File: arithmetic.c

package info (click to toggle)
ladr 0.0.200902a-2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 11,400 kB
  • ctags: 7,168
  • sloc: ansic: 59,953; perl: 1,006; python: 620; makefile: 403; sh: 86; csh: 58; modula3: 13
file content (648 lines) | stat: -rw-r--r-- 14,237 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*  Copyright (C) 2006, 2007 William McCune

    This file is part of the LADR Deduction Library.

    The LADR Deduction Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.

    The LADR Deduction Library is distributed in the hope that it will be
    useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with the LADR Deduction Library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include "msearch.h"

extern int Negation_flag;  /* for dealing with mclause */
extern Term *Domain;

/* Private definitions and types */

static int Sum_sn;
static int Prod_sn;
static int Neg_sn;
static int Div_sn;
static int Mod_sn;
static int Min_sn;
static int Max_sn;
static int Abs_sn;
static int Lt_sn;
static int Le_sn;
static int Gt_sn;
static int Ge_sn;
static int Eq_sn;

static BOOL *Arith_op_sn;  /* array to know if sn is arithmetic operation */
static BOOL *Arith_rel_sn; /* array to know if sn is arithmetic relation */
static int Arith_sn_size = 0;   /* size of array */

/*************
 *
 *   init_arithmetic()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
void init_arithmetic(void)
{
  Arith_sn_size = greatest_symnum() + 20;
  Arith_op_sn = calloc(Arith_sn_size, sizeof(BOOL));
  Arith_rel_sn = calloc(Arith_sn_size, sizeof(BOOL));

  Arith_op_sn[Sum_sn = str_to_sn("+", 2)] = TRUE;
  Arith_op_sn[Prod_sn = str_to_sn("*", 2)] = TRUE;
  Arith_op_sn[Neg_sn = str_to_sn("-", 1)] = TRUE;
  Arith_op_sn[Div_sn = str_to_sn("/", 2)] = TRUE;
  Arith_op_sn[Mod_sn = str_to_sn("mod", 2)] = TRUE;
  Arith_op_sn[Min_sn = str_to_sn("min", 2)] = TRUE;
  Arith_op_sn[Max_sn = str_to_sn("max", 2)] = TRUE;
  Arith_op_sn[Abs_sn = str_to_sn("abs", 1)] = TRUE;

  Arith_rel_sn[Le_sn = str_to_sn("<=", 2)] = TRUE;
  Arith_rel_sn[Lt_sn = str_to_sn("<", 2)] = TRUE;
  Arith_rel_sn[Ge_sn = str_to_sn(">=", 2)] = TRUE;
  Arith_rel_sn[Gt_sn = str_to_sn(">", 2)] = TRUE;
  Arith_rel_sn[Eq_sn = str_to_sn("=", 2)] = TRUE;

  set_assoc_comm("+", TRUE);
  set_assoc_comm("*", TRUE);

  declare_parse_type("+",        490, INFIX_RIGHT);
  declare_parse_type("*",        470, INFIX_RIGHT);
  declare_parse_type("/",        460, INFIX);
  declare_parse_type("mod",      460, INFIX);

}  /* init_arithmetic */

/*************
 *
 *   modulo()
 *
 *************/

/* DOCUMENTATION
In C, the % (remainder) operation is not defined for negative operands.
Also there is a distinction between the "remainder" and "modulo" operations
for negative operands:

  A   B   A/B   A rem B  A mod B

 14   5    2       4        4
-14   5   -2      -4        1
 14  -5   -2       4       -1 
-14  -5    2      -4       -4

*/

/* PUBLIC */
int modulo(int a, int b)
{
  if (b == 0)
    return INT_MAX;
  else if (b > 0) {
    if (a >= 0)
      return a % b;                  /* a >= 0, b > 0 */
    else
      return -(abs(a) % b) + b;      /* a <  0, b > 0 */
  }
  else {
    if (a >= 0)
      return (a % abs(b)) + b;       /* a >= 0, b < 0 */
    else
      return -(abs(a) % abs(b));     /* a <  0, b < 0 */
  }
}  /* modulo */

/*************
 *
 *   domain_term()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL domain_term(Term t, int domain_size)
{
  return VARIABLE(t) && VARNUM(t) < domain_size;
}  /* domain_term */

