol_leq(s, ARG(t,0)) ||
	      ol_leq(s, ARG(t,1)) ||
	      ol_leq(ARG(s,0), t) ||
	      ol_leq(ARG(s,1), t));

  else if (JOIN_TERM(t))
    result = (ol_leq(s, ARG(t,0)) ||
	      ol_leq(s, ARG(t,1)));

  else if (MEET_TERM(s))
    result = (ol_leq(ARG(s,0), t) ||
	      ol_leq(ARG(s,1), t));

  else if (COMPLEMENT_TERM(s) && COMPLEMENT_TERM(t))
    result = term_ident(ARG(s,0), ARG(t,0));

  else
    result = FALSE;

#if 0
  printf("ol_leq %d: ", result); fwrite_term(stdout, s);
  printf("   ---   "); fwrite_term_nl(stdout, t);
#endif

  return result;
}  /* ol_leq */

/*************
 *
 *   reduced_join(t)
 *
 *************/

static BOOL reduced_join(Term a, Term t)
{
  Term ca = neg_norm_form(complement(copy_term(a)));
  BOOL ok = !ol_leq(ca, t);
  zap_term(ca);
  return ok;
}  /* reduced_join */

/*************
 *
 *   reduced_meet(t)
 *
 *************/

static BOOL reduced_meet(Term a, Term t)
{
  Term ca = neg_norm_form(complement(copy_term(a)));
  BOOL ok = !ol_leq(t, ca);
  zap_term(ca);
  return ok;
}  /* reduced_meet */

/*************
 *
 *   reduced(t)
 *
 *   As in the Bruns paper, page 979.
 *
 *************/

static BOOL reduced(Term t)
{
  BOOL result = TRUE;

  if (VARIABLE(t) || (CONSTANT(t)))
    result = TRUE;
  else if (COMPLEMENT_TERM(t)) {
    if (VARIABLE(ARG(t,0)) || (CONSTANT(ARG(t,0))))
      result = TRUE;
    else
      fatal_error("reduced gets complemented complex term");
  }
  else if (JOIN_TERM(t))
    result = (reduced(ARG(t,0)) &&
	      reduced(ARG(t,1)) &&
	      reduced_join(ARG(t,0), t) &&
	      reduced_join(ARG(t,1), t));
  else if (MEET_TERM(t))
    result = (reduced(ARG(t,0)) &&
	      reduced(ARG(t,1)) &&
	      reduced_meet(ARG(t,0), t) &&
	      reduced_meet(ARG(t,1), t));
  else
    fatal_error("reduced gets unrecognized term");

#if 0
  printf("reduced=%d:   ", result); fwrite_term_nl(stdout, t);
#endif
  return result;
}  /* reduced */

/*************
 *
 *   beta(t) -- destructively transform t.
 *
 *   As in the Bruns paper, page 980.
 *
 *************/

static Term beta(Term t)
{
  if (JOIN_TERM(t)) {
    Term a0, a1;
    ARG(t,0) = simplify_01(beta(ARG(t,0)));
    ARG(t,1) = simplify_01(beta(ARG(t,1)));
    a0 = ARG(t,0);
    a1 = ARG(t,1);

    if (reduced(t) || ZERO_TERM(a0) || ZERO_TERM(a1))
      return t;
    else {
      zap_term(t);
      return get_rigid_term_dangerously(One_sym, 0);
    }
  }
    
  else if (MEET_TERM(t)) {
    Term a0, a1;
    ARG(t,0) = simplify_01(beta(ARG(t,0)));
    ARG(t,1) = simplify_01(beta(ARG(t,1)));
    a0 = ARG(t,0);
    a1 = ARG(t,1);

    if (reduced(t) || ONE_TERM(a0) || ONE_TERM(a1))
      return t;
    else {
      zap_term(t);
      return get_rigid_term_dangerously(Zero_sym, 0);
    }
  }

  else
    return t;
}  /* beta */

/*************
 *
 *   ol_identity()
 *
 *   Given an equality, check if it is an ortholattice (OL) identity.
 *
 *************/