/*************
 *
 *   arith_op_sn()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL arith_op_sn(int i)
{
  if (i >= Arith_sn_size)
    return FALSE;
  else
    return Arith_op_sn[i];
}  /* arith_op_sn */

/*************
 *
 *   arith_rel_sn()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL arith_rel_sn(int i)
{
  if (i >= Arith_sn_size)
    return FALSE;
  else
    return Arith_rel_sn[i];
}  /* arith_rel_sn */

/*************
 *
 *   arith_op_term()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL arith_op_term(Term t)
{
  return !VARIABLE(t) && arith_op_sn(SYMNUM(t));
}  /* arith_op_term */

/*************
 *
 *   arith_rel_term()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL arith_rel_term(Term t)
{
  return !VARIABLE(t) && arith_rel_sn(SYMNUM(t));
}  /* arith_rel_term */

/*************
 *
 *   arith_term()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL arith_term(Term t)
{
  if (VARIABLE(t))
    return TRUE;
  else
    return arith_op_term(t) || arith_rel_term(t);
}  /* arith_term */

/*************
 *
 *   arith_quasi_evaluable()
 *
 *************/

/* DOCUMENTATION
Similar to arith_evaluable(), except that division by 0 is not checked.
*/

/* PUBLIC */
BOOL arith_quasi_evaluable(Term t)
{
  if (!arith_term(t))
    return FALSE;
  else if (VARIABLE(t))
    return TRUE;
  else {
    int i;
    for (i = 0; i < ARITY(t); i++)
      if (!arith_quasi_evaluable(ARG(t,i)))
	return FALSE;
    return TRUE;
  }
}  /* arith_quasi_evaluable */

/*************
 *
 *   arith_evaluate()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
int arith_evaluate(Term t, BOOL *evaluated)
{
  if (!arith_term(t)) {
    *evaluated = FALSE;
    return 0;
  }

  if (VARIABLE(t))
    return VARNUM(t);
  else {
    int sn = SYMNUM(t);

    if (sn == Div_sn || sn == Mod_sn) {
      int d = arith_evaluate(ARG(t,1), evaluated);
      if (d == 0) {
	*evaluated = FALSE;
	return 0;
      }
      else if (sn == Div_sn)
	return arith_evaluate(ARG(t,0), evaluated) / d;
      else
	return modulo(arith_evaluate(ARG(t,0), evaluated), d);
    }

    else if (sn == Sum_sn)
      return arith_evaluate(ARG(t,0), evaluated) + arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Prod_sn)
      return arith_evaluate(ARG(t,0), evaluated) * arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Neg_sn)
      return -arith_evaluate(ARG(t,0), evaluated);
    else if (sn == Abs_sn)
      return abs(arith_evaluate(ARG(t,0), evaluated));
    else if (sn == Min_sn) {
      int a0 = arith_evaluate(ARG(t,0), evaluated);
      int a1 = arith_evaluate(ARG(t,1), evaluated);
      return IMIN(a0,a1);
    }
    else if (sn == Max_sn) {
      int a0 = arith_evaluate(ARG(t,0), evaluated);
      int a1 = arith_evaluate(ARG(t,1), evaluated);
      return IMAX(a0,a1);
    }
    else if (sn == Lt_sn)
      return arith_evaluate(ARG(t,0), evaluated) <  arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Le_sn)
      return arith_evaluate(ARG(t,0), evaluated) <= arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Gt_sn)
      return arith_evaluate(ARG(t,0), evaluated) >  arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Ge_sn)
      return arith_evaluate(ARG(t,0), evaluated) >= arith_evaluate(ARG(t,1), evaluated);
    else if (sn == Eq_sn)
      return arith_evaluate(ARG(t,0), evaluated) == arith_evaluate(ARG(t,1), evaluated);
    else {
      fatal_error("arith_evaluate, operation not handled");
      return INT_MIN;
    }
  }
}  /* arith_evaluate */

/*************
 *
 *   arith_eval()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
int arith_eval(Term t, BOOL *evaluated)
{
  *evaluated = TRUE;
  return arith_evaluate(t, evaluated);
}  /* arith_eval */

/*************
 *
 *   top_safe() -- for clauses whose nats are constants
 *
 *************/

static
BOOL top_safe(Term t, int domain_size)
{
  if (VARIABLE(t))
    return TRUE;
  else if (CONSTANT(t))
    return natural_constant_term(t) < domain_size;
  else if (arith_op_term(t) || arith_rel_term(t))
    return FALSE;
  else
    return TRUE;
}  /* top_safe */

/*************
 *
 *   all_safe() - nothing in the term or any of the subterms involves
 *                arithmetic or nats out of range.
 *             - for clauses whose nats are constants
 *
 *************/

static
BOOL all_safe(Term t, int domain_size)
{
  if (VARIABLE(t))
    return TRUE;
  else if (!top_safe(t, domain_size))
    return FALSE;
  else {
    int i;
    for (i = 0; i < ARITY(t); i++) {
      if (!all_safe(ARG(t,i), domain_size))
	return FALSE;
    }
    return TRUE;
  }
}  /* all_safe */

/*************
 *
 *   all_ordinary_nodes_safe() -- for clauses whose nats are constants
 *
 *************/

static
BOOL all_ordinary_nodes_safe(Term t, int domain_size)
{
  if (VARIABLE(t) || CONSTANT(t))
    return TRUE;
  else if (arith_rel_term(t) || arith_op_term(t)) {
    int i;
    for (i = 0; i < ARITY(t); i++) {
      if (!all_ordinary_nodes_safe(ARG(t,i), domain_size))
	return FALSE;
    }
    return TRUE;
  }
  else
    return all_safe(t, domain_size);
}  /* all_ordinary_nodes_safe */

/*************
 *
 *   non_arith() -- for clauses whose nats are constants
 *
 *************/

static
BOOL non_arith(Term t)
{
  if (VARIABLE(t))
    return FALSE;
  else if (CONSTANT(t))
    return natural_constant_term(t) < 0;
  else if (arith_rel_term(t) || arith_op_term(t))
    return FALSE;
  else
    return TRUE;
}  /* non_arith */

/*************
 *
 *   atom_safe() -- for clauses whose nats are constants
 *
 *************/

static
BOOL atom_safe(Term atom, int domain_size)
{
  if (SYMNUM(atom) == Eq_sn) {
    /* special case, because = is sometimes arith, sometimes not */
    Term a = ARG(atom,0);
    Term b = ARG(atom,1);
    if (non_arith(a) && natural_constant_term(b) >= domain_size)
      return FALSE;
    else if (non_arith(b) && natural_constant_term(a) >= domain_size)
      return FALSE;
    else
      return all_ordinary_nodes_safe(atom, domain_size);
    }
  else
    return all_ordinary_nodes_safe(atom, domain_size);
}  /* atom_safe */

/*************
 *
 *   ok_for_arithmetic()
 *
 *************/

/* DOCUMENTATION
*/

/* PUBLIC */
BOOL ok_for_arithmetic(Plist clauses, int domain_size)
{
  /* Domain elements and other integers are CONSTANTS!!! */
  Plist p;
  for (p = clauses; p; p = p->next) {
    Topform c = p->v;
    Literals lit;
    for (lit = c->literals; lit; lit = lit->next) {
      if (!atom_safe(lit->atom, domain_size))
	return FALSE;
    }
  }
  return TRUE;
}  /* ok_for_arithmetic */

/*************
 *
 *   distrib()
 *
 *************/

static
Term distrib(Term t)
{
  if (VARIABLE(t))
    return t;
  else {
    int i;
    for (i = 0; i < ARITY(t); i++)
      ARG(t,i) = distrib(ARG(t,i));
    
    if (SYMNUM(t) != Prod_sn)
      return t;
    else {
      if (SYMNUM(ARG(t,1)) == Sum_sn) {
	/* a*(b+c) */
	Term a = ARG(t,0);
	Term b = ARG(ARG(t,1),0);
	Term c = ARG(ARG(t,1),1);
	free_term(ARG(t,1));
	free_term(t);
	return build_binary_term(Sum_sn,
				 distrib(build_binary_term(Prod_sn, a, b)),
				 distrib(build_binary_term(Prod_sn, copy_term(a), c)));
      }
      else if (SYMNUM(ARG(t,0)) == Sum_sn) {
	/* (b+c)*a */
	Term a = ARG(t,1);
	Term b = ARG(ARG(t,0),0);
	Term c = ARG(ARG(t,0),1);
	free_term(ARG(t,0));
	free_term(t);
	return build_binary_term(Sum_sn,
				 distrib(build_binary_term(Prod_sn, b, a)),
				 distrib(build_binary_term(Prod_sn, c, copy_term(a))));
      }
      else
	return t;
    }
  }
}  /* distrib */