BOOL ol_identity(Term equality)
{
  if (equality == NULL || !is_symbol(SYMNUM(equality), "=", 2))
    return FALSE;
  else {
    Term b0 = beta(simplify_01(neg_norm_form(copy_term(ARG(equality,0)))));
    Term b1 = beta(simplify_01(neg_norm_form(copy_term(ARG(equality,1)))));
    BOOL ok1 = ol_leq(b0, b1);
    BOOL ok2 = ol_leq(b1, b0); 
    BOOL ok = ok1 && ok2;
#if 0
    printf("-----------------\n");
    printf("    "); fwrite_term_nl(stdout, equality);
    printf("b0: "); fwrite_term_nl(stdout, b0);
    printf("b1: "); fwrite_term_nl(stdout, b1);
    printf("b0-le=%d, b1-le=%d\n", ok1, ok2);
#endif
    zap_term(b0);
    zap_term(b1);
    return ok;
  }
}  /* ol_identity */

/*************
 *
 *   expand_defs() - expand definitions.
 *
 *   This is not destructive.  It creates an entirely new copy.
 *
 *************/

static
Term expand_defs(Term t)
{
  if (SHEFFER_TERM(t)) {
    Term a0 = expand_defs(ARG(t,0));
    Term a1 = expand_defs(ARG(t,1));
    return build_binary_term(Join_sym,
			     build_unary_term(Comp_sym, a0),
			     build_unary_term(Comp_sym, a1));
  }
  else if VARIABLE(t)
    return copy_term(t);
  else {
    int i;
    Term s = get_rigid_term_like(t);
    for (i = 0; i < ARITY(t); i++)
      ARG(s,i) = expand_defs(ARG(t,i));
    return s;
  }
}  /* expand_defs */

/*************
 *
 *   main()
 *
 *************/

int main(int argc, char **argv)
{
  Term t;
  unsigned long int checked = 0;
  unsigned long int passed = 0;
  BOOL fast_parse;
  BOOL output_non_identities;

  if (string_member("help", argv, argc) ||
      string_member("-help", argv, argc)) {
    printf("\n%s, version %s, %s\n",PROGRAM_NAME,PROGRAM_VERSION,PROGRAM_DATE);
    printf("%s", Help_string);
    exit(1);
  }

  fast_parse = string_member("fast", argv, argc);
  output_non_identities = string_member("x", argv, argc);

  /* Assume stdin contains equality units.

     Note that if we're not using fastparse, we use read_term
     which does not "set_variables"; that is,
     the terms that you expect to be variables are still constants.
     That's okay, because the ol identity checker doesn't care whether
     the "base" terms are constants, variables, or mixed.
  */

  if (fast_parse) {
    /* Declare the symbols for fastparse. */
    fast_set_defaults();
    /* Cache symbol IDs. */
    Meet_sym = str_to_sn("m", 2);
    Join_sym = str_to_sn("j", 2);
    Comp_sym = str_to_sn("c", 1);
    Zero_sym = str_to_sn("0", 0);
    One_sym = str_to_sn("1", 0);
    Sheffer_sym = str_to_sn("f", 2);
  }
  else {
    init_standard_ladr();
    /* Cache symbol IDs. */
    Meet_sym = str_to_sn("^", 2);
    Join_sym = str_to_sn("v", 2);
    Comp_sym = str_to_sn("c", 1);
    Zero_sym = str_to_sn("0", 0);
    One_sym = str_to_sn("1", 0);
    Sheffer_sym = str_to_sn("f", 2);
  }

  /* Read the first equation. */
  t = term_reader(fast_parse);

  while (t != NULL) {
    Term expanded = expand_defs(t);
    BOOL ident = ol_identity(expanded);
    checked++;
    if ((!output_non_identities && ident) ||
	(output_non_identities && !ident)) {
      passed++;
      term_writer(t, fast_parse);
    }
    zap_term(t);
    zap_term(expanded);
    t = term_reader(fast_parse);
  }

  printf("%% olfilter%s: checked %lu, passed %lu, user %.2f, system %.2f.\n",
	 output_non_identities ? " x" : "",
	 checked, passed,
	 user_seconds(),
	 system_seconds());

#if 0
  p_term_mem();
#endif
  exit(0);
}  /* main */