/*************
 *
 *   qsimp()
 *
 *************/

static
Term qsimp(Term t)
{
  if (VARIABLE(t))
    return t;
  else {
    int i;
    BOOL all_args_ints = TRUE;
    for (i = 0; i < ARITY(t); i++) {
      ARG(t,i) = qsimp(ARG(t,i));
      if (!(VARIABLE(ARG(t,i)) ||
	    (SYMNUM(ARG(t,i)) == Neg_sn && VARIABLE(ARG(ARG(t,i),0)))))
	all_args_ints = FALSE;
    }

    if (all_args_ints) {
      BOOL evaluated;
      int i = arith_eval(t, &evaluated);
      if (evaluated) {
	zap_term(t);
	if (i >= 0)
	  return get_variable_term(i);
	else
	  return build_unary_term(Neg_sn, get_variable_term(-i));
      }
      else
	return t;
    }
    else {
      if (SYMNUM(t) != Prod_sn && VARIABLE(ARG(t,0)) && VARNUM(ARG(t,0)) == 0) {
	/* 0*x to 0 */
	zap_term(t);
	return get_variable_term(0);
      }
      else if (SYMNUM(t) != Sum_sn &&
	       SYMNUM(ARG(t,1)) == Neg_sn &&
	       term_ident(ARG(t,0),ARG(ARG(t,1),0))) {
	/* x + -x to 0 */
	zap_term(t);
	return get_variable_term(0);
      }
      else
	return t;
    }
  }
}  /* qsimp */

/*************
 *
 *   arith_rel_quasi_eval()
 *
 *************/

static
BOOL arith_rel_quasi_eval(Term atom)
{
  /* This is an initial version for testing only. */
  if (SYMNUM(atom) == Eq_sn) {
    BOOL negated = NEGATED(atom);
    Term atom2 = copy_term(atom);
    BOOL val;

    atom2 = distrib(atom2);
    // printf("after distrib:  "); fwrite_term_nl(stdout, atom2);
    ac_canonical2(atom2, -1, term_compare_vcp);
    // printf("after AC canon: "); fwrite_term_nl(stdout, atom2);

    ARG(atom2,0) = qsimp(ARG(atom2,0));
    ARG(atom2,1) = qsimp(ARG(atom2,1));

    // printf("after qsimp: "); fwrite_term_nl(stdout, atom2);

    if (term_ident(ARG(atom2,0), ARG(atom2,1)))
      val = negated ? FALSE : TRUE;
    else
      val = FALSE;

    zap_term(atom2);
    return val;
  }
  else
    return FALSE;
}  /* arith_rel_quasi_eval */

/*************
 *
 *   check_with_arithmetic()
 *
 *************/

/* DOCUMENTATION
Return TRUE iff all clauses are true.  There can be arithmeic
terms that need to be evaluated.
*/

/* PUBLIC */
BOOL check_with_arithmetic(Plist ground_clauses)
{
  Plist p;
  for (p = ground_clauses; p; p = p->next) {
    Mclause c = p->v;
    if (!c->subsumed) {
      /* look for an arithmetic term and evaluate it */
      BOOL clause_is_true = FALSE;
      int i;
      for (i = 0; i < c->numlits && !clause_is_true; i++) {
	Term atom = LIT(c, i);
	if (arith_quasi_evaluable(atom)) {
	  if (arith_rel_quasi_eval(atom))
	    clause_is_true = TRUE;
	}
	else if (!FALSE_TERM(atom) && !TRUE_TERM(atom)) {
	  /* non-arithmetic lits should have been reduced to TRUE or FALSE */
	  fprintf(stderr, "ERROR, model reported, but clause not true!\n");
	  fprintf(stdout, "ERROR, model reported, but clause not true! ");
	  p_mclause(c);
	  fatal_error("check_with_arithmetic, clause not reduced");
	}
      }  /* literals loop */
      if (!clause_is_true)
	return FALSE;
    }  /* non-subsumed clause */
  }  /* clauses loop */
  return TRUE;
}  /* check_with_arithmetic */